
Appendix A

TABLES

A.1 Greek Symbols

Classic Greek symbols

name letter capital English
letter pronounciation

alpha ® A ’alpha’
beta ¯ B ’vita’
gamma ° ¡ ’gama’
delta ± ¢ ’delta’
epsilon ² , " E ’epsilon’
zeta ³ Z ’zita’
eta ´ H ’ita’
theta # , µ £ ’thita’
iota ¶ I ’giota’
kappa · K ’kapa’
lambda ¸ ¤ ’lambda’
mu ¹ M ’mi’
nu º N ’ni’
xi (”ksi”) » ¥ ’xi’
omikron o O ’onikron’
pi $ , ¼ ¦ ’pi’
rho ½ P ’ro’
sigma ¾ § ’sigma’
tau ¿ ¨ ’taph’
upsilon À Y ’ipsilon’
phi ' , Á © ’phi’
chi Â X ’chi’
psi Ã ª ’psi’
omega !  ’omega’

Greek symbols used here

name letter capital
letter

alpha ®
beta ¯
gamma ° ¡
delta ± ¢
epsilon "
zeta ³
eta ´
theta µ
iota
kappa ·
lambda ¸ ¤
mu ¹
nu º
xi (”ksi”) »
omikron
pi ¼ ¦
rho ½
sigma ¾ §
tau ¿ ¨
upsilon
phi ' , Á ©
chi Â
psi Ã ª
omega ! 
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A.2 Water Constants

Temp. Density Density Kinematic Kinematic Vapor
Viscosity Viscosity Pressure

Fresh Water Salt Water Fresh Water Salt Water Water

t ½fresh ½salt ºfresh ºsalt pv

(±C) (kg/m3) (kg/m3) (m2s ¢10¡6) (m2s ¢10¡6) (N/m2)

0 999.8 1028.0 1.78667 1.82844 608
1 999.8 1027.9 1.72701 1.76915
2 999.9 1027.8 1.67040 1.71306 706
3 999.9 1027.8 1.61665 1.65988
4 999.9 1027.7 1.56557 1.60940 814
5 999.9 1027.6 1.51698 1.56142
6 999.9 1027.4 1.47070 1.51584 932
7 999.8 1027.3 1.42667 1.47242
8 999.8 1027.1 1.38471 1.43102 1069
9 999.7 1027.0 1.34463 1.39152

10 999.6 1026.9 1.30641 1.35383 1226
11 999.5 1026.7 1.26988 1.31773
12 999.4 1026.6 1.23495 1.28324 1402
13 999.3 1026.3 1.20159 1.25028
14 999.1 1026.1 1.16964 1.21862 1598
15 999.0 1025.9 1.13902 1.18831 1706
16 998.9 1025.7 1.10966 1.15916 1814
17 998.7 1025.4 1.08155 1.13125
18 998.5 1025.2 1.05456 1.10438 2059
19 998.3 1025.0 1.02865 1.07854
20 998.1 1024.7 1.00374 1.05372 2334
21 997.9 1024.4 0.97984 1.02981
22 997.7 1024.1 0.95682 1.00678 2638
23 997.4 1023.8 0.93471 0.98457
24 997.2 1023.5 0.91340 0.96315 2981
25 996.9 1023.2 0.89292 0.94252
26 996.7 1022.9 0.87313 0.92255 3364
27 996.4 1022.6 0.85409 0.90331
28 996.2 1022.3 0.83572 0.88470 3785
29 995.9 1022.0 0.81798 0.86671
30 995.6 1021.7 0.80091 0.84931 4236



Appendix B

MODELING AND MODEL SCALES

B.1 Introduction and Motivations

This appendix provides a rather complete discussion of the design of various sorts of models
used in o¤shore engineering. Certain speci…c elements - such as Reynolds or Froude scaling,
for example - are also summarized in the various chapters of the main text. In its most
abstract sense, a model is some form of representation of an object. In a few cases, it is
the object itself, but it is usually a more convenient representation (in some form) of an
actual or proposed situation.
Models are used for many purposes; the main reasons for using models include the facts
that they are:

- easier,
- faster,
- safer,
- cheaper.

It is generally easier, faster, safer, and cheaper to work with a model than to make all
discoveries when a ’real thing’ is used. For example, in the days before Computer Aided
Design (CAD) software became trustworthy, it was common practice to build a plastic
model of an o¤shore platform topsides - from the design drawings - in order to make sure
that the piping all …ts - or even worse - a major structural element con‡icts with the piping
or something else. While such a model may have cost tens of thousands of guilders, it was
obviously much less expensive to correct errors in the design phase rather having to correct
them in the …eld.

B.2 Model Types

There are many types of models that can be used.
CAD models in which the form of an object is modeled in a computer have been men-
tioned in the example above. Such models are used as well to generate the form of a ship or
‡oating structure, for example. Since volumes and weights can easily be calculated, such
systems can conveniently be extended to interface with hydrodynamic models or to check
‡oating stability, for example.
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Computer Simulations are a special category within the group of Computer Models.
These represent the dynamic behavior of an object - such as a ship in waves or even the
spreading of an oil spill - e¤ectively by solving the related di¤erential equations.

Computer models - of whatever type - have several advantages, especially in relation to
their alternatives:

² They are reasonably inexpensive to use, although their initial development costs may
be signi…cant.

² Computers are so universally available today that they can be used most anywhere.

² A computer model is safe; they present not danger to humans or the environment.

² All included phenomena can be represented at full scale. (The signifcance of this will
become apparent below.)

On the other hand, a computer model and especially a simulation has one important
drawback: it is only as good as the mathematics which is used to (approximately) describe
the phenomena which actually take place. In the mid nineteen-eighties, Petroski reported
on the comparison of measured and computed loads in a large transmission line tower.

”Computer predicitions of structural behavior were within only sixty percent
of the actual measured values only ninety-…ve percent of the time, ...”

Computer users should never allow blind trust to replace reasonable engineering thinking!

Of course it is possible to carry out testing using a ’real thing’: a full-sized and complete
prototype. Such testing can be expensive - certainly if it leads to required changes. Even
without that, measuring a ship’s behavior in waves at sea requires a signi…cant mobilization
of test equipment and personnel and one has no control over the input - the weather-
dependent waves - either. Many …eld test programs have been unsuccessful because nature
provided the wrong (either too much or too little) input! In some cases it can even be
downright dangerous to carry out measurements on a full-scale basis.
This is not to say that prototype testing is always bad; indeed not. Such measurements
can be very valuable as well for diagnostic purposes such as to determine why relatively
many persons on a particular platform complain of motion sickness. Field measurements
are often used as well to verify the correctness of a di¤erent model - of whatever type.
Indeed, all physical phenomena are (obviously) properly modeled in a full-scale prototype
situation.

One way to avoid the disadvantages of a (series of) prototype(s) is to use a small scaled
model and test it in a laboratory instead. Such a model is obviously cheaper than a
prototype and the laboratory conditions under which it is tested can be carefully controlled.
There is seldom risk to life and limb involved either!
Compared to a computer model, a physical model is slower in use but it has at least the
potential to work with a more accurate representation of nature. Indeed, more of the actual
physical phenomena are inherently included in a physical model.
A disadvantage of a physical model, however, is that a specialized (and therefore scarce
and expensive) test faciltiy is often needed in order to carry out its testing.
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B.3 Basic Phenomena and Scales

Given that one wants to work with a model (any type will do, but it is conceptually easier
to think in terms of a physical model for now), one must decide what phenomena to include
in the model. These are discussed in this section.

Geometric

The …rst requirement of any model is that it reproduce the geometry of the situation in
some consistent way. This usually means that all physical dimensions of the model are
represented at the same length scale, ®L: An exception to this will be mentioned in section
9, however.

Kinematic

Secondly, it is convenient if the kinematics (velocities and accelerations) are reproduced
in the model at consistent scales. The velocity scale is denoted by ®V and since the
acceleration of gravity is an acceleration, this scale is denoted by ®g :

Dynamic or Kinetic

Additionally, it is even handy if the dynamics - the forces - are also modeled consistently
to some scale, ®F : Fluid density is usually scaled by a factor ®½; and kinematic viscosity
is scaled by a factor ®º:
The following table summarizes the scale factors found so far. Each factor relates a proto-
type phenomena (subscript, p) and a model phenomena (subscript, m):

Unit Scale Relationship
Length: ®L, Lp = ®L ¢ Lm
Velocity: ®V , Vp = ®V ¢ Vm
Acceleration of gravity: ®g , gp = ®g ¢ gm
Density: ®½, ½p = ®½ ¢ ½m
Fluid kinematic viscosity: ®º, ºp = ®À ¢ ºm
Fluid dynamic viscosity ®´, ´p = ®´ ¢ ´m

Note that all ® values in this table are greater than or equal to 1:0 .

B.4 Derived Scales

With these, the scale factors for the areas S , the volumes r, the masses M and the mass
moments of inertia I, respectively, are then found easily:

®S = ®2L ®r = ®
3
L (B.1)

®M = ®½ ¢ ®r = ®½ ¢ ®3L (B.2)

®I = ®½ ¢ ®5L (B.3)
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The velocity of a body or a (water) particle is de…ned as a displacement per unit of time,
so the scale factor for the time becomes:

®T =
®L
®V

(B.4)

The acceleration of a body or a (water) particle is de…ned as an increase of the velocity
per unit of time, so the scale factor for the acceleration becomes:

®A =
®V
®T

=
®2V
®L

(B.5)

This should be same, by the way, as the scale factor for the acceleration of gravity, ®g .
According to Newton’s law, inertia forces are de…ned as a product of mass and acceleration,
so the scale factor for the inertia forces (and also the resulting pressure forces) is:

®F = ®M ¢ ®A =
¡
®½ ¢ ®3L

¢
¢
µ
®2V
®L

¶
= (B.6)

= ®½ ¢ ®2V ¢ ®2L (B.7)

Then, the relation beteen the forces Fp on the prototype and the forces Fm on the model
are:

Fp = ®½ ¢ ®2V ¢ ®2L ¢ Fm (B.8)

or:

®F =
Fp
Fm

=
½p ¢ V 2p ¢L2p
½m ¢ V 2m ¢ L2m

(B.9)

From this, it is obvious that these forces can be expressed as:

Fp = C ¢ 1
2
½pV

2
p ¢ L2p and Fm = C ¢ 1

2
½mV

2
m ¢ L2m (B.10)

in which the coe¢cient or constant C does not depend on the scale. Further, one recognizes
the term 1

2
½V 2 as the stagnation pressure.

B.5 Forces to Model

Since forces and kinetic similarity are so important in o¤shore engineering, extra attention
to speci…c forces is given in this section.

Inertia

Whenever velocities and accelerations are involved - and that is the usual case in o¤shore
engineering - modeling will involve inertia forces.

Gravity

Gravity forces are important for problems involving buoyancy and more generally for ‡ow
situations in which a free water surface is involved. Gravity forces are therefore important
for waves and for all sorts of open channel ‡ow. They also play an important part in soil
mechanics as well. They are not usually very important, on the other hand, for pipeline
‡ow.
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Viscous or Damping

Viscous forces are important when friction is signi…cantly involved. Pipeline pressure losses
are an example of this. Damping forces in structural dynamics are a di¤erent example;
they only become important when a structure has a near-resonant response.

Surface Tension

Surface tension forces are important when capillary action - between a ‡uid and a wall -
or other deformations of a ‡uid surface are involved. It is only occasionally that surface
tension forces become very important in o¤shore engineering. One example involves the
later phases of the spreading of an oil on water; this is driven by surface tension forces.

Internal Stresses

Internal stresses can often be as important as the external shape in a design. Indeed, a
sleek and fast ship which breaks when it encounters its …rst wave is of little practical use.

B.6 Force Scaling

A casual reader can conclude that there are no real problems with physical modeling yet.
This impression may change if we compare the ways in which the various forces are scaled
in a model.

Force Scale
Inertia ®½ ¢ ®2V ¢ ®2L
Gravity ®½ ¢ ®g ¢ ®3L
Viscous ®´ ¢ ®V ¢ ®L
Surface Tension ®¾ ¢ ®L
Internal Stresses ®½¢®g ¢®3L ¢®L¢®L

®4L
= ®½ ¢ ®g ¢ ®L

Bulk Strain ®K ¢®2L

in which the following scale factors are used:

®g = gravitational acceleration
®K = bulk modulus of the ‡uid
®L = length
®V = velocity
®´ = dynamic viscosity
®½ = mass density
®¾ = surface tension

One can see from this table that not all forces are scaled equally; this is unfortunate. As
stated above, only a computer model has the potential to include all forces in their proper
relative scales.
The fact that not all of the above forces are identically reproduced in a physical scale
model of a prototype, means that some forces will become (relatively) more important in
the model than they actually are in the prototype. What must the model designer do? The
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most common way to minimize the e¤ects of this problem is to keep the ratio of the two
most important forces - such as inertia and gravity (or possibly some other important
phenomena) for example - the same in the model as they are in the prototype. Such ratios
are dimensionless and many have special names as outlined in the following section.

B.7 Dimensionless Ratios

The following ratios - not all of which are strictly de…ned in terms of forces, by the way -
are relatively common:

Name Symbol Ratio

Froude Fn
q

Inertia Force
Gravity Force

Reynolds Rn Inertia Force
Viscous Force

Keulegan-Carpenter KC 2¼ ¢ Water Displacement Amplitude
Cylinder Diameter

¤

Sarpkaya Beta ¯ Re
KC

Reduced Velocity Vr
Steady Flow Velocity

Oscillating Flow Velocity Amplitude

Strouhal St 2¼ ¢ Cylinder Diameter
Water Displacement Amplitude

¤

Kenn Ke Viscous Forces
Surface Tension Forces

Weber We Inertia Forces
Surface Tension Forces

¤While St and KC look quite similar, they are associated with entirely di¤erent phenomena
and are therefore quite di¤erent.
One sees from this table that:

² Not all dimensionless ratios involve forces directly.

² Some ratios - such as ¯ above - can be expressed in terms of others.

If one includes additional engineering …elds, then one can compile what seems like an
endless list containing several hundred entries.

Scaling Consequences

Once one has chosen to use a given dimensionless ratio as the basis for a model, then this
provides additional information for use in modeling in many practical situations.
It is usually impractical to replace water with another liquid in a physical model. Indeed,
one author knows of cases when water has replaced other more exotic ‡uids - such as
supercritical steam or even molten sodium - for very special testing or modeling purposes.
Generally in o¤shore engineering however, one is confronted with water in both the model
and prototype - even though one will usually be saltier than they other! A consequence of
this is that the densities and other ‡uid properties will have a scale which is quite close to
unity. This means that: ®K; ®´; ®½;and ®¾ are all very close to unity.
Similarly, except in modern soil mechanics, it is seldom convenient to change the accel-
eration of gravity; ®g will be identically equal to 1. (Centrifuges are often used in soil
mechanics to create an arti…cally higher ’gravitational’ acceleration.) The only other know
way to change the acceleration of gravity is to work in a space lab or on the moon; both
of these alternatives are (still) too expensive for routine use!
This information can now be used in combination with a scaling law to derive additional
relations.
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Froude Scaling

Given that the Froude Number in the model must be same as that in the prototype, and
that the Froude Number is the ratio of inertia to gravity forces, one may conclude that -
using information from the tables above:

®½ ¢ ®2V ¢ ®2L = ®½ ¢ ®g ¢ ®3L (B.11)

and since:

®V =
®L
®T

and ®g = 1: (B.12)

then equation B.11 can be re-written as so that:

®L
®2T

= 1: (B.13)

Time One can conclude from this that the time scale, ®T =
p
®L . Thus if a model is

built with a length scale of 100 (1 meter in the prototype is 1 centimeter in the model)
then one second in the model will correspond to 10 seconds in the prototype when Froude
scaling is used.

Velocity A quick check will show, too, that velocities in the model will also be scaled
with

p
®L; a prototype current of 1 m=s will correspond to 10 cm=s in the model.

Reynolds Number and Viscous Forces Since viscous forces may also be involved in
a physical model designed to Froude Scale, it can be interesting to check how the Reynolds
Number is scaled.
Since Re is the ratio of inertia to viscous forces, then:

®Re =
®½ ¢ ®V ¢ ®L

®´
(B.14)

Since ®½ and ®´ are both equal to 1; then ®Re = ®1:5L : This means that the Reynolds
Number in the model will be 1

1001:5
or 1000 times too small. In other words, the viscous

forces in the model will be 1000 times more important in the model than in the …eld.

Keulegan Carpenter Number The Keulegan Carpenter number, KC = ûT
D , is scaled

according to:

®KC =
®V ¢ ®T
®L

=

p
®L ¢ p

®L
®L

´ 1 (B.15)

KC is not changed when Froude scaling is used.

Internal Forces Internal forces - such as bending stresses in the hull of a ship - are
scaled according to:
®½¢®g ¢®L - from the table above. Since ®½ and ®g are both equal to 1 , then internal stresses
are scaled in the same way as the length. Now the example model will be (relatively) 100
times as strong as the prototype. Failure to recognize this scaling little detail has led to
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the failure (in the …eld) of concrete armor units for rubble mound breakwaters. Concrete
units used in the model were strong enough, but the prototype scale units in the …eld did
not have a signi…cantly higher allowable stress than in the model. As a consequence, the
concrete units in the sea broke up in a storm and the whole breakwater - as well as the
infrastructure it was protecting - was severely damaged.

Reynolds Scaling

One way to avoid the distortion of the viscous forces in a Froude Scale Model is to use
Reynolds Scaling, instead. Now the ratio of inertia to viscous forces is kept constant. This
means that:

®½ ¢ ®2V ¢ ®2L = ®´ ¢ ®V ¢ ®L (B.16)

Since ®½ and ®´ are still equal to 1; then ®V ¢ ®L = 1: so that ®V = 1
®L
: This means that if

the model has a scale (as above) of 100, then the velocities in the model will have to be 100
times larger than in the prototype. This is essentially impossible to achieve in practice!

Other Scaling Laws

Most any of the dimensionless ratios listed in the table above can be used as a basis for
a scaling law. Froude Scaling is the most common in o¤shore engineering hydromechanics
simply because gravity plays a dominant role in the behavior of the free surface of the
ocean. Reynolds scaling is often used for pipe ‡ows (under pressure) such as can be found
in the topsides of an o¤shore production platform.
The following …gure compares a variety of scaling laws.

B.8 Practical Compromises

Consider for the moment a physical model of the entire North Sea (to stay o¤shore!) or
even of a few kilometers of a broad river. Since the free water surface is important, Froude
scaling would be most appropriate, but one quickly becomes concerned about the strongly
increased in‡uence of the viscous forces. Indeed, the model can become so shallow that
boundary layer e¤ects become too dominant.

Distorted Scale

One way to reduce the viscous in‡uence in an open channel model is to use a smaller
length scale for vertical dimensions than that used for horizontal dimensions. One author
has worked on such a model with a vertical scale of 40 and a horizontal scale of 60. This
makes the model relatively 1.5 times as deep as would be indicated from the …eld. This
keeps the Reynolds numbers 1.5 times as large (relative to the undistorted model); they
are still small relative to the prototype or …eld situation, however.

Added Roughness

A quite opposite problem occurs with ship models towed in a towing tank. Because the
models are relatively smooth, the laminar boundary layer which forms near the bow extends
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Figure B.1: Graphical Comparison of Scaling Laws

much too far aft (in the model) and thus distorts its skin friction resistance. In this case,
this laminar boundary layer is forcefully broken up by attaching strips of rough material
(It looks like coarse sandpaper.) to the model hulls a bit aft of the bow.

Adjust Gravity

The use of centrifuges has already been mentioned above in connection with geotechnical
work. By arti…cially increasing g; one can use a relatively thin soil layer to model a much
thicker one. Such models have been used - for example - to study the behavior of deeply
penetrating o¤shore anchors in soft clay soils.

Adjusting gravity is never inexpensive! It can run into a number of very practical problems
associated with carrying out the test, too - especially when free surfaces of liquids are
involved.

Distort All Scales

Some have suggested that instead of keeping one dimensionless ratio constant, experiments
might be designed so that all (more than one) important dimensionless ratios are distorted
more or less equally. This idea may be better in theory than in practice, however. The
author is aware of no speci…c examples of its application. This could mean, for example,
that one would choose scaling corresponding to point A in the above …gure.
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B.9 Conclusion

Any physical scale model will distort the relative importance of various forces and other
physical phenomena involved. On the other hand, a physical model does include all these
physical phenomena.
The only way to avoid the distortions associated with physical models is to use a computer
model or simulation. This has the disadvantage, however, that its representation of the
physical situation is only as good as the mathematician has been able to make it.
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FOURIER SERIES
APPROXIMATIONS

C.1 Basic Form

Baron Jean Baptiste Jouseph Fourier, a French mathematician who died in 1830, con-
cluded in that any time dependent signal, F (t), which repeats itself with period, T , can
be expressed as:

F (t) = a0 +
1X

n=1

[an cos(n!t) + bn sin(n!t)] (C.1)

in which:

F (t) = Arbitray periodic function
an = Coe¢cients; n = 0; 1; 2; :::
bn = Coe¢cients; n = 1; 2; :::
n = An integer
t = Time
! = 2¼=T = Frequency
T = Period of the function

Further, the coe¢cients an and bn can be computed from F (t) using:

a0 =
1

T

TZ

0

F (t)dt (C.2)

an =
2

T

TZ

0

F (t) ¢ cos(n!t)dt with: n > 0 (C.3)

bn =
2

T

TZ

0

F (t) ¢ sin(n!t)dt (C.4)
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These equations express a Fourier series in its basic form.
The above integrals must be carried out over one period, T , of the measured signal. It does
not matter when, exactly, that period begins or ends. The limits of 0 and T above (as well
as in the rest of this appendix) can be replaced by t and t+ T respectively if desired. The
basic version will be used in this appendix, however.

C.2 Derived Form

Equation C.1 can be expressed in another way as well:

F (t) = a0+
1X

n=1

cn cos(n!t+ Án) (C.5)

in which:

cn =
p
a2n + b

2
n (C.6)

and:

Án = arctan

µ
bn
an

¶
(C.7)

(The arctan function denotes the angle whose tangent is ....)

C.3 Limits

Fourier’s theory indicates explicitly that his series includes an in…nite number of terms;
this is never practical, however.
One approach is to bluntly limit the order of the Fourier Series to n = 1: This is often
used as a means of linearizing a peridoic signal, by the way. If one wants to average this
linearization over several periods of the signal, one can do this by treating some integer, k
number of periods of that signal and then computing only the n = kth harmonic.
While use of a single periodic Fourier Series component is very attractive from both a
computational and linearization points of view, one can become worried about whether
such a simpli…cation is really justi…ed.
Fourier showed that the following relation also holds:

2

T

TZ

0

[F (t)]2 =
a20
2
+

1X

n=1

c2n (C.8)

so that in practice the error, EN (represented by all of the terms of order higher than N)
is given by:

EN =
2

T

TZ

0

[F (t)]2¡ a20
2

¡
NX

n=1

c2n (C.9)

This can evaluated readily, and if one is lucky, EN will decrease rapidly as N increases.
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C.4 Application Example

One function for which a Fourier Series linearization is commonly used that for quadratic
drag in the Morison equation. This means that one wants to express a function of the
form:

F (t) = A cos(!t) ¢ jcos(!t)j (C.10)

as a Fourier series. (See chapter 12 for a discussion of the Morison Equation.)
Using equations C.3 and C.4 one …nds that:

a0 ´ 0
a1 = 8

3¼
= 0:849A

bn ´ 0 for all n
an ´ 0 for all even n
a3 = 8

15¼ = 0:170A =
a1
5

a5 = 8
105¼

= 0:024A = a1
35

etcetera

If a linearization is used in this particular case, then the amplitude of the linear equivalent
component should be chosen equal to a1: Note, however, that even though the second
harmonic is absent, the amplitude of the third harmonic, a3; is still 20% of the amplitude
of the …rst harmonic; linearization may not be all that precise in this case.
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