
ME1633: Integration of Physics, Motion and Metrology

Assignment 5: Dynamics

6 December 2013

• You can do this assignment on your own or in groups, as long as you hand in your own solutions
and it becomes clear that you understand your solutions. Formulate your solutions step-by-
step, carefully pointing out the logical structure of your answer, but keep your answers brief.

• If in some question you happen to need an answer from a previous question that you don’t
know the answer to, assume an answer or at least explain the method you would use when you
would have had that previous answer.

• Only for the students who follow the PME track’s course ME1633: Your solution to this assignment
must be submitted in the lecture or via Blackboard (in pdf format) before 29 January 2014, 23:59h.

• Your solution may be formulated in either English or Dutch.

Satellite shaker

Satellites only experience light vibrations in space. During the launch, however, they experience
large forces and are put heavily to the proof. To be sure that no damage will occur when launching
the satellites, they are extensively tested. Amongst others, their dynamic behaviour is examined by
measuring the response to vibrations applied by a shaker.

As modern satellites can easily weigh tens of tons, one can imagine that such a shaker will have
extreme specifications. Figure 1a shows satellite shaker ‘Hydra’, which is located in the (huge) clean-
room facilities of the ESA in Noordwijk.1 Satellites are mounted on the test table, which can be
actuated in six degrees of freedom using a hydraulic system. The hydraulic cylinders are mounted in
between the table and a very large seismic foundation body, whose purpose it is to reduce the forces
transmitted to the ground. This allows people in neighbouring buildings to keep on working com-
fortably when the shaker is used. The seismic mass is supported by big springs that are connected to
the ground.

1http://www.european-test-services.net/services-mechanical-Hydra-Vibration.html

Table 1: Mass and stiffness parameters of the Hydra satellite shaker.

Parameter Value

Mass of the shaker table (m1) 23.5 · 103 kg

Mass of the seismic body (m2) 1.4 · 106 kg

Stiffness of the hydraulic system (k1) 109 N/m

Stiffness of the connection between the seismic body and the ground (k2) 7.5 · 107 N/m
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(a) Drawing of the Hydra satellite shaker (source: ESA).
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Figure 1: The satellite shaker system.

The satellite shaker is used for enforcing acceleration to the table with the satellite under test. In
this assignment we aim at getting basic understanding of the system’s dynamics and the possible
control issues this dynamics imposes. We will only consider the vertical movement of the system
and model the shaker as a simple, one-dimensional, two-body mass-spring system, see Figure 1b. m1
represents the mass of the table and m2 represents the mass of the seismic foundation body. Stiffness
k1 represents the stiffness of the hydraulic system, which works between the table and the foundation
mass. The seismic body is coupled to the ground with a stiffness k2. Finally, Fact is the actuation force
that is applied by the hydraulic system. The mass and stiffness values are listed in Table 1. Unless
explicitly stated otherwise, damping may be neglected.

Eigenmodes

The simplified one-dimensional model of the shaker possesses two bodies, with coordinates x1 and
x2, so that two eigenmodes can be found. The modeshape, ϕ1, corresponding to the lowest eigenfre-
quency can be written as

ϕ1 =

{
x1
x2

}
=

{
1

1− α

}
, (1)

where α = 0.0012. Clearly, both bodies move with almost equal amplitudes in the first eigenmode.

1a. Explain(8p) that this is the modeshape belonging to the lowest eigenfrequency of the system. Use a
reasoning based on modal mass and the modal stiffness to answer this question.
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1b.(6p) To find a good estimate for the eigenfrequency corresponding to the modeshape of Equation (1)
it is sufficient to use the following approximation of the modeshape:

ϕ1 =

{
x1
x2

}
'

{
1
1

}
. (2)

Find a simple approximate expression for the first eigenfrequency ω1. For answering this, you should
not need too extensive math.

The modeshape corresponding to the highest eigenfrequency, ϕ2, is

ϕ2 =

{
x1
x2

}
=

{
1
−β

}
, (3)

where β a positive number much smaller than 1 (β� 1).

2a. Explain(8p) that this is the modeshape belonging to the highest eigenfrequency of the system. Again,
use a reasoning based on modal mass and modal stiffness to answer this question.

2b.(6p) To find a good estimate for the eigenfrequency corresponding to the modeshape of Equation (3)
it is sufficient to use the following approximate of the modeshape:

ϕ2 =

{
x1
x2

}
'

{
1
0

}
. (4)

Find a simple approximate expression for the second eigenfrequency ω2. For answering this, you
should not need too extensive math.

Actually, the modeshapes in Equations (2) and (4) are approximations which are useful for ap-
proximating the eigenfrequencies of the system. For understanding the transfer functions from force
to displacement or acceleration, however, we need to know the modeshapes more accurately.

2c. Calculate an estimate of(6p) β, using the assumption that the suspension stiffness between the seis-
mic body and the ground has a negligible contribution to the modal stiffness of the second eigenmode,
i.e. k2 ' 0.
Hint for this question: What is the movement of the system’s centre of mass?

2d.(4p) Explain that an approximation as in Equation (4) could lead to big mistakes, when, for example,
calculating the transfer from actuation forces to the force exerted to the ground.

Modal lever representation

As we know, the equations of motion of this dynamic system can be written in the matrix form[
m1 0
0 m2

]{
ẍ1
ẍ2

}
+

[
k1 −k1
−k1 k1 + k2

]{
x1
x2

}
=

{
F1
F2

}
, (5)
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(a) Modal lever representation.
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(b) Modal mass-spring system corresponding to coordinate x1.

Figure 2: Representations of the first eigenmode.

where x1(t) and x2(t) are the physical coordinates of the system, in general referred to as ‘nodal
coordinates’, and F1(t) and F2(t) are the forces on each of the bodies, which are for the satellite shaker{

F1
F2

}
=

{
1
−1

}
Fact.

These equations of motion can be rewritten in terms of the so called ‘modal coordinates’, q1(t) and
q2(t). The modal coordinates describe the amplitude of each of the modeshapes as a function of time.
The equations can be rewritten in terms of modal coordinates as follows:[

M1 0
0 M2

]{
q̈1
q̈2

}
+

[
K1 0
0 K2

]{
q1
q2

}
=

{
F1
F2

}
,

whereMi, Ki and Fi are respectively the modal mass, the modal stiffness and the modal force of the
ith mode. Note that the modal mass and stiffness matrices are diagonal, the two equations are not
coupled any more. The response of the total system is now simply the summation of the response of
each of the individual modes: {

x1
x2

}
= ϕ1q1 +ϕ2q2. (6)

3a.(4p) Explain the fact that each of the modal responses qi/Fi can be regarded as the response of a single
mass-spring system.

Figure 2a shows the modal lever representation of the first eigenmode of the Hydra satellite
shaker. Such a modal lever is a powerful tool for understanding the system’s dynamics, for sev-
eral reasons. First, a lever representation helps understanding that the scaling factor of a modeshape
is arbitrary. Furthermore, it helps to more easily find the modal mass and modal force corresponding
to a nodal coordinate. Figure 2b shows the modal mass-spring system corresponding to coordinate
x1 of the shaker’s first eigenmode.

3b. Find, using(8p) the modal lever representation of Figure 2, the modal mass of the first modeshape
(M1) and the modal stiffness (K1). Also, show that the modal force (F1) equals

F1 = αFact.

Hint for this question: The modal lever representation works not too intuitively for calculating modal
stiffness; for this reason, use the modal mass in combination with the eigenfrequency to calculate K1.

3c. Sketch(12p) the modal lever representation corresponding to the second eigenmode. Then, sketch the
modal mass-spring system corresponding to coordinate x1 with its modal massM2, modal stiffness
K2 and modal force F2.
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3d. Calculate, using(8p) the modal lever representation of Question 3c, the modal mass (M2) and the
modal stiffness (K2) for the second eigenmode. Also, calculate the modal force (F2) in terms of Fact.

3e. Could(4p) we call the modal masses and modal stiffnesses as calculated in 3b and 3d ‘effective’?
Explain your answer.

The system’s response

Once the system’s modal parameters (the modal masses, stiffnesses and forces) are known, it is pos-
sible to find the transfer of each of the eigenmodes and of the full system.

4a. Sketch(18p) by hand, without using your computer, the Bode plots of both the transfer q1/Fact and the
transfer q2/Fact.

4b.(8p) Now use the Bode plots found in Question 4a to sketch the Bode plot of the transfer from the
actuator force to the displacement of the shaker table, x1/Fact. Note that you can find this transfer by
adding the transfers of each of the modeshape contributions. Mind the phase!

←−− Here ends the obligatory part of this assignment.
The following part, bridging to the next subject (active control), is optional and will not be graded. −−→

Changing the dynamics

Now that we found the system’s transfer in terms of its modeshapes, we could use this knowledge to
modify the dynamic behaviour. For this, both the shaker’s physical parameters and the parameters
of the active control system to be added could be tuned.

5a. The transfer from actuator force to displacement of the first body (the shaker table), x1/Fact,
possesses an anti-resonance. Which practical problem does this anti-resonance impose? Is it possible
to overcome the problem with active control?

5b. Our system engineer wants to solve the anti-resonance problem by adding damping to the
system. Explain, using the Bode plots of Question 4a, where he should add damping to the satellite
shaker.

5c. Sketch the Bode plot of each of the modal transfers q1/Fact and q2/Fact, as you expect them to
become after adding the damping of Question 5b, in one figure. Also sketch the resulting transfer to
the shaker table (x1/Fact). Neglect modal coupling due to damping.
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Please indicate, for each question, the following:

This question was:
Difficult ←→ Doable
© © © ©

I spent:

Hours
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