Bio-Inspired Design Wb2436-05

Grasping	Suction	Adhesion
----------	---------	----------

Case 1: Two rigid surfaces

- Grip stays equal when surface area changes
- Grip can be increased by increasing
 <u>normal force & friction coefficient</u>

Case 2: One or two deformable surface(s)

- Friction much larger because of increased contact surface
- Normal forces in different directions can help to increase grip
- Friction not necessary for achieving grip!

Grasping

Suction

Adhesion

Spikes

Inspection Device Paolo Dario, Pisa

Case 3: Shaping around an object

- Normal forces in direction you want
- Strong increase of grip
- Role of friction less and less

shaping around an object ...

Curved Forceps & Hooks

Grasping

Suction

Adhesion

Highly Underactuated Self-Adaptive 10-DOF Robotic Hand (plastic prototype)

SARAH robothand Robotics Laboratory, Laval University, Canada

Grasping

Suction

Summary: How to increase grip when grasping?

Passive:

- By increasing the friction coefficient (rubber, etc.)
- By varying the direction of normal forces (teeth, ripples, spikes, etc.)
 Only in case of deformable contact surface(s)!

Active:

• By shaping around an object

Grasping

Suction

Summary: How to increase grip when grasping?

Passive:

- By increasing the friction coefficient (rubber, etc.)
- By varying the direction of normal forces (teeth, ripples, spikes, etc.)
 Only in case of flexible contact surface(s)!

Active:

• By shaping around an object

Friction can in these case be <u>zero</u> while still having sufficient grip

Octopus heart stabilizer for bypass surgery

Octopus heart stabilizer for bypass surgery

Dry adhesion (Gecko)

Spider Setae

Spider Setae

Suction

Adhesion

1 (or 2) <u>very</u> Large number Friction strongly dep

Grasping

Setae behave like Pads are pushed Molecular contact –

Grasping

Suction

Adhesion

Thick supporting "leaf springs" for larger adaptability at more strength

Multiple leaf spring construction in wiper blade (ruitenwisser)

Grasping

Suction

Adhesion

StickyBot

Stanford University Biomimetics & Dexterous Manipulation Laboratory

Gecko-like Glass climbing robot

- No setae, no v/d Waals
- Toes covered with flexible, flat, sticky surface

SpinyBot

Grasping

Stanford University Biomimetics & Dexterous Manipulation Laboratory

Gecko-like Concrete climbing robot

- No setae, no v/d Waals
- Toes covered with many leaf-springs ending in sharp curved hooks

Suction

Adhesion

Suction

Adhesion

Unrolling! Lifting the 2-D surface impossible Lifting the 1-D borderline easy

