3.4 Testing Bipartiteness

Reference: $\mathrm{http}: / / w w w . l e d a-t u t o r i a l . o r g / e n / u n o f f i c i a l / c h 05 s 03 s 05 . h t m l ~$

Bipartite Graphs

Def. An undirected graph $G=(\mathrm{V}, \mathrm{E})$ is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.
Matching: men = red, women = blue.
Scheduling: machines = red, jobs = blue.

a bipartite graph

Testing Bipartiteness

Q. Which of the following graphs is/are bipartite?

TuDefft

Testing Bipartiteness

Q. Which of the following graphs is/are bipartite?

Testing Bipartiteness

Q. Is graph G bipartite?

another drawing of G

TUDefft

Testing Bipartiteness

Q. Is graph G bipartite?

TuDefft

Testing Bipartiteness

Testing bipartiteness. Given a graph G , is it bipartite?
Many graph problems become:

- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set) Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

Testing Bipartiteness

Testing bipartiteness. Given a graph G , is it bipartite?
Many graph problems become:

- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set) Before attempting to design an algorithm, we need to understand structure of bipartite graphs.
Q. Why is the following graph not bipartite?


```
not bipartite
(not 2-colorable)
```


An Obstruction to Bipartiteness

Lemma 3.14. If graph G is bipartite, it cannot contain an odd length cycle. (ie "G bipartite" \rightarrow not "odd cycle")

Pf.

An Obstruction to Bipartiteness

Lemma 3.14. If graph G is bipartite, it cannot contain an odd length cycle. (ie "G bipartite" \rightarrow not "odd cycle")

Pf. (by proving the contrapositive: $(A \rightarrow B) \leftrightarrow(\neg B \rightarrow \neg A))$ (=contrapositie) Suppose there is an odd cycle. $(\neg \mathrm{B})$

So G is not bipartite. ($\neg \mathrm{A})$ (So "odd cycle" \rightarrow not " G bipartite")

An Obstruction to Bipartiteness

Lemma 3.14. If graph G is bipartite, it cannot contain an odd length cycle. (ie "G bipartite" \rightarrow not "odd cycle")

Pf. (by proving the contrapositive: $(\mathrm{A} \rightarrow \mathrm{B}) \leftrightarrow(\neg \mathrm{B} \rightarrow \neg \mathrm{A})$) (=contrapositie)
Suppose there is an odd cycle. $(\neg \mathrm{B})$

So G is not bipartite. ($\neg \mathrm{A})$ (So "odd cycle" \rightarrow not " G bipartite")

bipartite (2-colorable)

not bipartite (not 2-colorable)

An Obstruction to Bipartiteness

Lemma 3.14. If graph G is bipartite, it cannot contain an odd length cycle. (ie "G bipartite" \rightarrow not "odd cycle")

Pf. (by proving the contrapositive: $(\mathrm{A} \rightarrow \mathrm{B}) \leftrightarrow(\neg \mathrm{B} \rightarrow \neg \mathrm{A})$) (=contrapositie)
Suppose there is an odd cycle. $(\neg \mathrm{B})$
Then it is not possible to 2-color the odd cycle, let alone G.
So G is not bipartite. $(\neg \mathrm{A})$ (So "odd cycle" \rightarrow not "G bipartite") •

bipartite
(2-colorable)

not bipartite (not 2-colorable)

Bipartite Graphs

Lemma 3.15. Let G be a connected graph, and let $\mathrm{L}_{0}, \ldots, \mathrm{~L}_{\mathrm{k}}$ be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer; so G is bipartite.
(ii) An edge of G joins two nodes of the same layer; so G contains an odd-length cycle (and hence is not bipartite).

Bipartite Graphs

Lemma 3.15. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer; so G is bipartite.
(ii) An edge of G joins two nodes of the same layer; so G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer.
Q. How to prove that G is bipartite? How would you color the nodes?

Bipartite Graphs

Lemma 3.15. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer; so G is bipartite.
(ii) An edge of G joins two nodes of the same layer; so G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer.
Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Bipartite Graphs

Lemma 3.15. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer; so G is bipartite.
(ii) An edge of G joins two nodes of the same layer; so G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (x, y) is an edge with x, y in same level L_{j}.
Q. Is there a cycle? Is it of odd length?

Bipartite Graphs

Lemma 3.15. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer; so G is bipartite.
(ii) An edge of G joins two nodes of the same layer; so G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (x, y) is an edge with x, y in same level L_{j}. Let $\mathrm{z}=\mathrm{Ica}(\mathrm{x}, \mathrm{y})=$ lowest common ancestor.

TUDelft

Bipartite Graphs

Lemma 3.15. Let G be a connected graph, and let $L_{0,}, \ldots, L_{k}$ be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer; so G is bipartite.
(ii) An edge of G joins two nodes of the same layer; so G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (x, y) is an edge with x, y in same level L_{j}. Let $\mathrm{z}=\mathrm{Ica}(\mathrm{x}, \mathrm{y})=$ lowest common ancestor. Let L_{i} be level containing z .
Consider cycle that takes edge from x to y , then path from y to z, then path from z to x. Distinct. Its length is $\underbrace{1}+\underbrace{(j-i)}+\underbrace{(j-i)}$, which is odd.

$$
\begin{array}{lll}
(x, y) & \text { path from path from } \\
& y \text { to } z & z \text { to } x
\end{array}
$$

With Lemma 3.14, it is not bipartite. •

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd length cycle. ($\mathrm{A} \leftrightarrow \mathrm{B}$)
Q. How to proof?

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd length cycle. ($\mathrm{A} \leftrightarrow \mathrm{B}$)

Using Lemma 3.14:
If graph G is bipartite, it cannot contain an odd length cycle.
$(A \rightarrow B)$

Using Lemma 3.15:
If not (i) bipartite, then (ii) it has an odd length cycle.
Q. How does this help in proving the corollary?

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd length cycle. ($\mathrm{A} \leftrightarrow \mathrm{B}$)

Using Lemma 3.14:
If graph G is bipartite, it cannot contain an odd length cycle. $(A \rightarrow B)$

Using Lemma 3.15:
If not (i) bipartite, then (ii) it has an odd length cycle.
$(B \rightarrow A) \leftrightarrow(\neg A \rightarrow \neg B) \quad(=$ contrapositie)

