

Living at very low Reynold numbers

viscous forces

Single-celled organisms: R very low, around 10⁻⁴ Scaling down: Volume³, Surface²

- → Inertia plays no role
- → Viscosity completely dominant

Swimming through very thick sirop

Movements must be irreversible!

Flagella

Protista:

- Quite large (max 2mm)
- Specialized organs (nucleus, organellas)

Bac-Swim

Bac-Slide

Prot-Swim

Prot-Shape

Flagellum:

- Hollow fibre, 20nm thick
- Performs
 rotating motion
- Sharp bend near cell membrane

Bacteria:

- Very small (0.1–40µm)
- No specialized organs

Bac-Swim

Bac-Slide

Prot-Swim

Prot-Shape

Bac-Swim

Bac-Slide

Prot-Swim

Prot-Shape

H+ concentration outside cell always larger H+ ions move along rotor Rotor is charged along slanting lines Angle slope defines

speed (200-1000rpm)

Bac-Slide

Prot-Swim

Prot-Shape

H+ concentration outside cell always larger H+ ions move

along rotor

Rotor is charged along slanting lines

Agle slope defines speed (200-1000rpm)

Effect of rotation with more flagella

Prot-Shape

Prot-Swim

Concentration food > when moving forward → Counter clockwise

Concentration food < when moving forward → Clockwise to change orientation

New motion theory: Fibers are connected to rotary engine

Reaction torque makes body rotate (?)

TUDelft

TUDelft

A bacteria uses pili to pull itself towards a colony

Sperm cell in 3 positions

Bac-Slide

Prot-Swim

Prot-Shape

Structure of flagellum & cilia (identical) Lecture 5, Paul Breedveld, February 18, 2008

Amoeba

- 1. Anti-body activates receptor in cell membrane
- 2. Receptor makes actin skeleton fall apart in small particles.

3. Particles initiate osmosis: water from endoplasm flows towards higher particle concentration, creating a pseudopod

3. Pseudopodium bereikt zijn definitieve grootte

4. Ontstaan van nieuwe actinefilamenten.

 Receptor stops working, skeleton is constructed again, fixing shape pseudopod & preventing water to flow back

TUDelft

Bac-Slide

Prot-Swim

Prot-Shape

Interesting References

Exploring Biomechanics R. McNeill Alexander The Scientific American Library, 1992

Voortbeweging bij Eéncelligen P. Tjon Pon Fong, A. Smeele Stage Rapport, 2004

Design Remarks

Reason! Explain why you did it, explain the reasoning behind your design.

Limit yourself: do not try to solve everything in 2 months, limit your assignment.

Focus on novel method/mechanism, not on standard extra tools like camera's etc.

Check Bio-Inspired Design_Assessment.doc! Visit us!

TUDelft