
Dynamics and Stability AE3-914

Sample problem—Week 2

Bungee jumping

Statement

Consider a keen bungee jumper of mass m. The
bungee can be viewed as a spring with elastic con-
stant k and natural length l when it is loaded in ten-
sion and it cannot carry any force in compression.
The acceleration of gravity is g and the dimensions
of the platform can be neglected. Derive the equa-
tions of motion for the jumper in the following cases:

a. The bungee is loose.

b. The bungee is taut.

Indicate the range of coordinates for which each sit-
uation takes place.
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Model

The platform is taken as a fixed reference point O. Since
the motion will probably start from there and the bungee
is attached to it, it seems reasonable to choose a set of
spherical coordinates (r, θ, φ) as generalised coordinates,
according to the figure. Coordinate r measures the dis-
tance to the platform, coordinate θ represents the devi-
ation from the vertical line and coordinate φ represents
the angle between the planes formed by, on one hand, the
crane and the vertical line and, on the other hand, the
vertical line and the mass.
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Lagrangian function

In order to state the Lagrangian function expressions for the kinetic
energy T and the potential energy V must be found. Inspection of the
motion of the mass reveals that the velocity vector has the orthog-
onal components shown in the figure. Alternatively, a moving xyz-
coordinate system can be used such that the x-axis coincides with the
line joining the platform O and the mass, an angular velocity vector



can be stated in terms of θ̇ and φ̇ and the absolute velocity of the mass
can be found. The kinetic energy reads

T =
1

2
m

(

ṙ2 + (rθ̇)2 + (rφ̇ sin θ)2
)

=
1

2
m

(

ṙ2 + r2(θ̇2 + φ̇2 sin2 θ)
)

.

(1)

For the potential energy V two different cases need to be considered, corresponding to
either a loose or a taut bungee.

If the bungee is loose it is not providing any force to the mass and only gravity needs
to be considered. Taking the platform as zero level of gravitational potential energy one
has

V = −mgr cos θ. (2)

Since the natural length of the bungee is l, the expression (2) of the potential energy is
valid as long as

r < l. (3)

When the bungee becomes taut a term involving the elastic potential energy is added
to the expression (2) of V ,

V = −mgr cos θ +
1

2
k(r − l)2, (4)

which will consequently be valid when

r ≥ l. (5)

This leads to the following piece-wise expression for the Lagrangian

L = T − V

=











1

2
m

(

ṙ2 + r2(θ̇2 + φ̇2 sin2 θ)
)

+ mgr cos θ if r < l;

1

2
m

(

ṙ2 + r2(θ̇2 + φ̇2 sin2 θ)
)

+ mgr cos θ −
1

2
k(r − l)2 if r ≥ l.

(6)

Equations of motion

The equations of motion are derived from the Lagrange formalism that, for a conservative
system, reads

d

dt

(

∂L

∂q̇i

)

−

(

∂L

∂qi

)

= 0 i = 1, . . . n. (7)

From equation (6) the generalised momenta are, in all cases, obtained as

∂L

∂ṙ
= mṙ;

∂L

∂θ̇
= mr2θ̇;

∂L

∂φ̇
= mr2φ̇ sin2 θ.

(8)



The rate of change of these generalised momenta is, consequently,

d

dt

(

∂L

∂ṙ

)

= mr̈;

d

dt

(

∂L

∂θ̇

)

= m(r2θ̈ + 2rṙθ̇);

d

dt

(

∂L

∂φ̇

)

= m(r2φ̈ sin2 θ + 2rṙφ̇ sin2 θ + r2φ̇θ̇ sin 2θ).

(9)

The non-inertial force terms are elaborated as

∂L

∂r
=

{

mr(θ̇2 + φ̇2 sin2 θ) + mg cos θ if r < l;

mr(θ̇2 + φ̇2 sin2 θ) + mg cos θ − k(r − l) if r ≥ l;

∂L

∂θ
=

1

2
mr2φ̇2 sin 2θ − mgr sin θ;

∂L

∂φ
= 0.

(10)

Substituting (9–10) into (7) yields

0 =

{

mr̈ − mr(θ̇2 + φ̇2 sin2 θ) − mg cos θ if r < l;

mr̈ − mr(θ̇2 + φ̇2 sin2 θ) − mg cos θ + k(r − l) if r ≥ l;

0 = r2θ̈ + 2rṙθ̇ −
1

2
r2φ̇2 sin 2θ + gr sin θ;

0 = r2φ̈ sin2 θ + 2rṙφ̇ sin2 θ + r2φ̇θ̇ sin 2θ,

(11)

which can be cleaned up as

r̈ = r(θ̇2 + φ̇2 sin2 θ) + g cos θ −







0 if r < l;

k

m
(r − l) if r ≥ l;

θ̈ = −
2ṙθ̇

r
+

1

2
φ̇2 sin 2θ −

g sin θ

r

φ̈ = −
2ṙφ̇

r
−

2φ̇θ̇

tan θ
.

(12)

Notice that the mass of the jumper only plays a role when the bungee is taut.


