### **Bio-Inspired Design 2011**

Wb2436-05 (Entirely in English)

Prof. Dr. Tetsuo Tomiyama (3mE/BMechE/IMS)

**Bio-Mechanical Design Mechanical Engineering** 



**Delft University of Technology** 

### Lecture 12: March 16, 2011 (Wed) 8:45-10:30, Room A

- Similarities and Differences Between Mechanical and Biological Systems
  - Behavior and Intelligence
  - Life Cycle Stages
  - "Design Principles"
- Bioconstruction
  - Reproduction, Generation



2

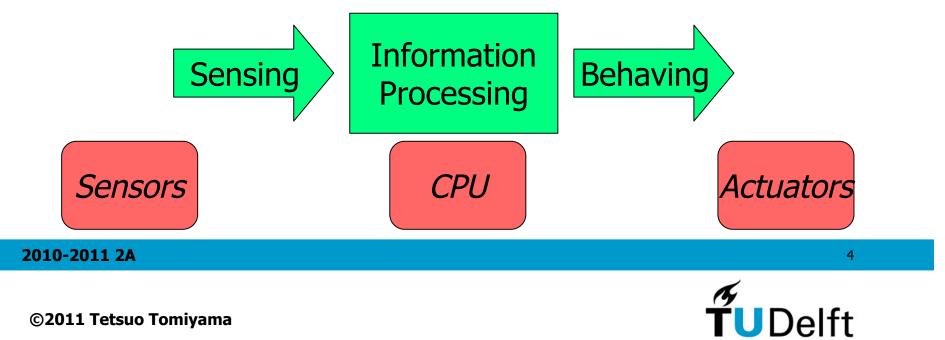
©2011 Tetsuo Tomiyama

2010-2011 2A

### **Mechanical and Biological Systems**

• Similarities and Differences?

2010-2011 2A




3

## **Mechanical and Biological Systems**

#### • Information Processing View

- Total Performance
- Capabilities of
  - Sensors
  - CPU
  - Actuators



## **Similarity: Programmed**

### Mechanical Systems

- Move as Designed
  - Program = Design, Control Software
- Even "Learning" is Programmed

### Biological Systems

- Behave as Dictated by Gene Information (DNA)
  - Instinct
- Learning Enhances Programmed Behaviors



## **Two Types of Science**

#### Law Based Science

- Laws are Given (by Nature)
  - Physics, Chemistry
- Laws are Semi-Artificial
  - Mathematics, Economics

#### Program Based Science

- Programmed by Nature
  - Biology
- Programs are Free to Design
  - Computer Science
  - Engineering Design

#### 2010-2011 2A



6

## **Behaviors of Artificial and Biological Systems**

| Behavior                   | Mechanical Systems                      | Biological Systems                     |
|----------------------------|-----------------------------------------|----------------------------------------|
| Feelings                   | None                                    | Many, Different                        |
| Power                      | Tough                                   | Easily Become "Fatigue"                |
| Repetitive<br>Work         | Can Repeat Forever<br>Not Getting Bored | Cannot Repeat Forever<br>Getting Bored |
| Fluctuations<br>Variations | None/Few                                | Many, Irregular                        |
| Malfunctioning             | Wear, Foreign<br>Objects, Oxidation     | Disease                                |

2010-2011 2A

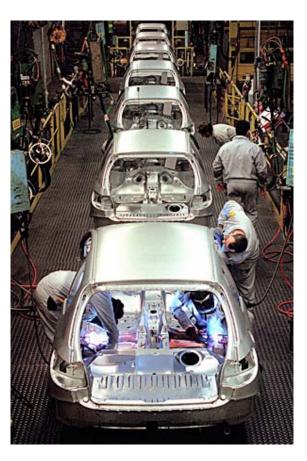


7

## Life Cycles of Artificial and Biological Systems

| Life Cycle  | Artificial Systems                                 | Biological Systems                             |
|-------------|----------------------------------------------------|------------------------------------------------|
| Design      | Drawings based on<br>Intention                     | DNA (Crossbreeding,<br>Mutation)               |
| Production  | Material, Component,<br>Assembly                   | Reproduction (Cell<br>Cleavage, Development)   |
| Operation   | Need to be<br>Programmed,<br>Supported, Controlled | Autonomy based on<br>Intelligence              |
| Maintenance | Repair                                             | (Self-)Healing                                 |
| End-of-Life | Recycling,<br>Incineration, Reuse                  | Death (Reduction to Non-<br>Organic Materials) |

2010-2011 2A




8

### **Building from Components**







#### 2010-2011 2A



9

### The Most Significant Design Difference

### Artificial

- Purposeful Design
- No Waste, No Nonsense
- Biological
  - Wasteful
  - Too Many Redundancy

2010-2011 2A



10

## **Fish Eggs**

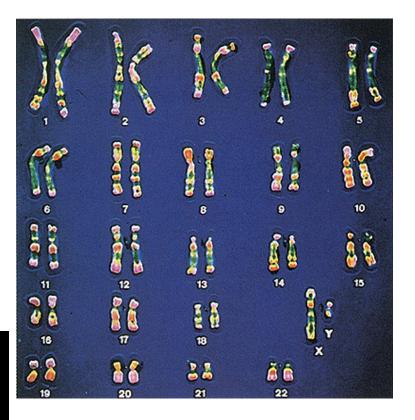
- Salmon
  - 2,500–3,500 Eggs/Female
  - Only 2 Survive
- Herring
  - 100,000 Eggs/Female
  - Only 2 Survive









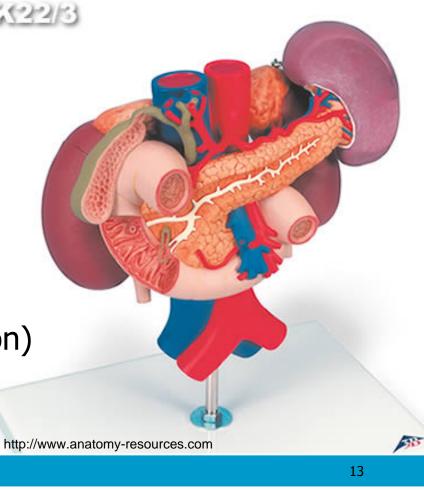

11

## **Gene Information**

- 30,000,000,000 Base Pairs in Human DNA
  - 20,000–30,000 ? Genes Coded on DNA
  - Only 5–20% Usage?






2010-2011 2A

12



## **Flexibility in Performing Functions**

- Artificial
  - Mono Functional
- Biological
  - Multi Functional
- Pancreas
  - Hormones (Insulin, etc.)
  - Pancreatic Juice (Digestion)





**T**UDelft

### The Current Machine Design Methodology

- To Construct a Machine from Dumb Machine Elements
  - Perform a Single or a Few Functionalities
    - Fastening, Guiding Motion, Transmitting Power
  - Machine Elements are Fixed with Each Other
    - Interfaces Usually Transmit Only Energy, Motion, Force

2010-2011 2A



14

## **The Mechatronics Design Principle**

### Mechatronics

- Mechanical Engineering
- Electronics/Electrical Engineering
- Control Engineering
- Software Engineering

### Controlling Functionalities and Intelligence

- Interfaces Explicitly Transmit Information
- Components Still Remain Single-Functionality Components



## **The Current Machine**

#### • If One of the Components Is Missing or Broken

- The Entire Machine Cannot Perform Its Functionalities
  - Hard Fail
- Our Body Behaves Differently
  - Soft Fail
- The Machine Has to Be "Assembled"
  - After Assembly the Machine Needs (Minor) Adjustment
  - Once Assembled, It Cannot (be) Reconfigure(d) Itself to Adjust to Changes of the Surrounding Environment



### **Bio-Systems are Based on a Totally Different "Design Principles"**

- Organs and Even Cells
  - Autonomously Perform Fairly Complicated Functionalities
    - Based on Simple Mechanisms
    - "Intelligence" Depending on Not Only a Central Control System (i.e., Brain) but Also Locally Collected Information and Local Environment
- Robust Against Minor Faults of Sub-Systems
  - Soft Fail
    - Do Not Loose All Functionalities All of a Sudden
  - Minor Faults Are Even Self-Healed
- No Assembly Concept but "Generation" or "Growth" from Predefined Gene Information



### **Machine Production and Generation**

#### Machines

- Design of Components and the System
- Materials
- Machining
- Assembly

#### Biological Systems

- Fertilization
- Generation
- Egg Division (Cleavage)
- Self-Organization and Self-Assembly

#### 2010-2011 2A



18

### **Reproduction of Biological Systems**

### Asexual Reproduction

- Cell Division
- Sexual Reproduction

2010-2011 2A

**T**UDelft

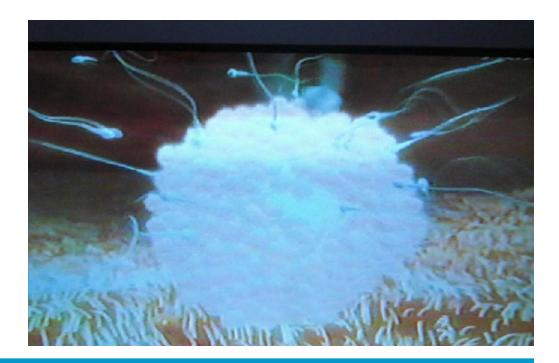
19

### **Reproduction of Biological Systems**

#### Monogenesis

- Unisexual (Asexual) Reproduction
- Reproduction without Exchanging Genes
- Cell Division
- Mutation Only




#### 2010-2011 2A



## **Reproduction of Biological Systems**

#### Gamogenesis

- Sexual Reproduction
- Two Reproductive Cells Exchange Genes
  - Egg + Sperm
- Cell Division + Cell Fusion
- Mutation + Cross Fertilization (Breeding)



#### 2010-2011 2A



21

## Daphnia (Plankton)

### Unisexual Reproduction

• Eggs by Cloning Self

### Sexual Reproduction

• When Environment Becomes Difficult



2010-2011 2A



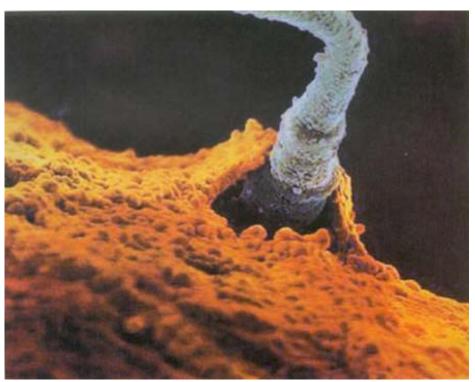
22

### Hermaphrodite



• Snails

2010-2011 2A




©2011 Tetsuo Tomiyama

23

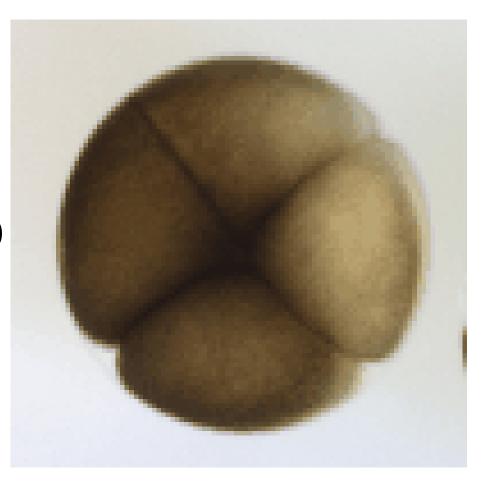
### **Fertilization**





#### 2010-2011 2A

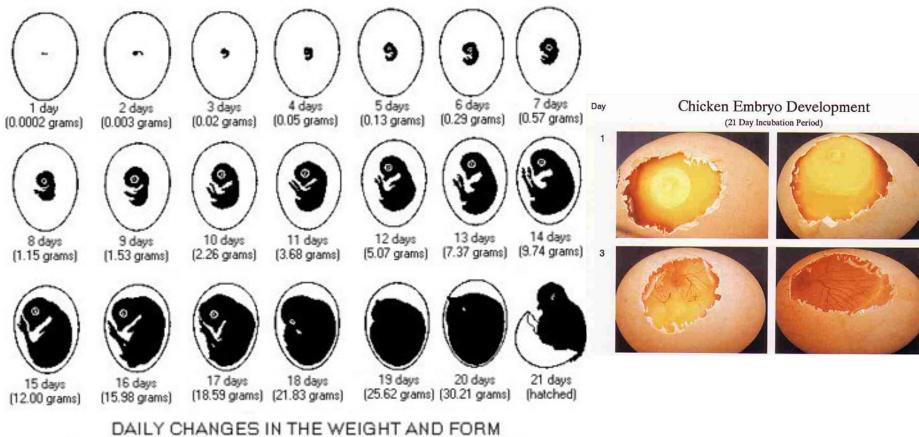
24




## **Cleavage (Cell Division)**

• Gravity

### Potential Fields


- Induction
- Activin A (1989 Asajima)
- External Stimuli



#### 2010-2011 2A



### Generation

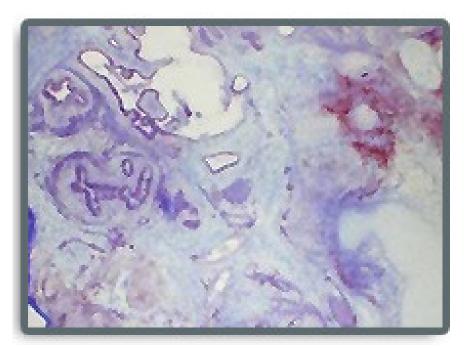


OF THE DEVELOPING CHICK EMBRYO (WHITE LEGHORN)

2010-2011 2A

26

Day


2

4



### Generation

- During Division, Any Cell can Become Any Organ in the Future
  - Embryonic Stem Cells
  - Up to 6×10<sup>13</sup> Cells
- Cells are Specialized, while Division
  - Before Specialization, Cells Have Potential to Perform Different Functions



#### 2010-2011 2A



©2011 Tetsuo Tomiyama

27

# Can We Learn from Reproduction of Biological Systems?

2010-2011 2A

28





#### •Lego Blocks?



2010-2011 2A

29

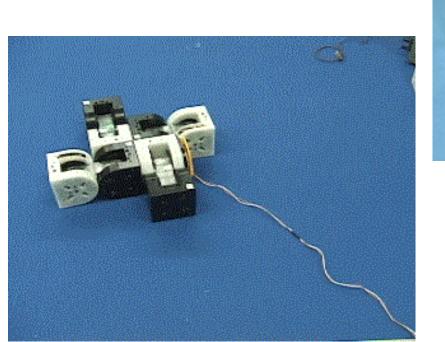




## **Crazy Ideas?**

### Production of Machines

- Beginning with "Cells"
- Self-Organization of Cells
  - Self-Assembly
- Production by Generation


### Maintenance of Machines

- Generation
- Reproduction

#### 2010-2011 2A

30

### Self-Assembling Robot (AIST, JP)





#### 2010-2011 2A

31



### **Self-Assembling Robot**



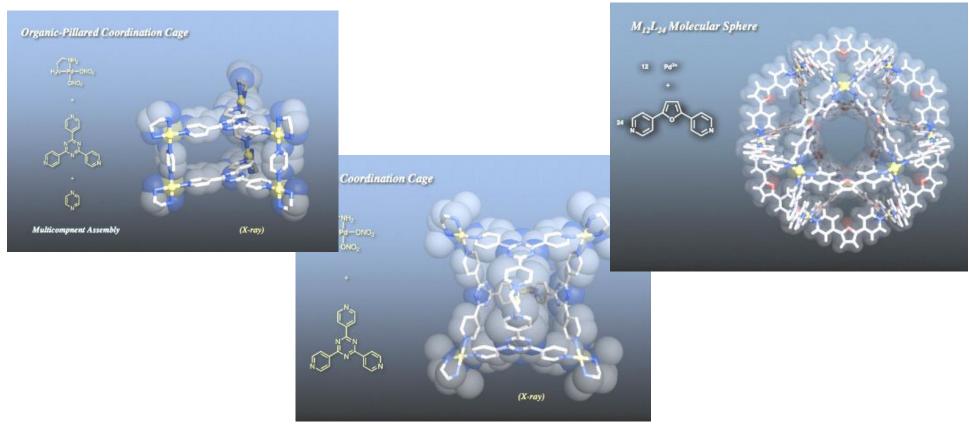
2010-2011 2A

**T**UDelft

32

### **Self-Assembly by Shaking?**




2010-2011 2A

33





### However, Molecular Structures Can Be Already Self-Assembled!



http://www.appchem.t.u-tokyo.ac.jp/appchem/labs/fujita/res5a-e.html

2010-2011 2A

34

