
A Guide for Making Proofs

Mathijs de Weerdt

This document is loosely based on MIT
OpenCourseWare [2].

Abstract. In principle, a proof can be
any sequence of logical deductions from
axioms, definitions, and previously-proved
statements that concludes with the proposi-
tion in question. This freedom in construct-
ing a proof can seem overwhelming at first.
How do you even start a proof?
Here is the good news: many proofs fol-
low one of a handful of standard templates.
Proofs all differ in the details, of course, but
these templates at least provide you with an
outline to fill in. We will go through several
of these standard patterns, pointing out the
basic idea and common pitfalls and giving
some examples. Many of these templates fit
together; one may give you a top-level out-
line while others help you at the next level
of detail. And we will show you other, more
sophisticated proof techniques later on.
The recipes below are very specific at times,
telling you exactly which words to write down
on your piece of paper. You are certainly free
to say things your own way instead; we are
just giving you something you could say so
that you are never at a complete loss.

1 The Axiomatic Method

The standard procedure for establishing truth in math-
ematics was invented by Euclid, a mathematician work-
ing in Alexandria, Egypt around 300 BC. His idea was
to begin with five assumptions about geometry, which
seemed undeniable based on direct experience. (For ex-
ample, there is a straight line segment between every
pair of points.) Propositions like these that are simply
accepted as true are called axioms or observations.

Starting from these axioms, Euclid established the
truth of many additional propositions by providing
“proofs”. A proof is a sequence of logical deductions
from axioms and previously-proved statements that
concludes with the proposition in question. There are
several common terms for a proposition that has been
proved. The different terms hint at the role of the
proposition within a larger body of work.

– Important propositions are called theorems.
– A lemma is a preliminary proposition useful for

proving later propositions.

– A corollary is an afterthought, a proposition that
follows in just a few logical steps from a theorem.

These definitions are not precise. In fact, sometimes a
good lemma turns out to be far more important than
the theorem it was originally used for.

Euclid’s axiom-and-proof approach, now called the
axiomatic method, is the foundation for mathematics
today.

2 Proving an Implication

An enormous number of mathematical claims have the
form “If P , then Q” or, equivalently, “P implies Q” (in
propositional logic, P → Q). Here are some examples:

– (Quadratic Formula) If ax2 +bx+c = 0 and a 6= 0,

then x = (−b±
√

b2−4ac)

2a .
– (Goldbachs Conjecture) If n is an even integer

greater than 2, then n is a sum of two primes.
– If 0 ≤ x ≤ 2, then −x3 + 4x + 1 > 0.

There are a couple standard methods for proving an
implication.

2.1 Method #1

In order to prove that P implies Q:

1. Write, “Assume P .”
2. Show that Q logically follows.

This method is equivalent to the Fitch rule for the in-
troduction of the implication [5]:

1 P (hypothesis)

2
...

3 Q

4 P → Q (→-intro, 1,3)

Example

Theorem 1. If 0 ≤ x ≤ 2, then −x3 + 4x + 1 > 0.

Before we write a proof of this theorem, we have to do
some scratch-work to figure out why it is true.

The inequality certainly holds for x = 0; then −x3 +
4x + 1 is equal to 1 and 1 > 0. As x grows, the 4x
term (which is positive) initially seems to have greater
magnitude than −x3 (which is negative). For example,
when x = 1, we have 4x = 4, but −x3 = −1 only. In
fact, it looks like −x3doesn’t begin to dominate until
x > 2. So it seems the −x3 + 4x part should be non-
negative for all x between 0 and 2, which would imply
that −x3 + 4x + 1 is positive.



So far, so good. But we still have to replace all those
“seems like” phrases with solid, logical arguments. We
can get a better handle on the critical −x3 + 4x part
by factoring it, which is not too hard:

−x3 + 4x = x(2− x)(2 + x)

Aha! For x between 0 and 2, all of the terms on the right
side are non-negative. And a product of non-negative
terms is also non-negative. Let us organize this blizzard
of observations into a clean proof.

Proof. Assume 0 ≤ x ≤ 2. Then x, 2−x, and 2+x are
all non-negative. Therefore, the product of these terms
is also non-negative. Adding 1 to this product gives a
positive number, so:

x(2− x)(2 + x) + 1 > 0

Multiplying out on the left side proves that

−x3 + 4x + 1 > 0

as claimed. ut

There are a couple points here that apply to all proofs:

– You will often need to do some scratch-work while
you are trying to figure out the logical steps of a
proof. Your scratch-work can be as disorganized
as you like – full of dead-ends, strange diagrams,
obscene words, whatever. But keep your scratch-
work separate from your final proof, which should
be clear and concise.

– Proofs typically begin with the word “Proof” and
end with some sort of doohickey like 2 or “q.e.d.”.
The only purpose for these conventions is to clarify
where proofs begin and end.

2.2 Method #2: Prove the Contra-positive

Remember that an implication (“P implies Q”) is log-
ically equivalent to its contra-positive (“not Q implies
not P ”); proving one is as good as proving the other.
And often proving the contra-positive is easier than
proving the original statement. If so, then you can pro-
ceed as follows:

1. Write, “We prove the contra-positive:” and then
state the contra-positive.

2. Proceed as in Method #1.

In propositional logic, this method relies on the fact
that (P → Q) ↔ (¬Q → ¬P ) is a tautology.

Example

Theorem 2. If r is irrational, then
√

r is also irra-
tional.

Recall that rational numbers are equal to a ratio of in-
tegers and irrational numbers are not. So we must show
that if r is not a ratio of integers, then

√
r is also not

a ratio of integers. That’s pretty convoluted! We can
eliminate both “not” ’s and make the proof straightfor-
ward by considering the contra-positive instead.

Proof. We prove the contra-positive: if
√

r is rational,
then r is rational. Assume that

√
r is rational. Then

there exists integers a and b such that:

√
r =

a

b

Squaring both sides gives:

r =
a2

b2

Since a2 and b2 are integers, r is also rational. ut

In the book on “Algorithm Design” [3] the argumenta-
tion for (3.14) on page 95 follows this method, as well
as the proof of the Marriage theorem (p.372–373,7.40).

2.3 Necessary and sufficient

If P → Q holds, we say that Q is a necessary condition
for P . This means that P can never be true without Q
being the case as well.

If Q → P holds, we say that Q is a sufficient condi-
tion for P . This means that whenever Q is valid, P will
also be true. If a condition is both necessary and suffi-
cient, the condition is equivalent, denoted by P ↔ Q.
Proving equivalence is discussed in the next section.

3 Proving an “If and Only If”

Many mathematical theorems assert that the follow-
ing statements are logically equivalent (TFAE); that
is, one holds if and only if the other does. Sometimes
“iff” is used as a short for “if and only if”. Here are some
examples:

– An integer is a multiple of 3 if and only if the sum
of its digits is a multiple of 3.

– Two triangles have the same side lengths iff all an-
gles are the same.

– A positive integer p ≥ 2 is prime if and only if
1 + (p− 1)× (p− 2)× . . .× 3× 2× 1 is a multiple
of p.



3.1 Method #1: Prove Each Statement
Implies the Other

The statement “P if and only if Q” (P ↔ Q) is equiv-
alent to the two statements “P implies Q” and “Q im-
plies P ”. So you can prove an “if and only if” by proving
two implications:

1. Write, “We prove that P implies Q and vice-versa.”
2. Write, “First, we show that P implies Q.” Do this

by one of the methods in Section 2.
3. Write, “Now, we show that Q implies P .” Again,

do this by one of the methods in Section 2.

Example Two sets are defined to be equal if they
contain the same elements; that is, X = Y means z ∈
X if and only if z ∈ Y . So set equivalence proofs often
have an “if and only if” structure.

Theorem 3. (DeMorgan’s Law for Sets). Let A, B,
and C be sets. Then:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Proof. We show that z ∈ A ∩ (B ∪ C) implies that
z ∈ (A ∩B) ∪ (A ∩ C) and vice-versa.

First, we show that z ∈ A ∩ (B ∪ C) implies that
z ∈ (A ∩B) ∪ (A ∩ C). Assume that z ∈ A ∩ (B ∪ C).
Then z is in A and z is also in B or C. Thus, z is in
either A∩B or A∩C, which implies z ∈ (A∩B)∪(A∩C)

Now, we show that z ∈ (A∩B)∪(A∩C) implies that
z ∈ A ∩ (B ∪ C). Assume that z ∈ (A ∩B) ∪ (A ∩ C).
Then z is in both A and B or else z is in both A and
C. Thus, z is in A and z is also in B or C. This implies
that z ∈ A ∩ (B ∪ C). ut

Also proofs for other equalities (=) have an “if and
only if” structure. For example as in the proofs of the
following propositions [3]:

– the flow value lemma (p.346–347, 7.6), where a
chain of equalities is proven (see Method #2 be-
low), and

– the size of a maximum cardinality matching is equal
to the size of the maximum flow (p.369, 7.37),
which can be proved by first showing that the size
of the size of a maximum cardinality matching is
less than or equal (≤) to the size of the maximum
flow and then showing that the size of the max-
imum flow is less than or equal to the size of a
maximum cardinality matching.

3.2 Method #2: Construct a Chain of Iffs

In order to prove that P is true if and only if Q is true:

1. Write, “We construct a chain of if-and-only-if im-
plications.”

2. Prove P is equivalent to a second statement which
is equivalent to a third statement and so forth until
you reach Q.

This method is generally more difficult than the first,
but the result can be a short, elegant proof.

Example The standard deviation of some values
x1, x2, ..., xn is defined to be:

√
(x1 − µ)2 + (x2 − µ)2 + . . . + (xn − µ)2

where µ is the average of the values:

µ =
x1 + x2 + . . . + xn

n

Theorem 4. The standard deviation of some values
x1, . . . , xn is zero if and only if all values are equal to
the mean.

For example, the standard deviation of test scores is
zero if and only if everyone scored exactly the class
average.

Proof. We construct a chain of “if and only if” impli-
cations. The standard deviation of x1, . . . , xn is zero if
and only if:√

(x1 − µ)2 + (x2 − µ)2 + ... + (xn − µ)2 = 0

where µ is the average of x1, . . . , xn. This equation
holds if and only if

(x1 − µ)2 + (x2 − µ)2 + . . . + (xn − µ)2 = 0

since zero is the only number whose square root is zero.
Every term in this equation is non-negative, so this
equation holds if and only every term is actually 0.
But this is true if and only if every value xi is equal to
the mean µ. ut

3.3 Method #3: Prove a Cycle of Implications

Sometimes you need to prove the equivalence of three
or more statements. In that case, it is a good idea to
prove a cycle of implications. For example, if you need
to prove that P , Q, and R are all equivalent, it suffices
to show that P → Q, Q → R, and R → P . This is
done in the slides of the course on Algorithms to si-
multaneously prove the augmenting path theorem and
the max-flow min-cut theorem (p.348–350, 7.9-7.13).



4 Proof by Contradiction

In a proof by contradiction or indirect proof, you show
that if a proposition were false, then some logical con-
tradiction or absurdity would follow. Thus, the propo-
sition must be true. Proof by contradiction can be used
for any type of proposition. However, as the name sug-
gests, indirect proofs can be a little convoluted. So di-
rect proofs are generally preferable as a matter of clar-
ity.

4.1 Method

In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”
2. Write, “Suppose P is false.”
3. Deduce a logical contradiction.
4. Write, “This is a contradiction. Therefore, P must

be true.”

The equivalent structure in a Fitch proof is as follows:
1 ¬P (hypothesis)

2
...

3 Q

4 ¬Q

5 ¬¬P (¬-intro, 1,3,4)

6 P (¬-elim, 5)

Example Remember that a number is rational if it
is equal to a ratio of integers. For example, 3.5 = 7/2
and 0.1111... = 1/9 are rational numbers. On the other
hand, we will prove by contradiction that

√
2 is irra-

tional.

Theorem 5.
√

2 is irrational.

Proof. We use proof by contradiction. Suppose the
claim is false; that is,

√
2 is rational. Then we can write√

2 as a fraction of integers a/b in lowest terms.
Squaring both sides gives 2 = a2/b2 and so 2b2 = a2.

This implies that a is even; that is, a is a multiple of 2.
Therefore, a2 must be a multiple of 4. Because of the
equality 2b2 = a2, we know 2b2 must also be a multiple
of 4. This implies that b2 is even and so b must be even.
But since a and b are both even, the fraction a/b is not
in lowest terms. This is a contradiction. Therefore,

√
2

must be irrational. ut
In the book on “Algorithm Design” [3], many proofs

follow this method. See for example:

– When Gale-Shapley’s algorithm (G-S) is applied to
a matching problem with as many men as women,
it returns a perfect and stable matching (p.8, 1.5
and 1.6).

– G-S always returns a man-optimal and woman-
pessimal matching (p.10–12, 1.7 and 1.8).

– If a directed graph G has a topological ordering,
then G is a DAG (p.101, 3.18).

– In every DAG G there is a node v with no incoming
edges (p.102, 3.19).

– Greedy interval scheduling is optimal (p.121, 4.3).
– The cut-property and the cycle-proerty (p.145–148,

4.17 and 4.20).

4.2 Potential Pitfall

Often students use an indirect proof when a direct
proof would be simpler. Such proofs are not wrong;
they just are not excellent. Let us look at an example.

Definition 1. A function f is strictly increasing if
f(x) > f(y) for all real x and y such that x > y.

Theorem 6. If f and g are strictly increasing func-
tions, then f + g is a strictly increasing function.

Let us first look at a simple, direct proof.

Proof. Let x and y be arbitrary real numbers such that
x > y. Then:

f(x) > f(y) (since f is strictly increasing)

g(x) > g(y) (since g is strictly increasing)

Adding these inequalities gives:

f(x) + g(x) > f(y) + g(y)

Thus, f + g is strictly increasing as well. ut

Now we could prove the same theorem by contradic-
tion, but this makes the argument needlessly compli-
cated.

Proof. We use proof by contradiction. Suppose that
f + g is not strictly increasing. Then there must exist
real numbers x and y such that x > y, but

f(x) + g(x) ≤ f(y) + g(y)

This inequality can only hold if either f(x) ≤ f(y)
or g(x) ≤ g(y). Either way, we have a contradiction
because both f and g were defined to be strictly in-
creasing. Therefore, f + g must actually be strictly in-
creasing. ut

5 Case Analysis

The proof of a statement can sometimes be broken
down into several cases, which then can be tackled in-
dividually.



5.1 The Method

In order to prove a proposition P using case analysis:

1. Write, “We use case analysis.”
2. Identify a sequence of conditions, at least one of

which must hold. (If this is not obvious, you must
prove it.)

3. For each condition:
(a) State the condition.
(b) Prove P assuming that the condition holds.

In a Fitch-style proof, this approach is equivalent
to using the rule for the elimination of the ∨:
1 A ∨B

2
...

3 A (hypothesis)

4
...

5 P

6
...

7 B (hypothesis)

8
...

9 P

10 P (∨-elim, 1, 3-5, 7-9)
Often case analysis arguments extend to several lev-

els. The most difficult challenge in a case analysis argu-
ment is try to decide how to break up the problem. The
most common error is failing to construct a complete
set of cases.

Example

Theorem 7. There exist irrational numbers p and q
such that p raised to the power q is rational.

This is an ingenious proof, not the sort of thing one
would think up in a few minutes.

Proof. We use case analysis. Let v =
√

2
√

2
. There are

two cases:

Case 1: v is rational. Let p = q =
√

2. Then pq = v is
rational, so the claim holds.

Case 2: v is irrational. Let p = v and q =
√

2. Then:

pq = v
√

2 =
(√

2
√

2
)√2

=
√

2
2

= 2

Since 2 is rational, the claim holds.

Since we have checked that the claim holds in every
case, we know that the claim holds. ut

6 Predicate Logic

Sometimes you need to prove a theorem or proposi-
tion that includes a phrase like “for all. . .” or “there
exists. . .”. For such theorems you need to use one of
the following approaches.

6.1 Proving a “For all. . .”

In order to prove ∀xP (x), i.e., that a certain propo-
sition P holds for all objects x, you use the following
approach:

1. Write, “Let any object a be given.”
2. Then show that P (a), without making any assump-

tions on the properties of a.
3. Write, “Since we have not made any assumptions

on a, we may now conclude that ∀xP (x).”

This method is equivalent to the Fitch-rule of the in-
troduction of the ∀. However, note that this rule can
only be applied if there are no hypotheses about a.

1 P (a)

2
...

3 ∀xP (x) (∀-intro,1)
In the book on “Algorithm Design” [3] this method is

used for the proof that all k−clusterings have a smaller
(or equal) spacing than the clustering produced by
deleting the k− 1 most expensive edges from the min-
imum spanning tree (p.160-161, 4.26).

6.2 Proving not-for-all

Sometimes you need to prove that it does not hold
for all objects x that P (x). This is can be done by
showing that there is one object for which P (x) does
not hold. This follows immediately from the tautology
¬∀xP (x) ↔ ∃x¬P (x).

1. Write, “Consider the object x∗ with the following
properties.”

2. Show that for this specific object x∗ proposition P
does not hold (i.e., it holds that ¬P (x∗)).

3. Write, “Since we have shown that P does not hold
for x∗, we may now conclude that it is not the case
that P holds for all objects x.”

6.3 Proving a “There exists. . .”

In order to prove ∃xP (x), i.e., that there exists at least
one object x for which proposition P holds, you use
the following approach:

1. Write, “Consider the object x∗ with the following
properties.”



2. Show that for this specific object x∗ it holds that
P (x∗).

3. Write, “Since proposition P holds for object x∗, we
may now conclude that there is an object for which
P holds.

This method is equivalent to the Fitch-rule of the in-
troduction of the ∃.

1 P (a)

2
...

3 ∃xP (x) (∃-intro,1)
Sometimes you need to prove that it does not hold

that there is an object x for which P (x). This can be
done by showing that for every object P (x) does not
hold. See the previous subsection for how to deal with
this.

6.4 Using a “For all. . .” or an “There
exists. . .”

When you know that some proposition P holds for all
objects, and if you have an object a in your proof, you
may immediately conclude that P also holds for your
object a.

When you know that there exists an object x for
which some proposition P holds, you are not allowed
to do this. However, you are allowed to reason about
this specific object x∗ for which P holds. Sometimes
you can draw more general conclusions from that. The
Fitch scheme for this proof structure looks as follows.

1 ∃P (x)

2
...

3 P (x∗) (hypothesis)

4
...

5 Q

6 Q (∃-elim, 1,3)

7 Proof by induction

For many algorithms, a proof by induction is usually
the best way to go. See the separate document on in-
duction for how to construct proofs by induction [1].

In the book on “Algorithm Design”, the following
proofs follow this method [3]:

– If G is a DAG, then G has a topological ordering
(p.102, 3.20).

– Dijkstra’s algorithm returns the shortest path
(p.139, 4.14).

– The run-time of Mergesort is bounded by
O (n · log n) (p.213, 5.2, using substitution).

8 Proofs using an invariant

If your proof is about the correctness of an algorithm
with a while loop, it is usually a good idea to first
come up with a so-called invariant. An invariant is a
proposition that is true in every iteration of the while
loop. It should always be easy to verify that an invari-
ant is correct: it should hold when you start executing
the while loop, and it should also hold at the end of
an iteration. You can now conlucde that it also holds
when all iterations are finished. Moreover, you are also
allowed to use the fact that the condition for the while
loop does not hold when the while loop is finished.

9 How to Write Good Proofs

The purpose of a proof is to provide the reader with
definitive evidence of an assertion’s truth. To serve this
purpose effectively, more is required of a proof than just
logical correctness: a good proof must also be clear.
These goals are usually complimentary; a well-written
proof is more likely to be a correct proof, since mistakes
are harder to hide. Here are some tips on writing good
proofs:

State your game plan. A good proof begins by ex-
plaining the general line of reasoning, e.g. “We
use case analysis” or “We argue by contradiction”.
This creates a rough mental picture into which the
reader can fit the subsequent details.

Keep a linear flow. We sometimes see proofs that
are like mathematical mosaics, with juicy tidbits
of reasoning sprinkled across the page. This is not
good. The steps of your argument should follow one
another in a sequential order.

A proof is an essay, not a calculation. Many stu-
dents initially write proofs the way they compute
integrals. The result is a long sequence of expres-
sions without explanation. This is bad. A good
proof usually looks like an essay with some equa-
tions thrown in.

Use complete sentences. Avoid excessive symbol-
ism. Your reader is probably good at understand-
ing words, but much less skilled at reading arcane
mathematical symbols. So use words where you
reasonably can.

Simplify. Long, complicated proofs take the reader
more time and effort to understand and can more
easily conceal errors. So a proof with fewer logical
steps is a better proof.

Introduce notation thoughtfully. Sometimes an
argument can be greatly simplified by introducing
a variable, devising a special notation, or defining
a new term. But do this sparingly since you are re-
quiring the reader to remember all that new stuff.
And remember to actually define the meanings of



new variables, terms, or notations; do not just start
using them!

Structure long proofs. Long programs are usually
broken into a hierarchy of smaller procedures. Long
proofs are much the same. Facts needed in your
proof that are easily stated, but not readily proved
are best pulled out and proved in preliminary lem-
mas. Also, if you are repeating essentially the same
argument over and over, try to capture that argu-
ment in a general lemma, which you can cite re-
peatedly instead.

Do not bully. Words such as “clearly”, “trivially”, and
“obviously” serve no logical function. Rather, they
almost always signal an attempt to bully the reader
into accepting something which the author is hav-
ing trouble justifying rigorously. Do not use these
words in your own proofs and go on the alert when-
ever you read one.

Finish. At some point in a proof, you will have estab-
lished all the essential facts you need. Resist the
temptation to quit and leave the reader to draw the
“obvious” conclusion. What is obvious to you as the
author is not likely to be obvious to the reader. In-
stead, tie everything together yourself and explain
why the original claim follows.

The analogy between good proofs and good programs
extends beyond structure. The same rigorous think-
ing needed for proofs is essential in the design of crit-
ical computer system. When algorithms and protocols
only “mostly work” due to reliance on hand-waving ar-
guments, the results can range from problematic to
catastrophic. An early example was the Therac 25, a
machine that provided radiation therapy to cancer vic-
tims, but occasionally killed them with massive over-
doses due to a software race condition [4]. More re-
cently, for example in August 2004, but also in Decem-
ber 2007, computer failures caused the entire fleet of
big air transport companies and all their passengers to
be grounded!1

It is a certainty that we will all one day be at the
mercy of critical computer systems designed by you
and your classmates. So we really hope that you will
develop the ability to formulate rock-solid logical ar-
guments that a system actually does what you think it
does!

References

1. Srini Devadas and Eric Lehman. Induction I: Lecture
notes 3 for 6.042/18.062j mathematics for computer
science, 2005. http://ocw.mit.edu/OcwWeb/Electrical-
Engineering-and-Computer-Science/6-042JSpring-
2005/LectureNotes/index.htm.

1 Search for example for flight computer failure on the
internet.

2. Srini Devadas and Eric Lehman. Lecture notes 2
for 6.042/18.062j mathematics for computer sci-
ence, 2005. http://ocw.mit.edu/OcwWeb/Electrical-
Engineering-and-Computer-Science/6-042JSpring-
2005/LectureNotes/index.htm.

3. Jon Kleinberg and Eva Tardos. Algorithm Design.
Addison-Wesley, 2005.

4. Nancy Leveson and Clark S. Turner. An investigation of
the therac-25 accidents. IEEE Computer, 26(7):18–41,
1993.

5. Hans Tonino. Logica. Delft University of Technology,
2002.


