Hydrology of Catchments, Rivers and Delta's FLOOD SURVEYS & FLOOD PROPAGATION

Thom Bogaard - T.A.Bogaard@tudelft.nl Hillslope and landslide hydrology

Specialization:

Catchment hydrology, field measurements & experiments

Land degradation & Hydrology, Effect vegetation on landslide, Risk assessment

Responsible for CIE 5580: Ecology and Geomorphology

FLOOD SURVEYS <u>&</u> FLOOD PROPAGATION

- Occurrence of floods
- Hydrological routing vs hydraulic routing
- Reservoir routing
- Flood routing in natural channels

Hydrology of Catchments, Rivers and Delta's

Occurrence of floods	
	Hyd
Murphy's law:	rolo
Extreme floods occur:	gy o
• at night	i Caí
 on public holidays 	chm
 when communication lines are broken 	ents
 when roads are blocked 	, Riv
• when the car is in repair	s slo
 when the Director of Water Affairs is on holiday 	and
	Delta
	ŝ

Occurrence of floods	
Problems:	Hydn
Communication lines destroyed	Dolo
• The pen of the recorder stopped, or the housing of the water level recorder submerged by the flood	y of Ca
• The reservoir of the raingauge overtopped, or the raingauge washed away by the flood	lchmen
• The rating weir completely destroyed by the flood	ي ي
 The bridge on which the recorder was installed blocked by debris 	ivers a
• While trying to measure the velocity, the current meter was caught by debris and lost	nd Delta
	ഗ്

	Di	fferent Routings	
•	By S	Spatial and Temporal Variation:	Hydr
	(a)	<u>Lumped Flow Routing</u> – Flow is calculated as a function of time only at a fixed location in space.	VBOIO
	(b)	Distributed Flow Routing – Flow is calculated as a function of time and space in the system	of C
•	By (Governing Equations Used:	ato
	(a)	<u>Hydrologic Routing [conceptual]</u> - Employs continuity equation along with an analytical or an assumed relationship between storage and discharge within a system, in the calculation.	ments,
	(b)	<u>Hydraulic Routing [physical]</u> – Use both continuity and momentum equations to describe unsteady, non-uniform flow in a flow system.	Rivers a
•	By \	Watercourse Type	Ind
	(a) (b) (c)	River Flow Routing Reservoir Routing Overland Flow Routing	Delta's

Muskingum Routing

Estimating K

- K can be estimated as the travel time through the reach.Estimate the travel time using the average flow and/or peak
- flowThe travel time may be estimated using the kinematic travel time or a travel time based on Manning's equation
- Use slope of the XI + (1-X)O vs. S plot, K is slope of plot

Hydrology of Catchments, Rivers and Delta's

Optimise using fitting procedures

Muskingum Routing Hydrology of Catchments, Rivers and Delta's **Estimating X** • The parameter X is a weighting coefficient for inflow and outflow. The value of X should be between 0.0 and 0.5. Values of X = 0.2to 0.3 are the most common for natural streams; however, values of 0.4 to 0.5 may be obtained for streams with little or no flood plains or storage effects • The lower limit of X = 0.0 is indicative of a situation where inflow, I, has little or no effect on the storage • A value of X = 0.5 represents equal weighting between inflow and outflow and would produce translation with little or no attenuation • Use slope of the XI + (1-X)O vs. S plot; Best X is least looped • Optimise using fitting procedures

Muskingum Routing

Notes for Muskingum routing

Notes for Muskingum routing	Hydrol
•The method may produce negative flows in the initial portion of the hydrograph	ogy of
 Additionally, it is recommended that the method be limited to moderate to slow rising hydrographs being routed through mild to steep sloping channels 	Catchm
•The method is not applicable to steeply rising hydrographs such as dam breaks	ents, F
 Finally, this method also neglects variable backwater effects caused by downstream dams, constrictions, bridges, and tidal influences 	Vivers and Delta's

•The thr	ee colum	ns now ca	an be calc	ulated.		
$\bullet C_0 I_2 = 0$ $\bullet C_1 I_1 = 0$	0.167 * 5 0.667 * 3	= 0.835				
$\bullet C_2 O_1 =$	0.167 * 3	8 = 0.501				
Time	Inflow	C_0I_2	C ₁ I ₁	C ₂ O ₁	Outflow	1
C	3	0 9835	2 ² 00	0.501	3	
1	5	0.000	1	0.00	-	
3	10		<u> </u>			
4	6					
	5					1

Date	Hour	I, m³/s	c ₀ I ₂	C_1I_1	c ₂ O ₁	0, m ³ /s
4/9	6 a.m.	1000				1000
	Noon	2400	-408	530	640	762
	6 p.m.	3900	-663	1272	488	1097
	Midnight	5000	-850	2067	702	1919
4/10	6 a.m.	4900	-833	2650	1228	3045
	Noon	4000	-680	2597	1949	3866

Channel routing is a mathematical method (model) to predict the changing magnitude, speed, and shape of a flood wave as it propagates through waterways such as canals, rivers, reservoirs, or estuaries (Fread, 1985)

<u>Hydrologic Routing [conceptual]</u> - Employs continuity equation, along with an analytical or an assumed relationship between storage and discharge within a system, in the calculation.

<u>Hydraulic Routing [physical]</u> – Use both continuity and momentum equations to describe unsteady, non-uniform flow in a flow system.

Kinematic wave – energy equation assuming no pressure and acceleration terms

<u>Dynamic wave</u> – energy equation assuming no acceleration terms

FLOOD SURVEYS & FLOOD PROPAGATION

- Occurrence of floods
- Hydrological routing vs hydraulic routing
- Reservoir routing
- Flood routing in natural channels