
1.        
BASIC PRINCIPLES OF FLOW OF LIQUID 

AND PARTICLES IN A PIPELINE 
 

 
 
1.1 LIQUID FLOW  
 
The principles of the flow of a substance in a pressurised pipeline are governed by the 
basic physical laws of conservation of mass, momentum and energy. The conservation 
laws are expressed mathematically by means of balance equations. In the most general 
case, these are the differential equations, which describe the flow process in general 
conditions in an infinitesimal control volume. Simpler equations may be obtained by 
implementing the specific flow conditions characteristic of a chosen control volume. 
 
 
1.1.1 Conservation of mass 
 
Conservation of mass in a control volume (CV) is written in the form: the rate of mass 
input = the rate of mass output + the rate of mass accumulation. Thus  

( ) ( )outlet inlet

d mass
q q

dt
= −∑

in which q [kg/s] is the total mass flow rate through all boundaries of the CV. 
 
 
In the general case of unsteady flow of a compressible substance of density ρ, the 
differential equation evaluating mass balance (or continuity) is 
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in which t denotes time and V  velocity vector. 
 
For incompressible (ρ = const.) liquid and steady (∂ρ/∂t = 0) flow the equation is 
given in its simplest form 
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The physical explanation of the equation is that the mass flow rates qm = ρVA [kg/s] 
for steady flow at the inlet and outlet of the control volume are equal. Expressed in 
terms of the mean values of quantities at the inlet and outlet of the control volume, 
given by a pipeline length section, the equation is 

1.1 



1.2                                                                                                                   CHAPTER 1 

 
qm = ρVA = const.       (1.3). 

 
Thus  
 

(ρVA)inlet = (ρVA)outlet       (1.4) 
 
 qm mass flow rate [kg/s] 
 ρ density of flowing liquid [kg/m3] 
 V mean velocity in a pipe cross section [m/s] 
 A area of a pipe cross section [m2]. 
 
In practice volumetric flow rate Q is often used in place of mass flow rate q. The 
volumetric flow rate Q = q/ρ = VA. For a circular pipeline of two different diameters 
D1 and D2 (see Fig.1.1) the mass balance claims .2
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Figure 1.1. Application of continuity equation. 
 
 

1.1.2 Conservation of momentum 
 
A momentum equation is an application of Newton's second law of motion. The 
summation of all external forces on a control volume filled with a substance is equal 
to the rate of change of momentum of the substance in the control volume. The  sum 
of the external forces acting on the control volume is counterbalanced by the inertial 
force proportional to the momentum flux of the control volume 
 
( ) ∑= externalF

dt
momentumd . 

 
The external forces are  
- body forces due to external fields (gravity, magnetism, electric potential) which act 

upon the entire mass of the matter within the control volume, 
- surface forces due to stresses on the surface of the control volume which are 

transmitted across the control surface. 
Gravity is the only body force relevant to the description of the flow of a substance in 
a conduit. Surface forces are represented by the force from the pressure gradient and 
by friction forces from stress gradients at the control volume boundary.  
In an infinitesimal control volume filled with a substance of density ρ the force 
balance between inertial force, on one side, and pressure force, body force, friction 
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force, on the other side, is given by a differential linear momentum equation in vector 
form 
 

 ( ) ( )V V. V P g h .T
t
∂

ρ + ∇ ρ = −∇ −ρ ∇ −∇
∂

     (1.5) 

 
where h denotes the elevation above a datum, V  the velocity vector and T the stress 
tensor. 
 
To apply the momentum equation to pipeline flow it is convenient to replace the 
infinitesimal control volume by a macroscopic one given by a straight piece of pipe of 
the differential distance dx, measured in the downstream direction (Fig. 1.2). The 
momentum equation written for this control volume is simpler because quantities in 
the equation are averaged over the pipeline cross section. The momentum equation is 
obtained by integrating the differential linear momentum equation over the pipe cross 
section. For the one-dimensional liquid flow it has the form (Longwell, 1966 or 
Shook & Roco, 1991) 
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 ρ density of flowing liquid [kg/m3] 
 V mean velocity in a pipe cross section [m/s] 
 g gravitational acceleration [m/s2] 
 h elevation above a datum [m] 
 P mean pressure in a pipe cross section [Pa] 
 τo  shear stress at the pipe wall [Pa] 
 D pipe diameter [m] 
 
The shear stress at the pipe wall, τo, is defined below by Eq. 1.15.  
 

Figure 1.2. Control volume (CV) for analysis of force balance in flow  
in a circular pipe. 

 
 
Additional conditions (incompressible liquid, steady and uniform flow in a horizontal 
straight pipe) make it possible to obtain a simple form of the linear momentum 
equation for liquid flow. Under the chosen conditions, the momentum flux at the 
control volume inlet is equal to that at the control volume outlet and the inertial force 



1.4                                                                                                                   CHAPTER 1 

in the control volume is zero. In this case the integrated form of the linear momentum 
equation relates the driving force generated by the pressure gradient over the pipe 
distance dx and the cross section area A (and the perimeter O) to the resisting force 
due to viscous friction at the flow boundary, which is a pipe wall. The balance is 
 

 − =
dP
dx

A oOτ        (1.7), 

 
i.e. for a pipe of a circular cross section and internal diameter D 
 

 
D
o4

dx
dP τ

=−         (1.8). 

 
This equation shows that the wall shear stress must be correlated with the flow 
conditions to solve the pressure drop due to friction in pipeline flow. 

 
 
1.1.3 Friction in pipeline flow of liquid  
 
The Eq. 1.8 is not only valid for a pipe flow boundary; it can also be generalized to 
flow within each cylinder of radius r coaxial with a cylindrical pipe. It then provides 
an equation for shear stress distribution in the pipe cross section (see Fig. 1.3) that is 
valid for both laminar and turbulent liquid flow. This is 
 

 − =
dP
dx r

τ
2

        (1.9). 

 
Figure 1.3. Stress and velocity distributions in pipe flow of liquid. 

 
Newton's law of liquid viscosity is 
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f   (1.10), 

 
 τ  local shear stress within liquid stream   [Pa] 
 vx local liquid velocity in the pipe-axis direction [m] 
 µf dynamic viscosity of liquid [Pa.s] 
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where τ and vx are at the position given by the radius r in a pipe cross section.   
 
In laminar flow, the equation for a shear stress distribution (Eq. 1.9) and Newton's law 
of liquid viscosity (Eq. 1.10) determine a velocity profile vx(r) of liquid flow. Its 
integration over a pipe cross section 
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     (1.11) 

 
provides a relationship between pressure drop dP/dx and mean velocity Vf  
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Shear stress at the pipe wall is thus determined as 
 

 τ µo f
Vf
D

=
8

        (1.13). 

 
This procedure cannot be used for turbulent flow because the relation between shear 
stress and strain rate in the turbulent flow is not fully described by the Newtonian 
viscous law. In a turbulent stream, the local velocity of the liquid fluctuates in 
magnitude and direction. This causes a momentum flux between liquid laminae in the 
stream. The momentum exchange has the same effect as a shear stress applied to the 
flowing liquid. These additional stresses set up by the turbulent mixing process are 
called apparent shear stresses or Reynolds stresses. They predominate over the 
Newtonian, purely viscous stresses in the turbulent core of the liquid flow. In a fully 
developed turbulent flow the turbulent core usually occupies almost the entire pipe 
cross section, excepting only the near-wall region. A turbulent flow regime is typical 
for pipelines of an industrial scale. 
 
Thus shear stress τ0 for turbulent flow cannot be determined directly from Newton's 
law of viscosity and the force balance equation (Eq. 1.9). Instead, it is formulated by 
using dimensional analysis. A function 
 
 τ0 = fn(ρf, Vf, µf, D, k)      (1.14) 
 
 τo  shear stress at the pipe wall [Pa] 
 ρf density of liquid [kg/m3] 
 Vf mean velocity in a pipe cross section [m/s] 
 µf dynamic viscosity of liquid [Pa.s] 
 D pipe diameter [m] 
 k absolute roughness of the pipeline wall [m] 
 
is assumed. This provides a relation between dimensionless groups 
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The dimensionless group Re, Reynolds number of the pipeline flow, relates the 
inertial and viscous forces in the pipeline flow  
 

 Re = =
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f
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ρ
µ ν       (1.16).  

 
 Re Reynolds number of the pipeline flow [-] 
 νf kinematic viscosity of liquid µf/ρf [m2/s] 
 
The dimensionless parameter on the left side of the equation 1.15 is called the friction 
factor. It is the ratio between the wall shear stress and kinetic energy of the liquid in a 
control volume in a pipeline 
 

 ff
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2         (1.17). 

 
The parameter f is known as Fanning friction factor. Darcy obtained a friction 
coefficient (called sometimes Darcy-Weisbach friction coefficient) 
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Thus the friction coefficient λf = 4ff. 
The equation for the Darcy-Weisbach friction coefficient, combined with the 
integrated linear momentum equation for pipeline flow (Eq. 1.8), gives the equation 
first published by Weisbach in 1850 
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       (1.19) 

 

that is for −
dP
dx  written as 

∆P
L

P P
L

=
−1 2  (see Fig. 1.4) 
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f f f
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VP P L
D 2
λ ρ

= +        (1.20). 

  
 P1  absolute pressure at beginning of pipe section [Pa] 
 P2  absolute pressure at end of pipe section [Pa] 
 λf Darcy-Weisbach friction coefficient [-] 
 L length of pipe section [m] 
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This equation is known as the Darcy-Weisbach equation for the determination of the 
frictional head loss If in liquid flow in a pipeline.  
 

V

t0

P1 P2

D

L

t0

 
Figure 1.4. Flow in a straight horizontal pipe of constant diameter. 

 
 
For laminar flow, an equation for friction coefficient λf (or ff) is calculated 
theoretically from the equation for pressure drop (Eq. 1.12) giving   
 

 λ f =
64
Re         (1.21).  

 
In turbulent flow there is no simple expression linking the velocity distribution with 
the shear stress (and so with the pressure gradient) in the pipe cross section. Over the 
years an empirical approach has provided a number of correlations λf = fn(Re, k/D) 
for different pipe flow regimes. The regimes are: hydraulically smooth, transitional 
and hydraulically rough (Fig. 1.5). The λf = fn(Re, k/D) correlations have been 
derived from empirical expressions for a velocity profile in the turbulent flow in a 
pipeline. The λf = fn(Re, k/D) values can be determined also from the Moody 
diagram (Fig. 1.6) or its computational version (Churchill, 1977) 
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and 

 Y =






37530 16

Re
       (1.24) 

 
 λf Darcy-Weisbach friction coefficient [-] 
 Re Reynold number for liquid flow [-] 
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 k absolute roughness of pipe wall [m] 
 D pipe diameter [m]. 
 
 
The value λf = 0.010 - 0.012 is usually appropriate for an initial estimation of 
water-flow friction losses in industrial pipelines (Fig. 1.6). 
 
 
 

 
 

Figure 1.5. Regimes of flow over a pipeline wall. Regimes for λf determination. 
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Figure 1.6a. Moody diagram for a determination of Darcy-Weisbach  
friction coefficient ff (λf). 
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Figure 1.6b. Moody diagram for a determination of Darcy-Weisbach  
friction coefficient λf,  zoom to most used region. 
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CASE STUDY 1 
  
Frictional head loss in flow of water through a straight horizontal pipeline. 
 
Determine the pressure drop due to friction for flow of water at room temperature (for 
calculations take water density ρf = 1000 kg/m3 and kinematic viscosity νf = 10-6 
m2/s) in a 1000 m long pipeline of the diameter D = 900 mm. The absolute roughness 
of a pipeline wall k = 10-5 m. Mean velocity of water in a pipeline cross section  V = 
4.5 m/s.  
 
 
Solution: 
 
a. Friction coefficient, λf 
 
The friction coefficient is dependent on the roughness k and Reynolds number Re of 
the water flow. For the above given values of parameters Re = (4.5 x 0.9)/10-6 =  4.05 
x 106. The ratio k/D = 1.1 x 10-5. 
 
The numerical approximation of the Moody diagram by Churchill (Eqs. 1.22 – 1.24) 
gives for these values of Re and k/D the friction coefficient value λf = 0.0099 = 0.010. 
The same value of λf should be obtained directly from the Moody diagram (for D/k = 
91000 in Fig. 1.6). 
 
 
b. Frictional head loss, If 
 
The frictional head loss for water flow in a pipeline is determined using the 
Darcy-Weisbach equation (Eq. 1.20). This gives a parabolic relationship between the 
hydraulic gradient If  and mean mixture velocity Vm. For our inputs 
 

 I V
f

m= = =
0 010
0 900 19 62

0 010
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4 50
19 62

0 01147
2 2.

. .
.
.

.
.

. . 

 
Thus the friction loss If = 0.01147 meter water column over 1 meter pipeline length, 
i.e. 11.47 meter water column over 1 kilometer pipeline length. This represents the 
pressure drop due to friction ∆P = 0.01147 x 1000 x 9.81 = 112.5 Pa/m' or 112.5 kPa 
over the one kilometer long pipeline.  
 
 
Summary of the results: 
friction coefficient : λf = 0.010 [-] 
frictional head loss per unit meter of a pipeline length : If = 0.01147 [-] 
pressure drop due to friction over 1 000-meter long straight pipeline :  
 ∆P = 112.5 [kPa / 1000 m] 
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1.2 SOLID PARTICLES IN A CARRYING LIQUID 
 
Forces acting on solid particles submerged in a liquid have their origin either in a 
particle-liquid interaction or in a particle-particle interaction. Particles moving in a 
conduit may also interact with a conduit boundary. The forces acting on a single 
particle in a dilute suspension are the body forces. The particle-liquid body forces are 
the buoyancy force, drag force and lift force. When a solid particle is transported in 
the turbulent flow of a carrying liquid the turbulent diffusive force from carrier eddies 
is an additional particle-liquid force. Forces acting on solid particles due to 
particle-particle interaction are transmitted as the interparticle stress via the particle 
contacts. Coulombic stresses occur in a granular body occupied by particles in 
continuous contact. When a granular body is sheared and interparticle contacts are 
only sporadic, Bagnold stresses are transmitted through the granular body. 
 
 
1.2.1 Gravitational and buoyancy force 
 
The body force due to gravitational acceleration is determined from the solid particle 
volume and density. The gravitational force on a spherical solid particle of diameter d 
is 

 6

3dgsGpF π
ρ=        (1.25). 

 
According Archimedes law, a solid particle immersed in a liquid obeys a buoyancy 
effect, which reduces its weight in the carrying medium. The submerged weight of the 
solid particle is a result of gravitational and buoyancy effects on the solid particle 
immersed in the liquid. For a spherical particle the submerged weight is determined 
by the expression 

 ( )
6

3dgfswpF π
ρ−ρ=       (1.26). 

 
 FGp  gravitational force on a spherical particle [N] 
 FWp  submerged weight of a spherical particle [N] 
 ρs density of solid particle [kg/m3] 
 ρf density of liquid [kg/m3] 
 g gravitational acceleration [m/s2] 
 d diameter of a particle [m] 
 
 
1.2.2 Drag force 
 
When the surrounding liquid moves relative to a solid particle, an additional force is 
exerted from the liquid onto the submerged particle. The drag force, FD, acts in the 
direction of the relative velocity vr = vf - vs between the liquid and the solid particle. 
The magnitude of the drag force is expressed in terms of the drag coefficient CD. This 
comes from dimensional analysis of the function 
 
 FD = fn(ρf, µf, d, vr)       (1.27). 
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It provides two dimensionless groups of parameters:  
drag coefficient 

 CD
FD

d vr vr f
=

8
2π ρ

       (1.28) 

 
and particle Reynolds number 

 Rep
f vr d

f
=
ρ
µ

       (1.29) 

 
giving CD = fn(Rep). 
 
 A balance of the gravitational, buoyancy and drag forces on the submerged solid 
body determines a settling velocity of the body. 

Figure 1.7.  Force balance on a solid body submerged in a quiescent liquid. 
 
An experimental determination of the drag coefficient is based on measurement of the 
terminal settling velocity of a spherical particle, vts,  in a quiescent liquid. Measured 
vts is the relative velocity vr.  

Figure 1.8. Drag coefficient as a function of particle Reynolds number. 
 
Methods for a determination of particle settling velocity are discussed in Intermezzo I. 
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1.2.3 Lift force 
 
The lift force, FL, on a single solid particle is a product of simultaneous slip (given by 
relative velocity vr = vf - vs) and particle rotation. The force (sometimes called the 
Magnus force) acts in a direction normal to both the relative velocity vr and the 
particle rotation vector. A particle rotation combined with a slip results in a lower 
hydrodynamic pressure in flow above the particle than in that below the particle. Lift 
force is due to this pressure gradient. 

 
(a)             (b) 

Figure 1.9. Lift force on a rotating solid body. (a) lift force on a rotating cylinder,  
(b) the Saffman force, i.e. lift force due to shear and slip. 

 
 
The lift force is most active near a pipeline wall where the velocity gradient is high.  
However, the lift forces due to particle spin play a minor role in the majority of 
mixture flow regimes compared to the Bagnold and Coulombic forces. 
 
 
1.2.4 Turbulent diffusive force 
 
Solid particles are also subject to additional liquid-solids interactions when they are 
transported in a turbulent stream of the carrying liquid. An intensive exchange of 
momentum and random velocity fluctuations in all directions are characteristic of the 
turbulent flow of the carrying liquid in a pipeline. Scales of turbulence are attributed 
to properties of the turbulent eddies developed within the turbulent stream. According 
to Prandtl's picture of turbulence, the length of the turbulent eddy is given as the 
distance over which the lump of liquid transports its momentum without losing its 
identity, i.e. before the lump is mixed with liquid in a new location. This distance is 
called the mixing length and since it is supposed to represent a mean free path of a 
pulse of liquid within a structure of turbulent flow it is considered a length scale of 
turbulence. A turbulent eddy is responsible for the transfer of momentum and mass in 
a liquid flow. The instantaneous velocity of liquid at any point in the flowing liquid 
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and in arbitrary direction (x, y or z) is given by v = v  + v' where v  is the 
time-averaged velocity  and v' is the instantaneous fluctuation velocity. The turbulent 
fluctuating component v' of the liquid velocity v is associated with a turbulent eddy. 
 
It is well known that turbulent eddies are responsible for solid particle suspension. 
The intensity of liquid turbulence is a measure of the ability of a carrying liquid to 
suspend the particles. The size of the turbulent eddy and the size of the solid particle 
are also important to the effectiveness of a suspension mechanism. The characteristic 
size of turbulent eddies is assumed to depend on the pipeline diameter. 
 
A low concentration suspension is described by using a classical turbulent diffusion 
model of Schmidt and Rouse. The model was constructed as a flux balance per unit area 
perpendicular to the vertical direction in a flow balancing the volumetric settling rate 
(characterized by settling velocity vt) in a quiescent liquid and the diffusion flux 
(characterized by the liquid velocity fluctuation in a vertical direction v'y, associated 
with the length of a turbulent eddy, ML) (see Fig. 1.10). A characteristic value of the 

turbulent pulsative velocity  = ~'v y v y'
2 , i.e. the root mean square of velocity 

fluctuations in the y-direction.  
 

 c -(ML/2).dc /dyv v

 ’  - v  v y t

 ’  + v  v y t

c +(ML/2).dc /dyv v

 M
L

 
Figure 1.10. Mixing length model of particle exchange by turbulence.  

 
 
The balance of  
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gives an equation 
 

 
− =εs

dcv
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vt cv.
       

(1.30) 

 

when solids dispersion coefficient εs
ML

v y=
2

~' . 

 
Integration of Eq. 1.30 with εs considered constant gives an exponential concentration 
profile c  v(y) as  
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( )cv y Cvb

vt
s

y yb( ) .exp= − −








ε      

(1.31) 

 
i.e. an exponential concentration variation with height, y, in a flow above a boundary 
characterized by a position yb and a concentration cvb. 
  
 cv local concentration at the height y [-] 
 cvb known local concentration at the position yb [-] 
 vt terminal settling velocity of a particle [m/s] 
 εs solids dispersion coefficient [m2/s] 
 y vertical distance from pipe wall defining  
  a position in a pipe cross section [m] 
 yb vertical distance from pipe wall to boundary [m] 
 ML mixing length [m] 
  turbulent pulsative velocity in the y-direction [m/s] ~'v y
 
A turbulent diffusive force exerted on particles by turbulent eddies is obtained by 
rewriting the Eq. 1.30 as a force balance between the turbulent diffusive force and the 
submerged weight of the particles in a unit volume of slurry in a horizontal pipe. The 
submerged weight is ρfg(Ss-1)cv so the turbulent dispersive force 
 

 ( )Ft f g Ss
s

vt

dcv
dy

= − −ρ
ε

1       (1.32). 

 
How to determine the solids dispersion coefficient, εs, is a major problem connected 
with the application of the turbulent diffusive model. The effect of distance from a 
boundary and of the presence of solid particles in a turbulent stream on a local value 
of   εs cannot be neglected. Further, the neighboring particles also affect the particle 
settling velocity handled in the model. 
 
 
1.2.5 Coulombic contact force 
 
Sand/gravel particles are transported in dredging pipelines often in a form of a 
granular bed sliding along a pipeline wall at the bottom of a pipeline. A mutual 
contact between particles within a bed gives arise to intergranular forces transmitted 
throughout a bed and via a bed contact with a pipeline wall also to the wall 
 
Stress distribution in a granular body occupied by non-cohesive particles in 
continuous contact is a product of the weight of grains occupying the body. The 
intergranular pressure (or stress) from the weight of grains is transmitted within the 
granular body via interparticle contacts. The stress has two components: an 
intergranular normal stress and an intergranular shear stress. According to Coulomb's 
law these two stresses are related by the coefficient of friction. Du Boys (1879) 
applied Coulomb's law to sheared riverbeds. He related the intergranular normal 
stress, σs, and intergranular shear stress,  τs, at the bottom of a flowing bed by a 
coefficient 
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 ( )tanφ
τ
σ

τ

ρ
= =

−
s
s

s
f g Ss CvbHs1      

(1.33) 

 
 φ angle of repose of the grains [-] 
 σs intergranular normal stress [Pa] 
 τs intergranular shear stress [Pa] 
 Ss  specific gravity of solids, Ss= ρs/ρf [-] 
 Ysh thickness of the sheared bed [m] 
 Cvb maximum solids volume fraction of solids 
  in the granular bed, it is considered to be  
  valid for the sheared bed [-] 
 ρf density of liquid [kg/m3] 
 g gravitational acceleration [m/s2] 
 
The angle of repose, φ, is considered to be the angle at the internal failure of a static 
granular body (Fig. 1.11). The value of this internal-friction coefficient is basically 
dependent on the nature of the surface over which the grains start to move, i.e. 
primarily on a grain size. When the granular bed motion takes place over a pipe wall, 
the value of the bed-wall friction coefficient can be determined by a tilting tube test. 

Figure 1.11. The angle of repose of a granular material. 
 
 
1.2.6 Bagnold dispersive force 
 
Sheared-bed particles flowing in the region of high shear rate maintain sporadic, 
rather than continuous contact with each other, provided that solids concentration in 
the sheared bed is considerably lower than the loose-poured bed concentration Cvb. 
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The nature of an interparticle contact influences the relationship between the 
intergranular stress components. It is appropriate to relate the particulate shear and 
normal stresses in a granular body experiencing the rapid shearing by using a 
coefficient of dynamic friction tanφ' instead of its static equivalent tanφ. Bagnold 
(1954. 1956) measured and described the normal and tangential stresses in mixture 
flows at high shear rates. 
 
Bagnold's dispersive force is a product of intergranular collisions (particle - particle 
interactions) in a sheared layer rich in particles. The direction of the force is normal to 
the layer boundary on which it is acting. The force increases with increasing solids 
concentration and shear rate in the sheared layer. 
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