Bio-Inspired Design 2011

Wb2436-05 (Entirely in English)

Prof. Dr. Tetsuo Tomiyama (3mE/BMechE/IMS)

Bio-Mechanical Design Mechanical Engineering

Delft University of Technology

Lecture 8: March 2, 2011 (Wed) 8:45-10:30, Room B

- Bioprocessing, Biosensing & Behavior
 - Society
 - Collaboration, Communication, Sensing
 - Group Behavior (Swarm Intelligence)
 - Simple Laws for Complex Behavior

2011 2A

2

Animals Live in a Society

2011 2A

TUDelft

3

What is a Society?

Societal Structure <-> Behaviors

- Physics
 - Sensing, DNA, Etc.
- Roles (Function)
- Rules about Behaviors
- Rules
 - They Have a Society, So There Seem to Exist Rules
 - They Have Rules, So There Exist a Society

Individual Behavior vs. Group Behavior vs. Social Behavior

- Individuals Behave Following and Pursuing Its Own Interests
 - Group Behavior as a Collection of Individual Behaviors
 - Social Behavior as a Collection of Group Behaviors
 - Coordination?
 - Are Individuals Completely Free to Behave?
 - Requests, Instructions, Consultations, Negotiations?

• A Group or Society Have Their Own Interests

- Collaboration
- Coordination

2011 2A

5

Individual Behavior as a Reflection of Society (or Group)

- The Society Dictates (or at Least Requests) Group Behaviors
- The Group Dictates Individual Behaviors
 - Any "Anti-Social" Behaviors Resulted in Disadvantages for Individuals
- The Society Forms Benavioral Norms
 - Women Choose Rich Men
 - (Intelligent) Women Choose Intelligent Men
 - Ladies Like Gentlemen

Societal Behaviors

Societal Behaviors

- Collaboration
 - Requires Information
 - Collecting Information = Sensing
 - Requires Communication

2011 2A

7

Collaboration

2011 2A

8

Collaboration Requires Information and Communication

How Do They Sense Outside Society?

- Bio-Sensing: Potential Field
 - Vision (Light)
 - Smell (Chemical)
 - Vibration
 - Voice (Ultrasonic)
 - Geomagnetism
- Humans Don't Have Good Sensing Capabilities
 - Intelligence Compensate Poor Sensing Capabilities

How Do They Communicate with Each Other?

- Language
 - Voice
 - Behavioral

2011 2A

Limited Intelligence?

- How Are They Intelligent?
- Individual Intelligence
- Group Intelligence
 - Fish
 - Zebra
 - Monkey
 - Ants
 - Bees

2011 2A

Dogs

- Good Smelling Sense
- Poor Vision?
 - Static Objects 550m
 - Moving Objects 800m
 - Hound Dog 825m
 - Color Blind?
 - Purple, Blue, Yellow

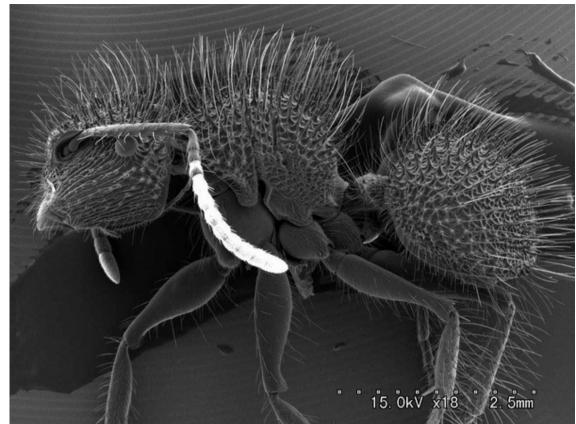
11

Ants

2011 2A

Ants: Very Social Insects

- Colony
- Roles
 - Queen
 - Female: Worker, Soldier, Forager
 - Female: Princess
 - Male
- Communication
 - Pheromone Based
 - Noise


2011 2A

13

Ants

- Nose, Antenna
 - Pheromones
 - "Smell"
- Eyes
 - Sun (Orientation)
 - Vision

2011 2A

Pigeon

• Homing Instinct

- Geomagnetism
 - Compass?
- Sun

2011 2A

15

2011 2A

TUDelft

16

Salmons

2011 2A

17

Language?

- Waggle Dance (Karl von Frisch)
 - Patterns
 - Direction
 - Distance (Waggling Time)
 - How Much

IJΡ Sun Compass Angle Dance Direction

2011 2A

©2011 Tetsuo Tomiyama

18

biology letters Animal behaviour

Biol. Lett. doi:10.1098/rsbl.2010.1056 Published online

Blackawton bees

P. S. Blackawton¹, S. Airzee¹, A. Allen¹, S. Baker¹,
A. Berrow¹, C. Blair¹, M. Churchill¹, J. Coles¹, R. F.-J. Cumming¹, L. Fraquelli¹, C. Hackford¹, A. Hinton Mellor¹, M. Hutchcroft¹, B. Ireland¹, D. Jewsbury¹,
A. Littlejohns¹, G. M. Littlejohns¹, M. Lotto¹,
J. McKeown¹, A. O'Toole¹, H. Richards¹,
L. Robbins-Davey¹, S. Roblyn¹, H. Rodwell-Lynn¹,

D. Schenck¹, J. Springer¹, A. Wishy¹,

T. Rodwell-Lynn¹, D. Strudwick¹ and R. B. Lotto^{2,*}

¹Blackauston Primary School, Blackauston, Devon, UK ²Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK *Author for correspondence (lotto@ucl.ac.uk).

Background: Real science has the potential to not only amaze, but also transform the way one thinks of the world and oneself. This is because the process of science is little different from the deeply resonant, natural processes of play. Play enables humans (and other mammals) to discover (and create) relationships and patterns. When one adds rules to play, a game is created. This is science: the process of playing with rules that enables one to reveal previously unseen patterns of relationships that extend our collective understanding of nature and human nature. When thought of in inaccessible to the literate ability of 8- to 10-year-old children, and second, the true motivation for any scientific study (at least one of integrity) is one's own curiousity, which for the children was not inspired by the scientific literature, but their own observations of the world. This lack of historical, scientific context does not diminish the resulting data, scientific methodology or merit of the discovery for the scientific and 'non-scientific' audience. On the contrary, it reveals science in its truest (most naive) form, and in this way makes explicit the commonality between science, art and indeed all creative activities.

Principal finding: 'We discovered that bumblebees can use a combination of colour and spatial relationships in deciding which colour of flower to forage from. We also discovered that science is cool and fun because you get to do stuff that no one has ever done before. (Children from Blackawton)'.

Keywords: Bombus terrestris; buff-tailed bumble-bee; visual perception; colour vision; behaviour

1. INTRODUCTION

(a) Once upon a time ...

People think that humans are the smartest of animals, and most people do not think about other animals as being smart, or at least think that they are not as smart as humans. Knowing that other animals are as smart as us means we can appreciate them more, which could also help us to help them.

2011 2A

Sardines

Society with a Leader

- Monkeys, etc.
- The Leader (Usually Male)
 - Eats First, Most
 - Occupies Females
 - Flattering Behavior
 - Finds Food, Water
 - Protect the Group from Enemies

2011 2A

22

Group without a Leader

• Fish

Maximum Results with Minimum Efforts

- "Group" Looks Like a Big Fish
- Better Information about Food
- Better Breeding Possibilities
- Simple Rules
 - Follow Other Fish
 - Sometimes Individual Decisions

2011 2A

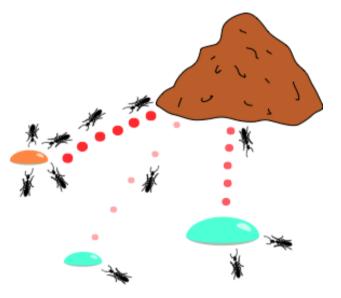
23

Can We Use This Knowledge?

Group Behaviors of Biological Systems

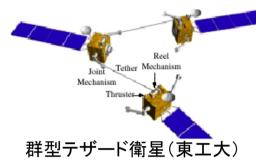
- Sensing
- Communication
- Information Processing
 - Rules

• Engineering Applications?

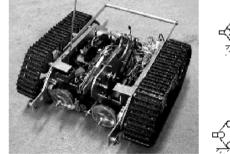

• Behaviors Simulated with Simple Rules

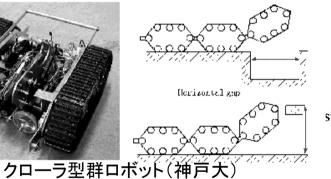
Ant Colony Optimization

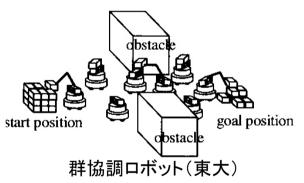
- Ants Walk Around Randomly
 - = No Pheromone is Sensed
- If an Ant Finds Food, then Goes Back to the Nest
 - Vision, Smell, Pheromone of Other Ants
 - Depositing Pheromone (1 or 2 Molecules) on the Trail
- If Found Pheromone Trail, Try to Get Food
 - More Ants = More Pheromone
 - Learning Effect
- However, as Time Passes, Pheromone Evaporates
 - Shorter Paths Have More Chances of Collecting More Pheromone
 - The Shortest Path can be Found, After Some Time


2011 2A

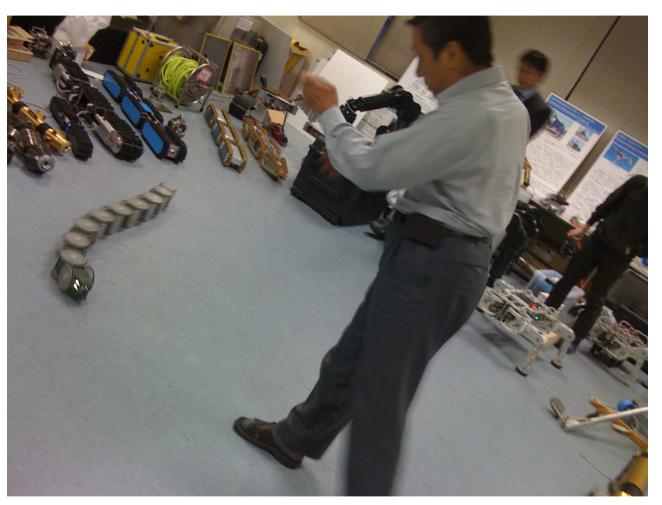
25


Cellular Machines, Swarm Intelligence, Modular Machines





群協調ロボット(理研)

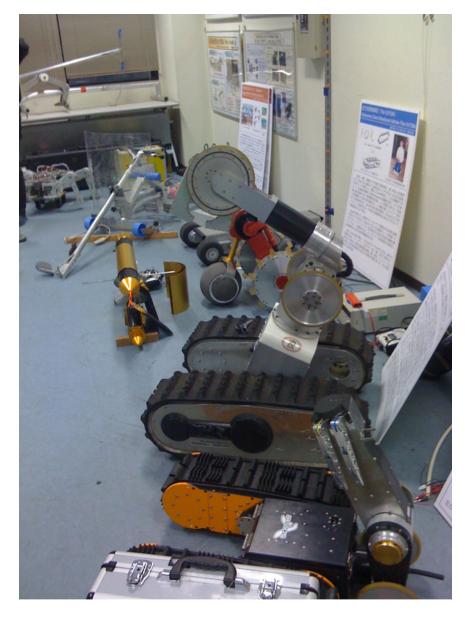


細胞型倉庫(東大)

Hirose Lab. Tokyo Institute of Technology

2011 2A

27



2011 2A

28

2011 2A

30

<u>http://www-</u> <u>robot.mes.titech.ac.jp/home_e.html</u>

2011 2A

©2011 Tetsuo Tomiyama

31

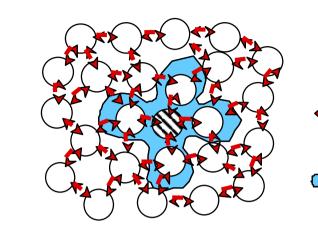
Key: How Should Individuals Exhibit Meaningful Behaviors Collectively?

- How Should Individuals Obtain Global/Local Information?
 - Global Information
 - Position, Orientation, Goal, Situation
 - Local Information
 - Identity, Partner, Position, Potential Field

• How Should Individuals Behave Globally?

- Emergence
 - Control
 - Coordination: Decision Making
 - Collaborative Behavior

2011 2A



32

Basic Ideas

- Cellular Machines
 - Homogeneity
 - Distributed Information
 - Autonomy
 - Flexibility
 - Fault Tolerance
 - Reconfigurability, Up/Down-Gradeability
 - Local Communication = Local Information
- No Central Control
 - No Need to Design Global Structure
- Introducing Self-Organization Capability
 - Determining Strategic Configuration of a Production Facility during Operations
 - Various Conditions and Manufacturing Requirements

CellCommunication

information

Cellular Machines

•Cellular Automatic Warehouse

•Cellular Assembling System

•Assembling Cell (Manipulator) + Vision System

•Production Information (PI) for Assembling

•Cellular Manufacturing System

•Machining Cell (Manipulator)

•Machining Information Added to PI

•Cellular Remanufacturing System

•Inspection Cell + Cleaning Cell

•Self-Organization of Cellular Machines

•How Can a Cellular System Exhibit a "Structure"?

•Design Support Tool of Manufacturing Systems

34

Demonstration (Cellular Manufacturing System)

2011 2A

35

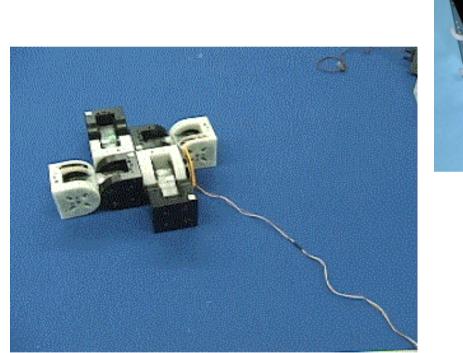
Collaborative Behavior

2011 2A

36

Movable Cellular Machines (LEGO Mindstorms)

2011 2A



37

©2011 Tetsuo Tomiyama

TUDelft

Self-Assembling Robot (AIST, JP)

2011 2A

38

Self-Assembling Robot

2011 2A

TUDelft

39

Self-Assembling Robot

Concept of 3-D Self-reconfigurable Mechanical System

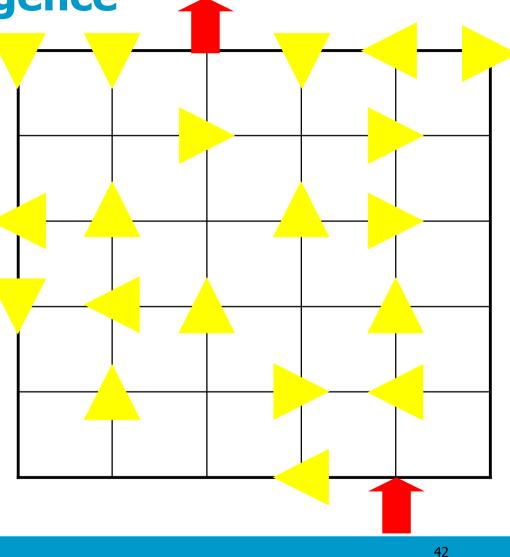
Self-assembling Many-unit Structure

2011 2A

40

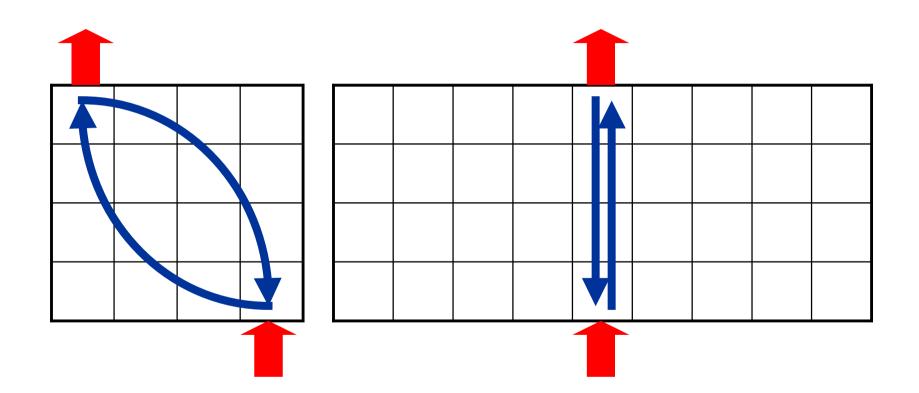
Global Information vs. Local Information

- Local Sensing
 - Local Information
- Can We Build Global Information from Local Information Only?
 - Position
 - Deadlock


2011 2A

41

Minimum Intelligence


- Minimum "Intelligence" to Perform a Task
 - Delivery of Goods from A to B with High Efficiency
 - No Collisions, No Non-Productive Moves
- Can We Implement Very Simple Rules to Do So?

2011 2A

How Should They Be Intelligent to Be Efficient and Productive?

2011 2A 43 © 2011 Tetsuo Tomiyama **topological second seco**

Conclusions

Swarm Robotics

- Interesting Ideas
 - Local Information, Local Decision Making
 - Collaborations
 - Global Behavior/Function Emergence
 - Can Simple "Rules" Help?
 - Or Big Intelligence?
- Applications
 - Space, Extremely Dangerous Situations
 - Relatively Lower Cost

2011 2A

44