
6. Dynamic programming

2

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local
criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems to
form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

recursive matrix chain
optimal multiplication order
(Cormen et al., p.345)

3

Dynamic Programming History

Bellman (1920-1984). Pioneered the systematic study of dynamic
programming in the 1950s.

Etymology.
� Dynamic programming = planning over time.
� Secretary of Defense was hostile to mathematical research.
� Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"
– "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

4

Dynamic Programming Applications

Areas.
� Bioinformatics.
� Control theory.
� Information theory.
� Operations research.
� Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.
� Viterbi for hidden Markov models.
� Unix diff for comparing two files.
� Smith-Waterman for sequence alignment.
� Bellman-Ford for shortest path routing in networks.
� Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.
� Job j starts at sj, finishes at fj, and has weight or value vj .
� Two jobs compatible if they don't overlap.
� Goal: find maximum weight subset of mutually compatible jobs.

Q. Give an algorithm to solve this problem. (1 min)

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

dweight = 3

weight = 4

weight = 1

weight = 2

weight = 1

weight = 1

weight = 1

weight = 2

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
� Consider jobs in ascending order of finish time.
� Add job to subset if it is compatible with previously chosen jobs.

Q. What can happen if we apply the greedy algorithm for interval
scheduling to weighted interval scheduling?

8

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
� Consider jobs in ascending order of finish time.
� Add job to subset if it is compatible with previously chosen jobs.

Q. What can happen if we apply the greedy algorithm for interval
scheduling to weighted interval scheduling?
A. It can fail spectacularly.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

9

Weighted Interval Scheduling: Greedy

Q. What can happen if we greedily sort on weight?
A. It can also fail.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 2

weight = 1 c d

10

Weighted Interval Scheduling: Greedy

Q. What can happen if we greedily sort on weight per time unit?
A. It can also fail (max. by a factor 2).

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 6

weight = 9

11

Weighted Interval Scheduling: Brute Force

Q. Maybe we need to consider all possibilities. How would you do that?
A. use back-tracking

Q. How many possible selections of jobs are there at most? (n2, n3, 2n, n!)
A. Worst-case O(2n).

We’ll now try to improve our brute-force algorithm a bit…

Weighted Interval Scheduling: Brute Force

12

5

4

3

2

1 1

2

1 1

3

2

1 1

2

1 1

4

3

2

1 1

2

1 1

3

2

1 1

2

1 1

include 5? yes (right) or no (left)?

include 4? yes (right) or no (left)?

include 3?

include 2?

include 1?

Note: recursion! (Is common with back-tracking).
Some combinations can be infeasible…

3
4

5

1
2

13

Weighted Interval Scheduling: Brute Force

Q. How to generalize this idea of skipping incompatible jobs (and
implement this efficiently)?

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

weight = 3

weight = 4

weight = 1

weight = 2

weight = 1

weight = 1

weight = 1

weight = 2

14

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p(j) = largest index i < j such that job i is compatible with j.
(predecessor)
Q. p(8) = ?, p(7) = ?, p(2) = ?.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

weight = 3

weight = 4

weight = 1

weight = 2

weight = 1

weight = 1

weight = 1

weight = 2

15

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p(j) = largest index i < j such that job i is compatible with j.
(predecessor)
Q. p(8) = ?, p(7) = ?, p(2) = ?.
A. p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

weight = 3

weight = 4

weight = 1

weight = 2

weight = 1

weight = 1

weight = 1

weight = 2

Weighted Interval Scheduling: Brute Force’

Q*. Precisely describe the computation in each recursive call?
 (first: to find the maximum weight possible, later: find the schedule with

the maximum weight)?

16

5

4

3

2

1 1

2

1 1

3

2

1 1

2

1 1

3

2

1 1

2

1 1

Recursion:
so assume optimal value of
subproblems is known.

17

Weighted Interval Scheduling: Brute Force’

Notation. OPT(j) = value of optimal solution to the problem consisting of
job requests 1, 2, ..., j (ordered by finishing time).

� Case 1: OPT selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

� Case 2: OPT does not select job j.
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

optimal substructure

18

Weighted Interval Scheduling: Brute Force’

Notation. OPT(j) = value of optimal solution to the problem consisting of
job requests 1, 2, ..., j (ordered by finishing time).

� Case 1: OPT selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

� Case 2: OPT does not select job j.
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

optimal substructure

Case 1 Case 2

19

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)
Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force’

Brute force algorithm (with smart skipping of predecessors).

file:///D:/My%20Dropbox/Algoritmiek/Per%20module/5.%20Dynamisch%20programmeren/demo-activity-selection.ppt

20

Weighted Interval Scheduling: Brute Force’

Q. Given n jobs, what is the run-time complexity on this problem instance?

3
4

5

1
2

p(1) = 0, p(j) = j-2

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

0

0

0 0

0

21

Weighted Interval Scheduling: Brute Force’

Q. Given n jobs, what is the run-time complexity on this problem instance?
A. T(0)=O(1) and T(n) = T(n-1) + T(n-2) + O(1)

Observation. Number of recursive calls grow like Fibonacci sequence ⇒
exponential.
Observation. Recursive algorithm has many (redundant) sub-problems.
Q. How can we again improve our algorithm?

3
4

5

1
2

p(1) = 0, p(j) = j-2

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

22

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)
for j = 1 to n
 M[j] = empty
M[0] = 0
M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
needed.

23

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)
for j = 1 to n
 M[j] = empty
M[0] = 0
M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
needed.

Q. What is the run-time complexity of this algorithm with memoization? (1
min)

24

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?

Q. How many iterations in one invocation?

Q. How many invocations?

25

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?

� Sort by finish time: O(n log n).
� Computing p(⋅) : O(n) by decreasing start time

Q. How many iterations in one invocation?

Q. How many invocations?

26

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?

� Sort by finish time: O(n log n).
� Computing p(⋅) : O(n) by decreasing start time

Q. How many iterations in one invocation?
� M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

Q. How many invocations?

27

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?

� Sort by finish time: O(n log n).
� Computing p(⋅) : O(n) by decreasing start time

Q. How many iterations in one invocation?
� M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

Q. How many invocations?
� Progress measure Φ = # nonempty entries of M[].

– initially Φ = 0, throughout Φ ≤ n.
– (ii) increases Φ by 1 and only then at most 2 recursive calls.

� Overall running time (without init) of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

28

Automated Memoization

Q. What would the run-time be in a functional programming language?

(defun F (n)
 (if
 (<= n 1)
 n
 (+ (F (- n 1)) (F (- n 2)))))

Lisp

29

Automated Memoization

Automated memoization. Some functional programming languages
(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

F(40)

F(39) F(38)

F(38)

F(37) F(36)

F(37)

F(36) F(35)

F(36)

F(35) F(34)

F(37)

F(36) F(35)

static int F(int n) {
 if (n <= 1) return n;
 else return F(n-1) + F(n-2);
}

(defun F (n)
 (if
 (<= n 1)
 n
 (+ (F (- n 1)) (F (- n 2)))))

Lisp (efficient)
Java (exponential)

30

Automated Memoization

Automated memoization. Some functional programming languages
(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?
A. Because of side effects (in memory, on screen, etc.): not pure functions

F(40)

F(39) F(38)

F(38)

F(37) F(36)

F(37)

F(36) F(35)

F(36)

F(35) F(34)

F(37)

F(36) F(35)

static int F(int n) {
 if (n <= 1) return n;
 else return F(n-1) + F(n-2);
}

(defun F (n)
 (if
 (<= n 1)
 n
 (+ (F (- n 1)) (F (- n 2)))))

Lisp (efficient)
Java (exponential)

31

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we
want the solution itself?

32

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we
want the solution itself?
A. Do some post-processing (or store decisions in additional memo.-table).

� # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

33

Weighted Interval Scheduling: Bottom-Up

Q. Can this memoization be implemented without recursion?

34

Weighted Interval Scheduling: Bottom-Up

Q. Can this memoization be implemented without recursion?

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)
Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

35

Weighted Interval Scheduling: Bottom-Up

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35

