Proof of Correctness: Stability

Claim. No unstable pairs.
Pf. (by contradiction)
Q. How to start this proof?

Proof of Correctness: Stability

Claim. No unstable pairs.
Pf. (by contradiction)
Suppose A-Z is an unstable pair: A and Z prefer each other to their partner in the Gale-Shapley matching S^{*}.
Q. How could this have happened?

Proof of Correctness: Stability

Claim. No unstable pairs.
Pf. (by contradiction)
Suppose A-Z is an unstable pair: A and Z prefer each other to their partner in the Gale-Shapley matching S^{*}.
Q. How could this have happened?

Case 1: Z never proposed to A.

Case 2: Z proposed to A and A rejected/dumped Z

Proof of Correctness: Stability

Claim. No unstable pairs.
Pf. (by contradiction)
Suppose A-Z is an unstable pair: A and Z prefer each other to their partner in the Gale-Shapley matching S^{*}.

Case 1: Z never proposed to A .
men propose in decreasing
$\Rightarrow Z$ prefers his partner in S^{*} to A.
$\Rightarrow A-Z$ is not an unstable pair.

Case 2: Z proposed to A.
$\Rightarrow A$ rejected Z (right away or later)
\Rightarrow A prefers her partner in S^{*} to Z. \quad women only trade up
$\Rightarrow A-Z$ is not an unstable pair.

In either case $\mathrm{A}-\mathrm{Z}$ is not an unstable pair, a contradiction. •

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
    Choose such a man m
    w = 1st woman on m's list to whom m has not yet proposed
    if (w is free)
        assign m and w to be engaged
    else if (w prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
    else
        w rejects m
}
```

Claim. Algorithm terminates after at most n^{2} iterations of while loop.

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.

```
Initialize each person to be free.
while (1.some man is free and hasn't proposed to every woman) {
    1.Choose such a man m
    w = 2. 1st woman on m's list to whom m has not yet proposed
    if (3.w is free)
        4.assign m}\mathrm{ and w to be engaged
    else if (5.w prefers m to her fiancé m')
        4.assign m and w to be engaged, and 1.m' to be free
    else
        2.w rejects m
}
```

Claim. Algorithm terminates after at most n^{2} iterations of while loop.

Efficient Implementation

Efficient implementation. We describe $O\left(n^{2}\right)$ time implementation.

Representing men and women.
Assume men are named 1, ..., n.
Assume women are named $1^{\prime}, \ldots, n$ '.

Engagements.
Maintain list of free men, e.g., in a queue. (1.)
Maintain two arrays wife [m], and husband [w].

- set entry to 0 if unmatched (3.)
- if m matched to w then wife $[m]=w$ and husband $[w]=m$ (4.)

Men proposing.
For each man, maintain list of women, ordered by preference. (2.)
Maintain array count [m] for the number of proposals of man m. (2.)

Efficient Implementation

Women rejecting/accepting. (5.)
Q. How to implement efficiently: does woman w prefer man m to man m^{\prime} ? (1 min)

Anna $^{\text {And }}$	$1^{\text {tr }}$	$3^{\text {th }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$	
Pref	8	3	7	1	4	5	6	2

Anna prefers man 3 to $6 ?$

Efficient Implementation

Women rejecting/accepting. (5.)
Q. How to implement efficiently: does woman w prefer man m to man m^{\prime} ?

For each woman, create inverse of preference list of men.
Constant time access for each query after $\mathrm{O}(\mathrm{n})$ preprocessing.
Amortized constant time: worst-case O(1) on average


```
for i = 1 to n
    inverse[pref[i]] = i
```

Anna prefers man 3 to 6 since inverse[3] < inverse[6]

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

TUDelft

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.
A-X, B-Y, C-Z.
$A-Y, B-X, C-Z$.

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Anna	Y	X	Z
Bertha	X	Y	Z
Clara	X	Y	Z

TUDelft

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.
A-X, B-Y, C-Z.
$A-Y, B-X, C-Z$.

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Anna	Y	X	Z
Bertha	X	Y	Z
Clara	X	Y	Z

TUDelft

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

Def. Man m is a valid partner of woman w if there exists some stable matching in which they are matched.
Q. Does each man receive best valid partner based on the given preferences?

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

Def. Man m is a valid partner of woman w if there exists some stable matching in which they are matched.
Q. Does each man receive best valid partner based on the given preferences?

Claim. All executions of GS yield man-optimal assignment, which is a stable matching!

No reason a priori to believe that man-optimal assignment is perfect, let alone stable.
Simultaneously best for each and every man.
No reason for lying about your preferences (incentive compatible).

Man Optimality

Claim. GS matching S is man-optimal. Pf.

Man Optimality

Claim. GS matching S is man-optimal.
Pf. by contradiction: suppose S is not man-optimal
Q. What does this mean?

Contradiction! •

TUDelft

Man Optimality

Claim. GS matching S is man-optimal.
Pf. by contradiction: suppose S is not man-optimal
In execution: first moment some man Y is rejected by best valid partner A in S .
... (idea: create another stable matching S^{\prime} where Y is not rejected to derive contradiction)

Contradiction! •

Man Optimality

Claim. GS matching S is man-optimal.
Pf. by contradiction: suppose S is not man-optimal
In execution: first moment some man Y is rejected by best valid partner A in S .
When Y is rejected, A forms/stays engagement with a man, say Z, whom she prefers to Y.
... (idea: create another stable matching S^{\prime} where Y is not rejected to derive contradiction)

Contradiction! •

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xander			
Youp	A		
Zeger			

Man Optimality

Claim. GS matching S is man-optimal.
Pf. by contradiction: suppose S is not man-optimal
In execution: first moment some man Y is rejected by best valid partner A in S.
When Y is rejected, A forms/stays engagement with a man, say Z, whom she prefers to Y.
Stable S' with Y-A exists because Y-A is valid.
Let B be Z's partner in S^{\prime}.
.-Youp
Anna-Zeger
should exist: S^{\prime}

Anna-Youp
Bertha-Zeger
Q. Given what happened in S , does Z prefer A or B ?

...-Youp
Anna-Zeger
\ldots
should exist:
S'
Anna-Youp
Bertha-Zeger
\ldots

Contradiction! •

S' $^{\prime}$	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xander			
Youp	A		
Zeger		B	

Man Optimality

Claim. GS matching S is man-optimal.
Pf. by contradiction: suppose S is not man-optimal
In execution: first moment some man Y is rejected by best valid partner A in S .
When Y is rejected, A forms/stays engagement with a man, say Z, whom she prefers to Y.
Stable S^{\prime} with Y-A exists because Y-A is valid.
Let B be Z's partner in S^{\prime}.
.-Youp
Anna-Zeger
should exist:

$$
S^{\prime}
$$

Anna-Youp

Bertha-Zeger
Z not rejected by any valid partner at the point when Y is rejected by A (in S). Thus, Z prefers A to B. But A prefers Z to Y . Thus $\mathrm{A}-\mathrm{Z}$ is unstable in S^{\prime}. Contradiction! -

Stable Matching Summary

Stable matching problem. Given preference profiles of n men and n women, find a stable matching.
no man and woman prefer to be with each other than assigned partner

Gale-Shapley algorithm. Finds a stable matching in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.

Man-optimality. In version of GS where men propose, each man receives best valid partner.
w is a valid partner of m if there exist some
stable matching where m and w are paired
Q. Does man-optimality come at the expense of the women?

Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.

Claim. GS finds woman-pessimal stable matching S.

Pf. (by contradiction)
Q. Which assumption to make?

Contradiction! •

Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.

Claim. GS finds woman-pessimal stable matching S.

Pf. (by contradiction)
Suppose A-Z matched in S, but Z is not worst valid partner for A.

Idea: similar proof as man-optimal, and also use that fact!
S

Contradiction! •

Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.

Claim. GS finds woman-pessimal stable matching S.

Pf. (by contradiction)
Suppose A-Z matched in S, but Z is not worst valid partner for A. There exists stable matching S^{\prime} in which A is paired with a man, say Y , whom she likes less than Z . Let B be Z 's partner in S^{\prime}.
Q. Given what happened in S , does Z prefer A or B ?

Contradiction! •

Woman Pessimality

Woman-pessimal assignment. Each woman receives worst valid partner.

Claim. GS finds woman-pessimal stable matching S.

Pf. (by contradiction)
Suppose A-Z matched in S, but Z is not worst valid partner for A. There exists stable matching S^{\prime} in which A is paired with a man, say Y , whom she likes less than Z . Let B be Z^{\prime} s partner in S^{\prime}.
Z prefers A to B. \leftarrow man-optimality by $G S$ in S
Thus, $A-Z$ is an unstable pair in S^{\prime}.
Contradiction: S^{\prime} was stable! -

Extensions: Matching Residents to Hospitals

Ex: Men \approx hospitals, Women \approx med school residents.

Variant 1. Some participants declare others as unacceptable.
Variant 2. Unequal number of men and women.
Variant 3. Limited polygamy.
resident A unwilling to work in Cleveland

Variant 4. Also allow weak preferences. hospital X wants to hire 3
Variant 5. Online mechanism (new students / hospitals may arrive).
Variant 6. Include contract details.

Def. Matching S unstable if there is a hospital h and resident r such that: h and r are acceptable to each other; and either r is unmatched, or r prefers h to her assigned hospital; and either h does not have all its places filled, or h prefers r to at least one of its assigned residents.
Q. Does it help students to lie about their preferences if the hospitals "are the men"?

Extensions: Matching Residents to Hospitals

Q. Does it help students to lie about their preferences?
A. Yes (because they are the "women"), but: even for about 20,000 students/year in 1991-1996 only two years 2 students worse off because they were the "women"

Recent research

Weak preferences

Erdil, A., and H. Ergin (2008). "What's the Matter with Tie-Breaking? Improving Efficiency in School Choice." American Economic Review 98(3), 669-689.

Online matching
Roth, A.E., Sonmez, T., and Unver, M.U. (2004). Kidney exchange. Quarterly Journal of Economics, 119(2), 457-488.
Jalilzadeh, B., L.R. Planken, and M.M. de Weerdt (2009). Mechanism Design for the Online Allocation of Items without Monetary Payments. In O. Shehory and D. Sarne and E. David (Eds.). Proc. of the workshop on Agent-Mediated Electronic Commerce, 71-84.

Contract matching
Hatfield, J.W., and Paul R. Milgrom (2005). Matching with Contracts. The American Economic Review 95(4), 913-935.
Harrenstein, B.P., M.M. de Weerdt, and V. Conitzer (2009). A Qualitative Vickrey Auction. In J. Chuang and L. Fortnow and P. Pu (Eds.). Proc. of the ACM Conference on Electronic Commerce, 197-206.

Lessons Learned

Powerful ideas learned in course.
Isolate underlying structure of problem.
Create useful and efficient algorithms.

Potentially deep social ramifications. [legal disclaimer]
Historically, men propose to women. Why not vice versa?
\& Men: propose early and often.
Women: ask out the guys.
\& Theory can be socially enriching and fun!
CS students get the best partners!

