Bio-Inspired Design 2010-2011

Wb2436-05 (Entirely in English)

Prof. Dr. Tetsuo Tomiyama (3mE/BMechE/IMS)

Bio-Mechanical Design Mechanical Engineering

Delft University of Technology

Lecture 13: March 21 (Mon) 8:45-10:30, Room TNW F

- Bioconstruction Biomaintenance & Repair
- Maintenance and Repair
 - Machine
 - Biological System
 - Different Strategies
 - Self-Repair Depending on the Degree of Damage
 - Although We are Already Pretty Much Cyborgs?
- Can We Learn from Biological Systems?

What is Maintenance?

• Faults Happen

- Wear
- Fracture
- Chemical Reactions
- Foreign Objects

• Monitor and Identify Faults

- Symptoms
- Diagnose
- Repair
 - Exchange Broken Components
 - Physical Operations
 - Adjustment, Welding, Polishing, Cleaning, Removing Foreign Objects, etc.

2010-2011 2A

3

Strategies of Maintenance

- First, Try to Achieve Higher Reliability by Design
 - So Than Nothing Happens
 - High Reliability Design
 - Quality Assurance
- However, There is No Machine that Doesn't Break or Deteriorate
 - If They Never Break nor Deteriorates, We Cannot Even Throw Them Away!
- We Must Accept Faults, Deterioration, Breaks
 - Prevent Them as Much/Early as Possible (Prepare Yourself)
 - Monitor, Inspect, Exchange Components, Repair
 - Monitor, Inspect, ...
 - Throw Them Away Before They Break
 - Maintenance-Free
 - Even if It Happens, They Do Not Result in Catastrophe
 - Robustness, Fault-Tolerant Design, Non-Stop
 - Fail-Safe Design

2010-2011 2A

4

Strategies of Maintenance and Repair in Biological Systems

- Regeneration
 - Skin, Hair, Nail, Bone, Liver
- Role Change/Take Over
 - Duodenum
- Redundant System
 - Component Redundancy
 - Kidney, Lung, Hands, Legs, Eyes
 - Extremely Redundant (No Repair)
 - Brain Cells?
 - 1,000,000,000,000 Cells, 100,000 Deaths/Day
 - Schizophrenia, Amnesia
- No Redundancy
 - Heart

2010-2011 2A

TUDelft

5

2010-2011 2A

TUDelft

Skin Recovery from Damage

Cut at Epidermis

- May Not Even Bleed
- Regeneration at Dermis to Form Epidermis

Cut at Dermis

- Bleeding
- Blood Platelets Stop Bleeding, a Scab is Formed
- Cleaning Up by Macrophages and White Blood Cells
- Regeneration at Dermis to Bridge the Gap and then Epidermis (Maybe Stitches Necessary)

Planaria

- Platyhelminth, Flatworm
 - Regeneration Capability

2010-2011 2A

8

2010-2011 2A

Bone Fracture

Radiograph of fracture at reduction

Radiograph of fracture at 12 weeks

2010-2011 2A

10

2010-2011 2A

TUDelft

11

Duodenum

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

2010-2011 2A

12

EnchantedLearning.com

2010-2011 2A

13

Kidney, Lung

2010-2011 2A **T**UDelft

14

Highly Reliable Machines

Traditional High Reliability Design

- High Reliabilities of Individual Components
 - Expensive and Difficult to Achieve Above a Certain Level
- Avoid
 - Wear, Impurity, Chemical Reactions
 - Fracture
- Strategies
 - Good Selection of Materials
 - Good Protection
 - Good Stress Considerations
 - Good Production
 - Test, Test, Test
- There is a Limit!
 - Cost
 - Physical Availability of the Material

2010-2011 2A

Are Biological Systems Designed for High Reliability?

- Don't Seem So
 - Natural End of Life
 - Built-In Self Healing Mechanisms
 - Extremely High Redundancy

• Biological Systems are Not Reliable?

- Allows Malfunctioning Subsystems
 - "Fault Tolerant"

2010-2011 2A

16

Redundant Design

Redundant Design

- Part Redundancy
- Function Redundancy
- Network Type Redundancy

• Redundancy is the Key for

- Fault Tolerance
- Robustness
- High Productivity (Through Put)

Part Redundancy

Wiener

2010-201

- Twin Engine Jets/Four Engine Jets
- Parallel System

$$-\begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = R = 1 - (1 - R_1)(1 - R_2)$$

• Serial System

$$-R_1 - R_2 - R = R_1 R_2$$

Drawbacks of Part Redundancy

- Expensive
- Heavy
- Component Reliability Need to be Reasonably High
- Faults of Integrator, Distributor
- Distributed Opinions Cannot be Guaranteed Correct

19

Part Redundancy of Biological Systems

- Are They Really Redundant Systems?
 - Kidney, Lung
 - Legs, Arms, Fingers
 - Eyes, Ears

2010-2011 2A

©2011 Tetsuo Tomiyama

20

Function Redundancy

 Starting Motor of a Car with Manual Transmission

2010-2011 2A

21

Network Type Redundancy

NS Network

2010-2011 2A

Not How to Live but How to Die

• The Best Machine Performance

- Functions Very Well without Any Maintenance
- Starts to Show Gradual Deterioration (i.e., Warning), but Still Functions Perfectly
- When it Stops Functioning, All the Components Should Have Reached their Physical End of Life
- Technically
 - Monitoring, Warning, Diagnosing
 - (Self-)Maintenance
 - Equal MTBF

fUDelft

23

2010-2011 2A

A Mooty (1986)

Self-Maintenance Robot

- Accident Maintenance Robot
- Maintenance Robot for Nuclear Reactors
- Wheels to Crime Up Stairs
- 9 DoF Manipulator

24

TUDelft

Model-Based Self-Maintenance

Photo Copier

Parameter Model

2010-2011 2A

©2011 Tetsuo Tomiyama

28

実験システムの構成

修復ソフトウェアの実行画面

実験システムの修復アルゴリズム

実験機による故障修復結果

2010-2011 2A

29

Control-Type Self-Maintenance Photocopier: A Commercial Version

2010-2011 2A

TUDelft

30

Example of Function Redundancy: A Car with Manual Transmission

2010-2011 2A

31

Function-Redundancy

- Use Other Components that Exhibit Similar (or Identical) Functions to Compensate the Lost Function
 - Starting Motor of an Automobile
 - Function-Redundant Type Self-Maintenance Machine
 - Maintaining Functions by Reconfiguring its Behavior
 - Reconfiguration of Control Software for Mechatronics Products
- FBS (Function-Behavior-State) Modeler is Used to Discover Such Components
 - State
 - Relationships among Structure, Components, and Attributes
 - Behavior
 - Temporal Transitions of States
 - Function
 - Subject Judgment of the User from Observations of the Behavior
 - To Do Something

2010-2011 2A

32

FBS Modeling

2010-2011 2A

33

Function-Redundancy Design on the FBS Modeler

2

Function-Redundant Self-Maintenance

©2011 Tetsuo Tomiyama

35

Reconfigurable Artifacts

- Reversible Reconfiguration
 - As Opposed to Irreversible Reconfiguration
- Modular Machines
 - Physical Reconfiguration to Maintain its Value
 - Growth-Sustaining and Highly Reusable
 - Adjusting to Environmental Changes and Purposes
 - Catching Up with Technological Advances
 Social Capitalized Car
 - Never Out-of-Fashion
 - Upgradeable/Downgradeable

TUDelft

Module Maintenanc

Modular Growth-Sustaining Car

2010-2011 2A

Cellular Machines

Self-Repair of PPE (Polyphenylene-Ether)

- Damages of Polymers
 - Damages to Macromolecular Chains
 - Mechanical Fracture (Instantaneous, Fatigue, Creep)
 - Oxidation
 - Chemical Reaction with Other Substances
 - "Poisons" that Damages the Material
 - Deterioration Due to Mixture with Other Materials

Repair of Damaged Polymers

- Metal Like Approach
 - "Cracking" Back to "Oil"
- Self-Repair Approach
 - Even if Diffusion Speed is So Small, the Time Span is Long Enough
 - Doesn't Have to be a Quick Reaction

2010-2011 2A

Reconnecting Broken Bridges is a Metabolic Process

- Repair Means = Cu
- Energy = O_2
- Waste = H_2O
- Initiator (First-Aid) = H_2

2010-2011 2A

″UDelft

39

Self-Maintenance of Artificial Materials

- Not Only for Higher Reliability and Robustness, but Also for Recycling
- Requirements
 - Identifying Faults
 - How Do Biological Systems Find Faults, Identify the Place, etc.?
 - Supplying Energy to Repair Continuously
 - Processing Waste (By-Products)
 - Repair Leading to the Same Material or Different Material
 - Recovery the Original Functionalities

40

©2011 Tetsuo Tomiyama

2010-2011 2A

Self-Healing Materials

S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown and S. Viswanathan: "Autonomic Healing of Polymer Composites", Nature 409, 794-797(15 February 2001)

TUDelft

2010-2011 2A

•Dutch IOP Program:

Self Healing Materials

Conclusions

- Maintenance Strategies of Biological Systems are Very Different
 - Repair with External Means (Medicine?)
 - Self-Healing
- Design Philosophies are Different
 - Extreme Redundancies
 - Role-Take Over
 - Function Redundancy
- Can We Learn Something from the Nature?
 - We Just Started to Understand the Differences

