## **Clinical Gait Analysis**

#### dr. ir. Jaap Harlaar

### j.harlaar@vumc.nl www.vumc.nl/revalidatie



VU University Medical Center Amsterdam The Netherlands





#### Department of Rehabilitation Medicine

VU University Medical Center

Amsterdam







VU University Medical Center

## Goal setting vs. tools

- problems with specific activities
- >> goal setting at this level
- specific interventions might work
- movement analysis: biomechanics



## Complete nested decision scheme







VU University Medical Center

## Gait and movement analysis in clinical practice of rehabilitation medicine







## Goal of walking

# To go from one place to anotherWalking speed, Energy & Safety

#### HOW ?

By repeatedly placing one foot in front of the other





#### **Right steplength**

Left steplength

## Footsteps (asymmetric)

#### **Stridelength** = Right step + Left step



#### **Right steplength**

Left steplength

## **Measure footsteps**

Distance (cm) 312.5

Velocity Interface 108

2.8

1.1

1

105

Andrukations Time (cess)

Number of Step

Step Length Differential (cm) 3.6

Cadence (Steps/Mar. 104

Mean Montal and Volcelly

Step Tene Determined loss:

Cycle Time Othernial Intel



Step Time (sec

Cyclin Tanar (1995)

Day Longth Sco

Swing (200

Starce Date

Toe In / Out Ideg!

Shep-Colomity Bate

Sinde Length Ice

Hild Base Support (ce

Single Support (%) Double Support (%) 100

1.11

12.95

11.00

10.30

32.3

28.1

34.9

65.1

435

10

. 196

1.16

10.31

124.00

10.00

10.4

26.5

15.5

64.5

3.1

14

VU University Medic

12

## **Measure footsteps**

| Gender Age Left<br>M 38 89 | - Leg - Right<br>89 |        |          |          |                    |              |       |      |
|----------------------------|---------------------|--------|----------|----------|--------------------|--------------|-------|------|
| ong Gap 2 (Toe In/Out)     |                     |        |          | JF       | Unassisted         |              |       | 68   |
|                            |                     |        |          |          | 0110.0010.004      |              | FAP   | 00   |
| <b>₩</b> ₽                 | <b>*</b> **         |        | <b>(</b> | <b>₽</b> | <b>*</b> **        | 9            | ***   | •    |
| Bilateral Par              | ameters Left        | Right  |          | _        | Parameters         |              | _     |      |
| 🕨 Step Ti                  | me (sec) .69        | .95    |          |          | Dist               | ance (cm)    | 305.9 |      |
| 🕨 🔶 Cycle Ti               | me (sec) 1.64       | 1.32   |          |          | Ambulation         | Time (sec)   | 3.27  |      |
| Step Len                   | igth (cm) 81.92     | 71.02  |          |          | Velocity           | / (cm/sec)   | 93.5  |      |
| Stride Len                 | igth (cm) 153.34    | 157.92 |          |          | Mean Normalize     | d Velocity   | 1.05  |      |
| H-H Base Supp              | port (cm) 10.52     | 5.09   |          |          | Numbe              | er of Steps  | 4     |      |
| Single Suppo               | rt (%GC) 27.4       | 36.1   |          |          | Cadence (9         | iteps/Min)   | 73.4  |      |
| Double Suppo               | rt (%GC) 20.4       | 27.6   |          |          | Step Time Differe  | ential (sec) | .26   |      |
| Swin                       | ig (%GC) 29.1       | 34.1   |          |          | Step Length Differ | ential (cm)  | 10.90 |      |
| Stanc                      | e (%GC) 70.9        | 65.9   |          |          | Cycle Time Differe | ential (sec) | .32   |      |
| Step/Extrem                | ity Ratio .92       | .80    |          |          |                    |              |       |      |
| Toe In / C                 | )ut (deg) 2         | 12     |          |          |                    |              |       |      |
| Prim Dr Johnson            |                     |        | Proble   | m Lhi    | p pain             |              |       | Samp |

www.gaitrite.com

ſ

## Goal of walking

## Stridelength [m]

x → / 120 = Walking speed [m/s]

## Cadence [ steps/min]

## 3.6 km/h = 1 m/s

## Walking speed=stride length\*cadence



## Body length and stride length



VU University Medical Center



## What is the optimal stridelength ?







## Energy measurements during gait



- (ambulatory) oxygen recording
- one ml O2 / min
  - = 5 cal / min
  - = 20 J/min

#### Human gait is very efficient...



## How far can you walk on a pastry ?





#### 250 kcal

Energy cost at optimal speed = 0.8 cal/kg.meter

250.000/(0.8\*70)=4,5 km

## Metabolic Energy Measurement







## the gaitcycle



# One stride lasts from initial foot contact until the next *ipsilateral* initial foot contact

## the gaitcycle (2)



## normalized time: 0 % - 100 %

#### Heelstrike & Toe-off



## the gaitcycle (3)



#### 0 % -- stance -- 60 % -swing-100%

## the gaitcycle (4)



## the gaitcycle (5)



# Functional division of gait phases (after J. Perry)





#### Initial Contact 0%







## Loading Response 0-10 %



# Functional division of gait phases (after J. Perry)





#### **Midstance**



10 - 30 %



#### Terminal Stance 30 - 50 %



# Functional division of gait phases (after J. Perry)




### **Pre-Swing** 50 - 60 %





## Initial-Swing 60 - 73 %



# Functional division of gait phases (after J. Perry)





#### Mid-Swing



73 - 87 %



## Terminal-Swing 87 - 100 %



# Functional division of gait phases (after J. Perry)



# The gait cycle



#### videorapport loopanalyse

datum opname: / / filenaam STUDY: xxxSYxxx.sty □ rechts





academischziekenhuis

#### Observational Gait Analysis form

Rancho Los Amigos Medical Centre

| П.  |                 |
|-----|-----------------|
|     | Pos             |
|     | (P              |
| 100 | 2               |
| VU  | Ubilgorsity Med |

| Major Deviation                                                                                                                                                                 | W<br>Ad | eight<br>ccept | Single<br>Sup | e Limb<br>port | be  | Swing<br>Advan  | g Limb<br>cement | Major |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|---------------|----------------|-----|-----------------|------------------|-------|--------------------------------|
| Minor Deviation Trunk Lean: B/F                                                                                                                                                 | IC      | LR             | MSt           | TSt            | PSw | ISw             | MSw              | TSw   | Problems                       |
| Lateral Lean: R/L<br>Rotates: B/F                                                                                                                                               |         |                | ol nami       |                |     |                 |                  |       | Weight                         |
| Pelvis Hikes<br>Tilt: P/A<br>Lacks Forward Rotation<br>Lacks Backward Rotation<br>Excess Forward Rotation<br>Excess Backward Rotation<br>Ipsilateral Drop<br>Contralateral Drop |         |                |               |                |     |                 |                  |       | Acceptance                     |
| Hip Flexion: Limited<br>Excess<br>Inadequate Extension<br>Past Retract<br>Rotation: IR/ER<br>AD/ABduction: Ad/Ab                                                                |         |                |               |                |     |                 |                  |       | Single Limb<br>Support         |
| Knee<br>Flexion: Limited<br>Excess<br>Inadequate Extension<br>Wobbles<br>Hyperextend<br>Extension Thrust<br>Varus/Valgus: Vr/VI<br>Excess Contralateral Flex                    |         |                |               |                |     |                 |                  |       | Swing Limb<br>Advancement      |
| Ankle<br>Forefoot Contact<br>Foot Flat Contact<br>Foot Slap<br>Excess Plantar Flexion                                                                                           |         |                |               |                |     |                 |                  |       |                                |
| Excess Dorsiflexion<br>Inversion/Eversion: Iv/Ev<br>Heel Off                                                                                                                    |         |                |               |                |     |                 |                  |       | Excessive UE<br>Weight Bearing |
| Drag<br>Contralateral Vaulting                                                                                                                                                  |         |                |               |                |     | with the second |                  |       | Name                           |
| Toes Up<br>Inadequate Extension<br>Clawed                                                                                                                                       |         |                |               |                |     |                 |                  |       | Patient #                      |

Diagnosis

### Edinburgh GAIT Scoring Table

| Movement<br>SAGITTAL | 2       | 1         | 0                | 1       | 2       | Movement<br>CORONAL/TRANSV | 2             | 1       | 0       | 1            | 2        |
|----------------------|---------|-----------|------------------|---------|---------|----------------------------|---------------|---------|---------|--------------|----------|
| FOOT                 |         |           |                  |         |         | FOOT                       |               |         |         |              |          |
| 1 Foot clearance     |         |           |                  |         |         | 5 Stance position          | >15           | 6-15    | 5-0-5   | 6-15         | >15      |
|                      | None    | Reduced   | Full             | N/A     | N/A     | hindfoot in load           | <u>Valgus</u> | Valgus  | Neutral | <u>Varus</u> | Varus    |
| 2 Initial Contact    | _       |           |                  |         |         | 6 Foot progression         | >15           | 6-15    | 5-0-5   | 6-15         | >15      |
|                      | Toe     | Flatfoot  | Heel             | N/A     | N/A     | angle                      | IR            | IR      | Neutral | ER           | ER       |
| 3 Heel lift          |         |           |                  |         |         |                            |               |         |         |              |          |
|                      | None    | Early     | Normal           | Delayed | N/A     |                            |               |         |         |              |          |
| 4 Max dorsiflexion   | >10     | 10-0-9    | 10-20            | 21-30   | _>30    |                            |               |         |         |              |          |
| hindfoot in stance   | Plantar | Plan/Dors | Dorsifl          | Dorsifl | Dorsifl |                            |               |         |         |              |          |
| KNEE                 |         |           |                  |         |         | KNEE                       |               |         |         |              |          |
| 7 Terminal           | >30     | 15-30     | 0-15             | >0      |         | 10 Knee progression        | part cap      | all cap |         | all cap      | part cap |
| swing                | Flexion | Flexion   | Flexion          | Hypext  | N/A     | angle mid-stance           | IR            | IR      | Neutral | ER           | ER       |
| 8 Peak stance        | >30     | 15-30     | 0-15             | 1-10    | >10     |                            |               |         |         |              |          |
| knee <u>ext</u>      | Flexion | Flexion   | Flexion          | Hypext  | Hypext  |                            |               |         |         |              |          |
| 9 Peak knee          | >80     | 65-80     | 60-64            | 30-59   | <30     |                            |               |         |         |              |          |
| flex in swing        | Flexion | Flexion   | Flexion          | Flexion | Flexion |                            |               |         |         |              |          |
| HIP                  |         |           |                  |         |         | HIP                        |               |         |         |              |          |
| 11 Peak hip ext      | >30     | 16-30     | 15-0-15          |         |         | 13 Position in             | >15           | 5-15    | 4-0-9   | 10-20        | >20      |
| in stance            | Flexion | Flexion   | Flex/ <u>Ext</u> | N/A     | N/A     | swing                      | Adduct        | Adduct  | Add/Abd | Abduct       | Abduct   |
| 12 Peak hip flex     | >75     | 51-75     | 30-50            | 15-29   | <15     |                            |               |         |         |              |          |
| in swing             | Flexion | Flexion   | Flexion          | Flexion | Flexion |                            |               |         |         |              |          |
| PELVIS (Trans)       |         |           |                  |         |         | PELVIS                     |               |         |         |              |          |
| 14 Pelvic rotation i | >15     | 6-15      | 5-0-5            | 6-15    | >15     | 15Contralat drop           |               |         |         |              |          |
| midstance            | Fwd     | Fwd       | Neutral          | Bwd     | Bwd     | in stance                  | Marked        | Mod     | Normal  | N/A          | N/A      |
| TRUNK                |         |           |                  |         |         | TRUNK                      |               |         |         |              |          |
| 16 Peak sagittal     | >15     | 6-15      | 5-0-5            | >5      |         | 17 Maximal lat shift       |               |         |         |              |          |
| position in stance   | Fwd     | Fwd       | Neutral          | Bwds    |         | in stance                  | Marked        | Mod     | Normal  | N/A          | N/A      |
| TOTAL                |         |           |                  |         |         |                            |               |         |         |              |          |
|                      |         |           |                  |         |         |                            |               |         |         |              |          |

### Error sources in observational kinematic analysis

- Subjective
- estimation error
- out of plane (2D vs. 3D)

#### Estimation of joint angles

## How well do we perform ?



#### Estimation of joint angles

## How well do we perform ?



148<sup>°</sup>

24 °

## **Projection error**



VU University Medical Center

50

## **Projection error**



## **Projectionerror (2)**



## Earliest 3D movement analysis Braun & Fischer 1895





### Calibrate the projection calibration frame



#### Direct Linear Transformation

15 points are known in the real (3D) world

Videobased systems: SYBAR, SIMI, PEAK, ...

# Automated marker tracking and 3D reconstruction of marker position





Multiple (2+) stroboscopic InfraRed camera's using reflective markers on the body

Vicon, MotionAnalysis, Elite, Qualysis, . . .

# Automated marker tracking and 3D reconstruction of marker position (2)





Active InfraRed markers 3D camera ('s)

CODAmotion, OptoTrak, . . .





## **3D Kinematics software**



## Matlab www.bodymech.nl











## INFORMATION





## KNOWLEDGE

#### Observational analysis of pathological movement





#### Muscle function during movement



Reprinted from: Inman et al. (1981)

## Electro Myo Gram (EMG)





EMG is the summation of many asynchronous Motor Unit Action Potentials

Electrode mounted amplifier differential lead-off

## **Relation EMG and Muscle Force**



**Raw EMG** 

# Smoothed Rectified EMG @ 2 Hz

Isometric muscle force



#### the SYBAR system

display



### casus



## **Groundreaction force**




### Net joint moment



#### Moment =

Fxr





### What therapeutic intervention is needed ?

VU University Medical Center

#### Evaluation of treatment at two (nested) levels



#### increased walking speed, decreased PCI

### What therapeutic intervention is needed ?

VU University Medical Center

### **Complex Clinical Cases**



## Inverse dynamics model



## **Problem statement**

### Physical examination yields angles

#### The measure should address muscle length

#### The reference values are based on normal gait

# Method

 Application of a geometrical musculo-skeletal model SIMM (Delp et.al 1995)

- input 1: joint angles during physical examination
- input 2: joint angles during normal gait
- output: muscle length (origo-insertion)
- all lengths are normalized to anatomical position(=100 %)

# Results: m. Rectus Femoris (1)





## Results: m. Rectus Femoris (2)



## Length m. Rectus Femoris during gait



# Results: m. Rectus Femoris (3)



### Discussion

- "Passive" muscle length is not the sole cause to contractures during gait
- Muscle length during movement and EMG should be considered
- Warning: validity of the model
- Documentation of examination protocols (standardisation) using modeling software animations creates awareness of muscle length testing







## Models (1)





### Pneumatic passive-based biped

Martijn Wisse Jan van Frankenhuyzen 2004

**Delft Biorobotics Laboratory** 





## functional load and loading capability of the upper extremity



## Upper extremity



## Upper extremity (2)





### j.harlaar@vumc.nl