
ME1633: Integration of Physics, Motion and Metrology

Assignment 5: Dynamics

6 December 2013

• You can do this assignment on your own or in groups, as long as you hand in your own solutions
and it becomes clear that you understand your solutions. Formulate your solutions step-by-
step, carefully pointing out the logical structure of your answer, but keep your answers brief.

• If in some question you happen to need an answer from a previous question that you don’t
know the answer to, assume an answer or at least explain the method you would use when you
would have had that previous answer.

• Only for the students who follow the PME track’s course ME1633: Your solution to this assignment
must be submitted in the lecture or via Blackboard (in pdf format) before 29 January 2014, 23:59h.

• Your solution may be formulated in either English or Dutch.

Satellite shaker

Satellites only experience light vibrations in space. During the launch, however, they experience
large forces and are put heavily to the proof. To be sure that no damage will occur when launching
the satellites, they are extensively tested. Amongst others, their dynamic behaviour is examined by
measuring the response to vibrations applied by a shaker.

As modern satellites can easily weigh tens of tons, one can imagine that such a shaker will have
extreme specifications. Figure 1a shows satellite shaker ‘Hydra’, which is located in the (huge) clean-
room facilities of the ESA in Noordwijk.1 Satellites are mounted on the test table, which can be
actuated in six degrees of freedom using a hydraulic system. The hydraulic cylinders are mounted in
between the table and a very large seismic foundation body, whose purpose it is to reduce the forces
transmitted to the ground. This allows people in neighbouring buildings to keep on working com-
fortably when the shaker is used. The seismic mass is supported by big springs that are connected to
the ground.

1http://www.european-test-services.net/services-mechanical-Hydra-Vibration.html

Table 1: Mass and stiffness parameters of the Hydra satellite shaker.

Parameter Value

Mass of the shaker table (m1) 23.5 · 103 kg

Mass of the seismic body (m2) 1.4 · 106 kg

Stiffness of the hydraulic system (k1) 109 N/m

Stiffness of the connection between the seismic body and the ground (k2) 7.5 · 107 N/m
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(a) Drawing of the Hydra satellite shaker (source: ESA).
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Figure 1: The satellite shaker system.

The satellite shaker is used for enforcing acceleration to the table with the satellite under test. In
this assignment we aim at getting basic understanding of the system’s dynamics and the possible
control issues this dynamics imposes. We will only consider the vertical movement of the system
and model the shaker as a simple, one-dimensional, two-body mass-spring system, see Figure 1b. m1
represents the mass of the table and m2 represents the mass of the seismic foundation body. Stiffness
k1 represents the stiffness of the hydraulic system, which works between the table and the foundation
mass. The seismic body is coupled to the ground with a stiffness k2. Finally, Fact is the actuation force
that is applied by the hydraulic system. The mass and stiffness values are listed in Table 1. Unless
explicitly stated otherwise, damping may be neglected.

Eigenmodes

The simplified one-dimensional model of the shaker possesses two bodies, with coordinates x1 and
x2, so that two eigenmodes can be found. The modeshape, ϕ1, corresponding to the lowest eigenfre-
quency can be written as

ϕ1 =

{
x1
x2

}
=

{
1

1− α

}
, (1)

where α = 0.0012. Clearly, both bodies move with almost equal amplitudes in the first eigenmode.

1a. Explain(8p) that this is the modeshape belonging to the lowest eigenfrequency of the system. Use a
reasoning based on modal mass and the modal stiffness to answer this question.
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Answer

• The formula of eigenfrequency has some form
√

stiffness/mass. To obtain a low eigenfre-
quency, the modal stiffness in the eigenmode has to be small.

• The seismic body is connected with high stiffness to the table, whereas the seismic body is
connected with relatively low stiffness to the ground, so that k2 � k1.

• The modal stiffness would be low for a modeshape where the first spring deforms consid-
erably and the second spring hardly. This is the case for equal displacement of the two
bodies.

• In order to make equal displacements possible, the mass of the table has to be much smaller
than the mass of the seismic body, which is the case (m1 � m2) . Otherwise a relatively high
force has to be transmitted through the second spring, causing a relatively large deforma-
tion of that spring.

• (The coupling between the bodies would be exact when stiffness k1 would be infinite or
when the mass of the table would be zero.)

1b.(6p) To find a good estimate for the eigenfrequency corresponding to the modeshape of Equation (1)
it is sufficient to use the following approximation of the modeshape:

ϕ1 =

{
x1
x2

}
'
{

1
1

}
. (2)

Find a simple approximate expression for the first eigenfrequency ω1. For answering this, you should
not need too extensive math.

Answer

• We saw that the two masses can be considered as almost coupled. Therefore we can calcu-
late the first eigenfrequency as follows:

ω1 '

√
k2

m1 + m2
=

√
7.5 · 107

23.5 · 103 + 1.4 · 106 = 7.3
rad

s
≡ 1.2 Hz.

The modeshape corresponding to the highest eigenfrequency, ϕ2, is

ϕ2 =

{
x1
x2

}
=

{
1
−β

}
, (3)

where β a positive number much smaller than 1 (β� 1).
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2a. Explain(8p) that this is the modeshape belonging to the highest eigenfrequency of the system. Again,
use a reasoning based on modal mass and modal stiffness to answer this question.

Answer

• As in Question 1a, we recall that the formula of eigenfrequency has some form√
stiffness/mass. To obtain a high eigenfrequency, the modal mass of the eigenmode has to

be small and the modal stiffness has to be large.

• As the stiffness of the second spring is much higher than the stiffness of the first (k2 � k1).
The second spring should deform strongly to obtain a large modal stiffness.

• The mass of the table is much smaller than the mass of the seismic body. To obtain a small
modal mass, the table should move much more than the seismic body, so that the seismic
mass can be considered as practically at stand-still (at least with respect to the displacement
of the table).

• (Mass would be exact at stand-still when stiffness k2 would be infinite or when the mass of
the seismic body would be infinite.)

2b.(6p) To find a good estimate for the eigenfrequency corresponding to the modeshape of Equation (3)
it is sufficient to use the following approximate of the modeshape:

ϕ2 =

{
x1
x2

}
'
{

1
0

}
. (4)

Find a simple approximate expression for the second eigenfrequency ω2. For answering this, you
should not need too extensive math.

Answer

•(3p) We saw that the seismic body is almost at stand-still in the second eigenmode, so that prac-
tically only the table mass and the second spring and participate for the second eigenmode.

•(3p) Therefore, we can calculate the second eigenfrequency as follows:

ω2 '

√
k1

m1
=

√
1 · 109

23.5 · 103 = 206
rad

s
≡ 33 Hz.

Actually, the modeshapes in Equations (2) and (4) are approximations which are useful for ap-
proximating the eigenfrequencies of the system. For understanding the transfer functions from force
to displacement or acceleration, however, we need to know the modeshapes more accurately.

2c. Calculate an estimate of(6p) β, using the assumption that the suspension stiffness between the seis-
mic body and the ground has a negligible contribution to the modal stiffness of the second eigenmode,
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i.e. k2 ' 0.
Hint for this question: What is the movement of the system’s centre of mass?

Answer

•(2p) When assuming k2 to be zero, no forces can be transmitted to the external world in this
eigenmode. This means that the centre of mass of the two bodies need to be at standstill.

•(2p) Call l1 and l2 respectively the distance between centre of mass and the first and second
body. The following describes then the centre of mass:

l2
l1

=
m1

m2
.

To keep the centre of mass in place, the displacement x1 and x2 need also to obey

x2

−x1
=

m1

m2
.

•(2p) Now β is the x2 corresponding to x1 = 1, so that

β =
−x2

x1
=

m1

m2
= 0.017.

• (In line with the way of reasoning in Questions 1a and 2a, we would indeed expect a dif-
ferent sign between the displacement of the two bodies for the eigenmode with the highest
eigenfrequeny. In that case the participation of the stiffness of the second spring is higher
than when the sign would be equal, whereas the participation of the mass is equal in both
situations.)

Answer (using the equations from the book)

• By assuming that k2 = 0 we can use Equation (3.97) from the book2. For the second mode-
shape one can write C2x2 = −C1x1, so that

β ' C2

C1
=

1
m1+m2

m1
m2

1
m1+m2

=
m1

m2
= 0.017.

• (Indeed the mode shape we find in this question approaches much better the exact solution,
namely up to five decimal places.)

2d.(4p) Explain that an approximation as in Equation (4) could lead to big mistakes, when, for example,
calculating the transfer from actuation forces to the force exerted to the ground.

2Equation (3.97) in the second edition, Equations (3.79-3.81) in the first edition.
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Answer

• When we would for example excite the system at its second eigenfrequency, we would
think that the second eigenmode would not contribute to the displacement of the seismic
body. In that way we would not find the high forces that are in that case exerted on the
ground (Fground = −k2x2).

Modal lever representation

As we know, the equations of motion of this dynamic system can be written in the matrix form[
m1 0
0 m2

]{
ẍ1
ẍ2

}
+

[
k1 −k1
−k1 k1 + k2

]{
x1
x2

}
=

{
F1
F2

}
, (5)

where x1(t) and x2(t) are the physical coordinates of the system, in general referred to as ‘nodal
coordinates’, and F1(t) and F2(t) are the forces on each of the bodies, which are for the satellite shaker{

F1
F2

}
=

{
1
−1

}
Fact.

These equations of motion can be rewritten in terms of the so called ‘modal coordinates’, q1(t) and
q2(t). The modal coordinates describe the amplitude of each of the modeshapes as a function of time.
The equations can be rewritten in terms of modal coordinates as follows:[

M1 0
0 M2

]{
q̈1
q̈2

}
+

[
K1 0
0 K2

]{
q1
q2

}
=

{
F1
F2

}
,

whereMi, Ki and Fi are respectively the modal mass, the modal stiffness and the modal force of the
ith mode. Note that the modal mass and stiffness matrices are diagonal, the two equations are not
coupled any more. The response of the total system is now simply the summation of the response of
each of the individual modes: {

x1
x2

}
= ϕ1q1 +ϕ2q2. (6)

3a.(4p) Explain the fact that each of the modal responses qi/Fi can be regarded as the response of a single
mass-spring system.

Answer

• The equations of motion in modal coordinates have exactly the well-known form of a single
mass-spring system, i.e.

M1q̈1 +K1q1 = F1

and
M2q̈2 +K2q2 = F2.
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(a) Modal lever representation.
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(b) Modal mass-spring system corresponding to coordinate x1.

Figure 2: Representations of the first eigenmode.

Figure 2a shows the modal lever representation of the first eigenmode of the Hydra satellite
shaker. Such a modal lever is a powerful tool for understanding the system’s dynamics, for sev-
eral reasons. First, a lever representation helps understanding that the scaling factor of a modeshape
is arbitrary. Furthermore, it helps to more easily find the modal mass and modal force corresponding
to a nodal coordinate. Figure 2b shows the modal mass-spring system corresponding to coordinate
x1 of the shaker’s first eigenmode.

3b. Find, using(8p) the modal lever representation of Figure 2, the modal mass of the first modeshape
(M1) and the modal stiffness (K1). Also, show that the modal force (F1) equals

F1 = αFact.

Hint for this question: The modal lever representation works not too intuitively for calculating modal
stiffness; for this reason, use the modal mass in combination with the eigenfrequency to calculate K1.

Answer

•(3p) The modal mass is

M1 = m1 +

(
1− α

1

)2
m2

= 23.5 · 103 + (0.9988)2
(

1.40 · 106
)
= 1.42 · 106 kg.

•(3p) The eigenfrequency of the equivalent mass-spring system is

ω1 =

√
K1

M1
,

so that the modal stiffness is

K1 = ω2
1M1

= (7.26)2 1.42 · 106 = 7.48 · 107 N
m

.

•(2p) The modal force is

F1 = Fact −
1− α

1
Fact = αFact.

= 0.0012Fact

QED.
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3c. Sketch(12p) the modal lever representation corresponding to the second eigenmode. Then, sketch the
modal mass-spring system corresponding to coordinate x1 with its modal massM2, modal stiffness
K2 and modal force F2.

Answer

•(8p) The modal lever representation is:

Fact Fact

m1

m2

1

x1
x2

.

•(4p) The modal mass-spring system is:

x1

.

3d. Calculate, using(8p) the modal lever representation of Question 3c, the modal mass (M2) and the
modal stiffness (K2) for the second eigenmode. Also, calculate the modal force (F2) in terms of Fact.

Answer

•(3p) The modal mass is

M2 = m1 +

(
β

1

)2
m2

= 23.5 · 103 + (0.0168)2
(

1.40 · 106
)
= 23.9 · 103 kg.

•(3p) The modal stiffness is

K2 = ω2
2M2

= (208)2 23.9 · 103 = 1.034 · 109 N
m

.

•(2p) The modal force is

F2 = Fact +
β

1
Fact = (1 + β) Fact

= 1.0168Fact.

3e. Could(4p) we call the modal masses and modal stiffnesses as calculated in 3b and 3d ‘effective’?
Explain your answer.
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Answer

• No, because the modal forces (F1 and F2) are not equal to Fact, so that the transfer function
does not have the form as meant in Equation (3.98) of the book.

The system’s response

Once the system’s modal parameters (the modal masses, stiffnesses and forces) are known, it is pos-
sible to find the transfer of each of the eigenmodes and of the full system.

4a. Sketch(18p) by hand, without using your computer, the Bode plots of both the transfer q1/Fact and the
transfer q2/Fact.

Answer

•(10p) Resonance occurs at the eigenfrequencies, respectively 1.2 and 33 Hz. Below these eiqen-
frequencies, the spring lines dominate, resulting in a response of respectively

F1/Fact

K1
=

0.0012
7.5 · 107 = 1.7 · 10−11 m

N

and
F2/Fact

K2
=

1.0168
1.0 · 109 = 9.8 · 10−10 m

N
.

Above the eigenfrequencies, the mass lines dominate. Mind the units of the transfer func-
tions q1/Fact and q2/Fact. They depend on your choice of the units of the modal coordinates.

•(8p) For low frequencies, stiffness forces dominate, so that the amplitude of the mode is in phase
with the actuator force. Displacement is a second order integral of acceleration. Therefore,
the phase will start at −180◦. Above the eigenfrequencies, inertia forces dominate, so that
the phase drops to −180◦.

• The total Bode plots can be sketched as follows
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4b.(8p) Now use the Bode plots found in Question 4a to sketch the Bode plot of the transfer from the
actuator force to the displacement of the shaker table, x1/Fact. Note that you can find this transfer by
adding the transfers of each of the modeshape contributions. Mind the phase!

Answer

• The modeshapes were scaled such that x1 = 1q1 + 1q2, which is useful, as the total transfer
is now simply x1/Fact = q1/Fact + q2/Fact. Mind the unit of the transfer function.

• At most frequencies the modeshape corresponding to the highest eigenfrequency dom-
inates the transfer. At its eigenfrequency, however, the modeshape corresponding to the
lower eigenfrequency dominates. Note the anti-resonance in the transfer, which occurs
when both modes have equal amplitude but opposite phase for body 1. The Bode plot is as
follows.
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←−− Here ends the obligatory part of this assignment.
The following part, bridging to the next subject (active control), is optional and will not be graded. −−→

Changing the dynamics

Now that we found the system’s transfer in terms of its modeshapes, we could use this knowledge to
modify the dynamic behaviour. For this, both the shaker’s physical parameters and the parameters
of the active control system to be added could be tuned.

5a. The transfer from actuator force to displacement of the first body (the shaker table), x1/Fact,
possesses an anti-resonance. Which practical problem does this anti-resonance impose? Is it possible
to overcome the problem with active control?

5b. Our system engineer wants to solve the anti-resonance problem by adding damping to the
system. Explain, using the Bode plots of Question 4a, where he should add damping to the satellite
shaker.
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5c. Sketch the Bode plot of each of the modal transfers q1/Fact and q2/Fact, as you expect them to
become after adding the damping of Question 5b, in one figure. Also sketch the resulting transfer to
the shaker table (x1/Fact). Neglect modal coupling due to damping.
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Please indicate, for each question, the following:

This question was:
Difficult ←→ Doable
© © © ©

I spent:

Hours
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