Hydrology of catchments, rivers and deltas (CIE5450)

Prof.dr.ir. Uhlenbrook

Lecture 'Precipitation’

Hydrology of Catchments, River Basins and Deltas

Part TWO - Precipitation

Professor Stefan Uhlenbrook, PhD, MSc, habil.
Professor Dr. Ir. Hubert H.G. Savenije
Professor of Hydrology
UNESCO-IHE Institute for Water Education and Delft University of Technology

The Netherlands
E-mail: s.uhlenbrook@unesco-ihe.org s.uhlenbrook@tudelft.nl

Acknowledgements for the material used in this lecture

- Dr. Pieter de Laat, prof. Huub Savenije, UNESCO-IHE, Delft, The Netherlands
(wrote the course note; some pictures)
- Prof. Tim Link, Idaho, USA (some PPT slides and pictures)
- Prof. Chris Leibundgut, University of Freiburg (some PPT slides and pictures)
- Prof. Demetris Koutsoyiannis (Athens, Greece) and prof. Andreas Langousis (Cambridge, USA) (some PPT slides and pictures)

Elements of the Hydrological Cycle

Objectives of this Lecture

- Types of precipitation
- Precipitation formation processes
- Precipitation parameters
- Measurement techniques for precipitation
- Areal estimation of precipitation

Precipitation

- Rain (light - heavy), snow, drizzle, hail, ...
- Formed from water vapor in the atmosphere:
- Air rises and/or cools (i.e. expansion due to less pressure)
- Cool air can hold only less water
- Need of areosols (nuclei for droplets or ice crystals)
- Excess water forms droplets (mainly in light clouds) or ice crystals (needed for 'real' precipitation)
.... when they are large (heavy) enough, they fall as precipitation!
- Lapse rate (less pressure, expansion, temperature decrease):
- $0.65 \mathrm{~K} / 100 \mathrm{~m}$ (average)
- dry-adiabatic $1.0 \mathrm{~K} / 100 \mathrm{~m}$
- wet-adiabatic 0.5-0.6 K/100 m (air is moisture saturated)

Different types of precipitation

 Falling precipitation
Different types of precipitation

 ,Intercepted' precipitation
solid

liquid

Objectives of this Lecture

- Types of precipitation
- Precipitation formation processes
- Precipitation parameters
- Measurement techniques for precipitation
- Areal estimation of precipitation

Precipitation

- Rain (light - heavy), snow, drizzle, hail, ...
- Formed from water vapor in the atmosphere:
- Air rises and/or cools (i.e. expansion due to less pressure)
- Cool air can hold only less water
- Need of areosols (nuclei for droplets or ice crystals)
- Excess water forms droplets (mainly in light clouds) or ice crystals (needed for 'real' precipitation)
.... when they are large (heavy) enough, they fall as precipitation!
- Lapse rate (less pressure, expansion, temp. fall):
- $0.65 \mathrm{~K} / 100 \mathrm{~m}$ (average)
- dry-adiabatic $1.0 \mathrm{~K} / 100 \mathrm{~m}$
- wet-adiabatic 0.5-0.6 K/100 m (air is moisture saturated)

Vapor Pressure

- Partial pressure of $\mathrm{H}_{2} \mathrm{O}$ in air is the vapor pressure
- Units of pressure are: Pascals (Pa) $\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}: \mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
- Also expressed in bars, millibars (mb)

$$
\begin{aligned}
& 1 \mathrm{bar}=100,000 \mathrm{~Pa}=1 \times 10^{5} \mathrm{~Pa} \\
& 1 \mathrm{mb}=100 \mathrm{~Pa}=1 \times 10^{2} \mathrm{~Pa}
\end{aligned}
$$

- Less frequently
- atm, psi, mm Hg, inH2O

Composition of the atmosphere

	Mass \%	Volume $\%$
Nitrogen N_{2}	75.5	78.1
Oxygen O_{2}	23.1	20.9
Argon A	1.3	0.9
Others	0.1	0.1

Saturation Vapor Pressure - Temperature

 Relationship

Water damp (gas) ($\mathrm{g} / \mathrm{m}^{3}$ air)
Temperature $\left({ }^{\circ} \mathrm{C}\right)$
30.4
$+30 \quad+20 \quad+10 \quad 0 \quad-10 \quad-20$

Saturation Vapor Pressure Curve

Approximated by:

$$
e_{s}=0.611 \cdot \exp \left(\frac{17.3 \cdot T_{s}}{T_{s}+237.3}\right)
$$

vapor pressurein kPa temperature in ${ }^{\circ} \mathrm{C}$

Or, use vapor pressure tables!

Relation between saturation vapour pressure of the air e_{s} and air temperature T_{a}
vapour pressure

\mathbf{e}_{d} : dewpoint vapour pressure e_{s} : saturation vapour pressure $e_{s}-e_{d}$: Saturation vapour pressure deficit

- Relative humidity [\%]: $\mathbf{R H}=\frac{\mathbf{e}_{\mathbf{d}}}{\mathbf{e}_{\mathrm{s}}} \mathbf{1 0 0}$

Measures of Humidity

- Vapor pressure (e_{a})
- partial pressure of $\mathrm{H}_{2} \mathrm{O}$ vapor in air
- Relative humidity: $\mathbf{R H}=\frac{\mathbf{e}_{d}}{\mathbf{e}_{s}} \mathbf{1 0 0}$
- Vapor pressure deficit: es - ed
- Dew point temperature $\left(\mathrm{T}_{\mathrm{d}}\right)$:
- The temperature at which air with a given vapor pressure would be saturated
- Compute by solving satvp Eqn, or use tables (previous slides)

Note: e_{a}, T_{d} are relatively stable in nature, over short time periods !!

Example Calculation

On a warm summer day, the air temperature is reported to be $29^{\circ} \mathrm{C}$ with a relative humidity of 40\%

- What is the saturated vapor pressure?
- What is the dew point temperature?

In the evening, the temperature drops to $16^{\circ} \mathrm{C}$
-What is the relative humidity?

Exercise

Given:
wet bulb temperature $\mathrm{t}_{\mathrm{w}}=23^{\circ} \mathrm{C}$ dry bulb temperature $\mathrm{t}_{\mathrm{a}}=35^{\circ} \mathrm{C}$

What is the relative humidity?

1. calculate $\mathrm{e}_{\mathrm{s}}\left(\mathrm{t}_{\mathrm{a}}\right)=5.65 \mathrm{kPa}$
2. calculate $e_{d}=e_{s}\left(t_{w}\right)-\gamma\left(t_{a}-t_{w}\right)$ $=2.82-0.066(35-23)=2.03$
3. $\mathrm{RH}=2.03 / 5.65=36 \%$

Adiabatic lapse rate and the stability of the atmosphere

Remark: change of actual temperature of atmosphere with height is often not linear!

Causes of Precipitation

(Processes that produco uplift of air masses)

Convection

- Warm air rises (due to energy input), cools, and forms clouds and potentially thunderstorms
- Fronts
- E.g. warm, wet air (lighter, above) front rides over cold dry air (heavier, beneath)
- Orography - induced by mountains
- Warm, moist air rises over mountains and releases water
- (Cool, dry air falling from mountains has little moisture)
- Convergence - occurs in tropics, ITCZ
- forces to uplift warm and moist air
- Cyclones, tropical depressions or hurricanes

Formation of a convective storm

Stages of development of convective cells

(from Koutsoyiannis and Langousis, 2009; adapted from Weisman

 and Klemp, 1986)$\mathrm{z} \approx 10-12 \mathrm{~km}$
$\mathrm{z} \approx 6 \mathrm{~km}$
$\mathrm{Z}=0 \mathrm{~km}$

$\longleftarrow 6-8 \mathrm{~km} \longrightarrow$
cumulus stage
$10-20 \mathrm{~min}$
\square mature stage
$15-30 \mathrm{~min}$

dissipating stage
$\approx 30 \mathrm{~min}$

- Source: NOAA Photo Archives

Convective Storms

Convective Storms

Air rises (vertical instability), cools, condensation, precipitation

- Form - rain, hail
- High Intensity, may exceed 40 mm/hr

Duration - short (minutes to hours)

- Scale - ~1-10s km
- Common in the tropics, or during summer in temperate zone
- Can produce flash floods
- Lightning

Causes of Precipitation

(Processes that produce uplift of air masses)

- Convection
- Warm air rises (due to energy input), cools, and forms clouds and potentially thunderstorms
Fronts
- E.g. warm, wet air (lighter, above) front rides over cold dry air (heavier, beneath)
- Orography - induced by mountains
- Warm, moist air rises over mountains and releases water
- (Cool, dry air falling from mountains has little moisture)
- Convergence - occurs in tropics, ITCZ
- forces to uplift warm and moist air
- Cyclones, tropical depressions or hurricanes

Frontal Precipitation

Frontal lifting of air masses

Schematic illustration of different types of fronts: a) cold front, b) warm front, and c) occluded front

(Koutsoyiannis and Xanthopoulos, 1999)

Frontal Precipitation

Very common in humid temperate zone (west wind zone), in particular during fall, winter and spring

- Form - rain or snow
- Intensity - generally low to moderate ~10 mm / h or less
- Duration - long (hours to days)
- Scale - >100 km

A front comes in

North Pacific Satellite Images Mon. - Tues Jan 21-22, 2002

Causes of Precipitation

(Processes that produce uplift of air masses)

- Convection
- Warm air rises (due to energy input), cools, and forms clouds and potentially thunderstorms
- Fronts
- E.g. warm, wet air (lighter, above) front rides over cold dry air (heavier, beneath)
- Orography - induced by mountains
- Warm, moist air rises over mountains and releases water (Cool, dry air falling from mountains has little moisture)
- Convergence - occurs in tropics, ITCZ
- forces to uplift warm and moist air
- Cyclones, tropical depressions or hurricanes

Orographic Precipitation

Example

Mountain Meteorology
FUNDAMENTALS AND APPLICATIONS

Orographic precipitation is difficult to
catch with a picture ...

In the rain shadow!

 Daum $2144.1998,17.00 \mathrm{MOZ}$, Blick E © Copyright BerihardMO

Orographic Precipitation

Common in mountainous regions, sometimes connected to frontal systems

- Form - rain or snow
- Intensity - low to moderate $\sim 10 \mathrm{~mm} / \mathrm{h}$; high intensities when sharp rise of the mountains
- Duration - long (hours to days); shorter if additional convection
- Scale - >10-100 km

Example: State of Washington, USA, Annual Precipitation Distribution

Causes of Precipitation

(Processes that produce uplift of air masses)

- Convection
- Warm air rises (due to energy input), cools, and forms clouds and potentially thunderstorms
- Fronts
- E.g. warm, wet air (lighter, above) front rides over cold dry air (heavier, beneath)
- Orography - induced by mountains
- Warm, moist air rises over mountains and releases water
- (Cool, dry air falling from mountains has little moisture)
- Convergence - occurs in tropics, ITCZ
- forces to uplift warm and moist air
- Cyclones, tropical depressions or hurricanes

Precipitation through convergence at ITCZ

Wind system for a hypothetical water-covered Earth

Views of the Planet Earth

Precipitation through convergence at ITCZ

- Monsoon
- defines rainy / dry seasons
- one or two rain seasons depending on ITCZ movement

Fig. 2.3 Position of the Inter-Tropical Convergence Zone in January (top) and July (below)

GPCC Monitoring Prodvet Gaugo-Based Analysis 1.0 degree precipitation fer January 2001 in $\mathrm{mm} / \mathrm{month}$

$$
\begin{array}{lllllllllllll}
1 & 10 & 25 & 50 & 75 & 100 & 150 & 200 & 300 & 400 & 800 & 800 & 1000
\end{array}
$$

Causes of Precipitation

(Processes that produce uplift of air masses)

- Convection
- Warm air rises (due to energy input), cools, and forms clouds and potentially thunderstorms
- Fronts
- E.g. warm, wet air (lighter, above) front rides over cold dry air (heavier, beneath)
- Orography - induced by mountains
- Warm, moist air rises over mountains and releases water
- (Cool, dry air falling from mountains has little moisture)
- Convergence - occurs in tropics, ITCZ
- forces to uplift warm and meist air
- Cyclones, tropical depressions or hurricanes

Cyclones, tropical depressions or hurricanes

- Active depressions moving over warm ocean water; taking up moisture and energy
- Can cause high intensity rainfall for relatively long times
- Often follow different probability distribution in statistical analysis (extreme value statistics; mixed distributions)

TRMM microwave imager (TMI) rainfall retrievals for hurricane Katrina on 28 August 2005 at 21:00 UTC (frame 44373): Different types of rain bands and their location relative to the centre of the storm
(Koutsoyiannis and Langousis, 2009)

Schematic representation of the structure of a mature hurricane

 Langousis, 2009)

Mixed distribution of combined cyclonic storms and thunderstorms

Objectives of this Lecture

- Types of precipitation
- Precipitation formation processes
- Precipitation parameters
- Measurement techniques for precipitation
- Areal estimation of precipitation

Precipitation Parameters

- Amount of precipitation - units of depth (e.g. $\mathrm{l} / \mathrm{m}_{2}=$ mm)
- The duration of event or period - units of time (e.g. min, hour, day, month, year etc.)
- Intensity = amount/duration (e.g. $\mathrm{mm} \mathrm{h}^{-1}$)
- May be for all or only part of the total duration of the storm
- seconds, minutes, hours, days, years, ...
- Long durations have usually greater amounts
- Shorter durations have usually greater intensities
- Graph of precipitation vs. time is a hyetograph
- Seasonal distributions, depending on atmospheric circulation patterns

Temporal distribution (1/2)

Temporal distribution (2/2)

Fig. 8 Time series of a storm in Iowa, USA measured at the University of lowa with temporal resolution of 10 seconds (Georgakakos et al., 1994); time zero corresponds to 1990-02-12T17:03:39.
(Koutsoyiannis and Langousis, 2009)

Rainfall data

Rainfall-intensity distribution

Typical percentage mass curves of rainfall for

Frequency analysis

Figure .16
Frequency distribution of 1, 10 and 30 day rainfall (a); hystogram of daily rainfall (b)

\#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	2	8	0	0	0	0	0	12	3	8	24	2	0
2		0	2	10	8	0	0	0	0	12	15	11	32	26	2
5					10	10	10	8	0	12	15	23	47	49	37
10										22	25	33	55	49	49

Observed extreme precipitation data around the world

Observed extreme precipitation data World vs. United Kingdom

Magnitude-duration relationship for the world and the UK extreme rainfalls (source: Ward \& Robinson, 1990).

Evolution of global precipitation based on averaged monthly data from GPCP for 1979-2008

(Koutsoyiannis and Langousis, 2009)

Annual precipitation time series of two stations with the longest records worldwide: Seoul, Korea (upper); Charleston City, USA (lower) (data source: KNMI; climexp.knmi.nl)

Rainfall data screening

cumulative annual
precipitation (m)
station X

cumulative annual
precipitation (m)
mean of other stations

Spatial homogeneity:

$$
\mathrm{P}_{\text {est }}=\frac{\sum\left(\mathrm{P} / \mathrm{r}^{\mathrm{b}}\right)_{\mathrm{i}}}{\sum\left(1 / \mathrm{r}^{\mathrm{b}}\right)_{\mathrm{i}}}
$$

Correlation between rainfall stations

Kagan's formula:

$\rho(\mathbf{r})=\rho_{0} \mathbf{e}^{\mathrm{r}_{0}}$

Rain type	Period 1 hour		Period 1 day		Period 1 month	
	$\begin{gathered} \mathbf{r}_{\mathbf{0}} \\ (\mathbf{k m}) \end{gathered}$		$\begin{array}{r} \mathbf{r}_{\mathbf{o}} \\ (\mathbf{k m}) \end{array}$		$\begin{gathered} \mathbf{r}_{\mathbf{0}} \\ (\mathbf{k m}) \end{gathered}$	\mathbf{p}_{0}
Very local convective	5	0.80	10	0.88	50	0.95
Mixed convective orographic	20	0.85	50	0.92	1500	0.98
Frontal rains from depressions	100	0.95	1000	0.98	5000	0.99

Areal Reduction Factor

$$
A R F=P_{a} / P_{p}
$$

ARF is a function of:

- rainfall depth
- storm duration
- storm type
- catchment size
- return period

DDF
 Depth-Duration-Frequency curves

IDF Intensity-Duration-Frequency curves

Frequency analysis

Intensity-Duration-Frequency curves Linear scale

Data screening

Never assume that meteorological data are of consistent good quality!

1. Tabular comparison
2. Time series plotting (visual inspection)
3. Spatial homogeneity test
4. Double mass analysis

See workshop

APRIL	P425	P119	P5	P6
$58 / 59$	3.1	8.5	12.4	16.0
$59 / 60$	124.1	179.8	145.7	102.6
$60 / 61$	55.7	47.4	65.0	116.6
$61 / 62$	63.5	81.6	72.6	59.2
$62 / 63$	60.5	31.3	54.5	61.1
$63 / 64$	60.0	96.9	47.2	25.4
$64 / 65$	25.0	33.6	31.0	42.0
$65 / 66$	16.4	15.3	8.5	30.9
$66 / 67$	132.2	114.4	130.6	78.2
$67 / 68$	16.9	32.6	83.3	24.3
$68 / 69$	161.7	110.0	99.4	143.7
$69 / 70$	10.2	9.5	14.8	9.0
$70 / 71$	91.0	95.9	94.0	86.6
$71 / 72$	34.1	74.5	35.6	24.9
$72 / 73$	48.5	98.0	59.2	53.9
$73 / 74$	40.3	115.3	104.0	48.4
$74 / 75$	62.2	107.4	61.0	126.3
$75 / 76$	63.7	76.1	57.0	57.9
$76 / 77$	10.2	22.6	37.5	18.9
AVG	56.8	71.1	63.9	59.3
STD	42.8	45.2	37.4	38.9
MIN	3.1	8.5	8.5	9.0
MAX	161.7	179.8	145.7	143.7

Example of tabular

 comparison of monthly rainfall values of 4 stations (P5, P6, P119 and P425) in the Ubeluzi catchment in Mozambique

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline January \& P425

84.5 \& P119

1088 \& P5 \& P6 \& | P425 |
| :--- |
| sum 0 | \& Average P119,P5,P6 \& Double nass

\hline 51/52 \& 84.5 \& 108.8 \& 114.2 \& 70.8 \& 84.5 \& 97.9 \&

\hline 52/53 \& 162.6 \& 305.4 \& 186.2 \& 172.3 \& 247.1 \& 319.2 \& 2日 M/

\hline 53/54 \& 62.9 \& 84.2 \& 87.4 \& 44.3 \& 310.0 \& 391.2 \& anarsis

\hline 54/55 \& 164.2 \& 293.8 \& 154.1 \& 235.0 \& 474.2 \& 618.8 \&

\hline 55/56 \& 68.6 \& 123.0 \& 85.6 \& 54.9 \& 542.8 \& 706.7 \&

\hline 56/57 \& 57.9 \& 87.4 \& 66.2 \& 59.8 \& 600.7 \& 777.8 \& For monthy

\hline 57/58 \& 171.1 \& 253.1 \& 216.2 \& 171.7 \& 771.8 \& 991.5 \& -

\hline 58/59 \& 175.3 \& 123.7 \& 162.9 \& 79.5 \& 947.1 \& 1113.5 \& alnfall Oata

\hline 59/60 \& 79.5 \& 63.5 \& 76.4 \& 84.3 \& 1026.6 \& 1188.2 \& (January) 105

\hline 60/61 \& 56.0 \& 49.1 \& 110.0 \& 84.5 \& 1082.6 \& 1269.4 \& (vanuary) 1951-

\hline 61/62 \& 142.4 \& 118.1 \& 93.1 \& 188.6 \& 1225.0 \& 1402.7 \& 1982

\hline 62/63 \& 95.7 \& 115.8 \& 111.8 \& 84.7 \& 1320.7 \& 1506.8 \& 982

\hline 63/64 \& 249.0 \& 173.2 \& 210.3 \& 215.5 \& 1569.7 \& 1706.5 \&

\hline 64/65 \& 12.3 \& 56.2 \& 14.3 \& 40.4 \& 1582.0 \& 1743.4 \& Stations P425

\hline 65/66 \& 546.8 \& 672.2 \& 625.1 \& 587.6 \& 2128.8 \& 2371.7 \& Stations P425

\hline 66/67 \& 76.6 \& 190.1 \& 48.5 \& 162.1 \& 2205.4 \& 2505.3 \& vs the mea

\hline 67/68 \& 121.5 \& 113.7 \& 92.0 \& 71.4 \& 2326.9 \& 2597.7 \& .

\hline 68/69 \& 157.7 \& 188.7 \& 125.5 \& 111.4 \& 2484.6 \& 2739.5 \& P5. P6 and P119

\hline 69/70 \& 4.7 \& 13.0 \& 98.4 \& 9.6 \& 2489.3 \& 2779.9 \&

\hline 70/71 \& 51.8 \& 98.6 \& 87.9 \& 53.1 \& 2541.1 \& 2859.7 \&

\hline 71/72 \& 218.0 \& 320.6 \& 156.8 \& 210.4 \& 2759.1 \& 3089.0 \&

\hline 72/73 \& 56.7 \& 57.2 \& 79.1 \& 63.3 \& 2815.8 \& 3155.5 \&

\hline 73/74 \& 108.6 \& 209.6 \& 151.7 \& 299.5 \& 2924.4 \& 3375.8 \&

\hline 74/75 \& 81.3 \& 183.8 \& 138.7 \& 232.3 \& 3005.7 \& 3560.7 \&

\hline 75/76 \& 210.2 \& 416.7 \& 311.4 \& 275.0 \& 3215.9 \& 3895.1 \&

\hline 76/77 \& 44.3 \& 150.9 \& 77.0 \& 115.5 \& 3260.2 \& 4009.6 \&

\hline 77/78 \& 122.0 \& 354.0 \& 305.6 \& 202.9 \& 3382.2 \& 4297.1 \&

\hline 78/79 \& 122.5 \& 171.2 \& 60.5 \& 129.0 \& 3504.7 \& 4417.3 \&

\hline 79/80 \& 62.2 \& 157.7 \& 52.9 \& 33.8 \& 3566.9 \& 4498.8 \&

\hline 80/81 \& 160.0 \& 112.5 \& 183.2 \& 194.4 \& 3726.9 \& 4662.1 \&

\hline 81/82 \& 29.2 \& 96.1 \& 31.7 \& 24.5 \& 3756.2 \& 4712.9 \&

\hline
\end{tabular}

Rainfall data screening

Double mass curve:

Data Screening

Double

 mass analysis

Objectives of this Lecture

- Types of precipitation
- Precipitation formation processes
- Precipitation parameters
- Measurement techniques for precipitation
- Areal estimation of precipitation

Classical rain gauge according to Hellmann

usually read daily at 7 AM

Precipitation Measurement The Principal

Fig. 2.4 Rain gauges

Annual totalisator for high mountain areas

There are also simple rain gauges that cost less than US\$ 5!
 (and empting makes fun!)

Precipitation Intensity Measurement

2. Win and

Pluviograph

 Rainfall intensity gauge

Ein robuster Regenmesser im Baukastensystem zur Messung von Regen und Schnee.

Dieser Regenmesser entspricht den technischen Richtlinien der World Meteorological Organization.

System Joss-Tognini

Tipping bucket

Quelle: http://www.thiesclima.com/nieders.htm

Tipping Bucket Gauge

Measurement of the ,real' precipitation on the ground

Systematic errors during rainfall measurements

- Deformation of the wind array above the gauge (rain about 2-5 (up to 10) \%; snow 10-40 (or even more!) \%)
- Wetting losses at the gauge (inside) and in the tank (up to 5-10 \%)
- Evaporation of collected precipitation (up to 1-3 \%)
(Blow out of collected precipitation (i.e. snow) out of the gauge)

Effect of Wind on Precipitation Measurements

FIGURE 4-15
Wind effects of projecting rain gages. (a) Without wind shielding, upward-moving air in eddies prevents many snowflakes from entering the gage. Rigid Niphertype shields (b) or hinged Altertype shields (c) reduce this effect. After Bruce and Clark (1966).

(a)

(b)

(c)

Source: L. Dingman, Physical Hydrology

Effect of Wind on Precipitation Measurements

Fig. 2.5 Effect of wind speed on rain catch

- Do you belief me??

Alter-type Wind Shield

Measuring Rainfall

- A rain gauge is a single point observation
- Locate away from objects
-Best if sheltered from wind

Comments ...??

Comments ...??

Comments ...??

Russian-style wind shield

Heated-orifice gauge

Objectives of this Lecture

- Types of precipitation
- Precipitation formation processes
- Precipitation parameters
- Measurement techniques for precipitation
- Areal estimation of precipitation

Estimating Areal Rainfall Distribution

- Large watersheds require a number of gages
- Limited by costs and time
- Flat areas need usually fewer stations
- Consider topographic effects
- Try to distribute uniformly
$>$ Access may be a problem in remote areas

Average Precipitation Estimation

- Arithmetic average
- If gages are evenly distributed and relief is not important
- Thiessen Method/Thiessen Polygons: Weighted average
- Determine representative area for each gage
- Isohyetal or "contour" area weighted average
- Draw lines of equal rainfall amounts, like a topographic contour map
- Algorithmic Hypsometric Methods
- Kriging, Inverse distance weighting, PRISM, ANUSPLIN

a)

Thiessen Polygons

Example:

How to estimate basin precipitation by area

 weighted averages?| Amount, mm | Area, hectar | Weighted
 amount | |
| :--- | :---: | :---: | :--- |
| 8.81 | 65 | | |
| 12.15 | 150 | | |
| 15.26 | 269 | | |
| 13.18 | 216 | | |
| 5.62 | 56 | | |
| Total: | 9.8 | 136 | |
| | | | |
| | (arithmetic mean) | (Catchment area) | (weighted mean) |

Isohyetal Method

(Hornberger et al., 1998)

Isohyetal Method

FIGURE 4-26

The isohyetal method of integration. Dots are precipitation-gage locations; thin lines are isohyets; shaded zone is the area a_{i} between the p_{i-} and p_{i+} isohyets.

Source: L. Dingman, Physical Hydrology

Making rainfall maps helps also to control the quality of different stations

Example from the Dreisam catchment, Black Forest Mountains, Germany

Can this one be correct??

Regionalisation models, e.g. PRISM

PRecipitationelevation on Independent Slopes Model

Measurement of Areal Distribution of Precipitation

Fig. 2.7 Forms of radar display: PPI (left) and RHI (right)

Rainfall Radar

 Observation of the space-time variability

European Rainfall Radar Stations

German Rainfall Radar Stations

German Rainfall Radar Stations and Automatic Raingauges (on-line)

Automatische Niederschlagsstationen des DWD und der Länder im Messnetz 2000
(Planungsstand 21.05.2002)

Space-time Variability of Precipitation during a Huge Event in the Blue Ridge Mountains, USA (values give in mm per event!)

(a) Storm track

(b) Total rainfall accumulation

Take Home Messages

- Remember the different types of precipitations (often mixtures in reality)
- Main precipitation formation mechanism:
- (i) convection,
- (ii) frontal,
- (iii) orography,
- (iv) convergence, and
- (v) cyclones, tropical depressions and hurricanes
- Characterization of precipitation through different parameters
- Measurement of precipitation (devices and techniques)
- Areal estimations of precipitation (different methods); when is which method appropriate?

Brief Introduction to Frequency Analysis

$\mathrm{P}\left(\mathrm{X}>\mathrm{X}_{0}\right) \quad$ Probability of exceedance, probability that X is greater than or equal to $\mathrm{X}_{0} ; 0 \leq \mathrm{P} \leq 1$
$\mathrm{T}\left(\mathrm{X}>\mathrm{X}_{0}\right) \quad$ Return Period or average recurrence interval, the average (!) time in years between the occurrence of an extreme event X

T and P are as follows related

$$
T=\frac{1}{P}
$$

Probability the event will not occur next year

$$
\left(1-\frac{1}{T}\right)
$$

Probability the event will not occur the next N years

$$
\left(1-\frac{1}{T}\right)^{N}
$$

Probability the event occurs at least once in the next N years

$$
P=1-\left(1-\frac{1}{T}\right)^{N}
$$

Frequency analysis (e.g. peak flows)

- Annual maximum series (more common)
$>$ One can miss a large event if more than one large event per year; but continuously/consistent and easy to process
$>$ Often used for estimating extremes in long records (>10 years)
- Partial duration series ("Peaks-Over-Threshold, POT")
$>$ Definition of the threshold is tricky and requires experience
$>$ Often used for short records (<10 years)

Flood frequency analysis
 (peak flows):

Annual max. series
vs.
partial duration series
(Davie, 2002)

Figum 7.10 Daily fow record for the Adams river (British Columblia, Cantada) during five years in the 1980 s. Annual maximum series are denoted by 'am', partial duration series above the threshold line by "xil" NB In this record there are five annual maximum ditt: poines and only four partial duration perifts, includina two from within 1981.
Source: Data courtesy ol Environment Canada

Annual max. series vs. partial duration series (POT)

- Langbein showed the following relationship (Chow 1964):

$$
1 / T=1-e^{-\left(1 / T_{p}\right)}
$$

T : return period using annual max. series
T_{p} : return period using partial duration series

- Differences get smaller for larger return periods (less than 1\% difference for a 10-year recurrence interval)!

Given data: Annual maximum daily rainfall of 10 years ($\mathrm{N}=10$)

Year	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
$\mathrm{~mm} / \mathrm{d}$	56	52	60	70	34	30	44	48	40	38

Rank values in descending order

m	Rainfall	p	T
Rank	amount (mm)	Probability exceedence	Return period
1	70	0.09	11.0
2	60	0.18	5.5
3	56	0.27	3.7
4	52	0.36	2.8
5	48	0.45	2.2
6	44	0.54	1.8
7	40	0.64	1.6
8	38	0.73	1.4
9	34	0.82	1.2
10	30	0.91	1.1

Estimate probability of exceedance:

Weibull:
$p=\frac{m}{N+1}$
Gringerton:

$$
p=\frac{m-0.44}{N+0.12}
$$

More on Gumbel and other distributions during the workshop exercises!

