
CT4471-OCW DRINKING WATER TREATMENT 1 (2006-2007) (4383-2006OCW) > CONTROL PANEL > TEST MANAGER > TEST CANVAS

Test Car	ivas					
				Question drop-down list ar as feedback and images, a		
Add Calculated I	Formula	GO	Creation Settir	gs		
•	Questions abo Answer the qu	•	s (2 persons). Thi	۲4471 Drinking Water trea nk well about the answers		Illowed to
					Add Que	estion Here
Question 1 💌	True/False		10 points		Modify	Remove
		traditional treatment of ng and rapid filtration.	surface water co	nsisted of coagulant dosir	ng, followed by	floc
	Answer	0	ue alse			
	Correct Feedb			ion by chlorine was applie		
	Incorrect Feed	Iback After	filtration disinfec	ion by chlorine was applie		estion Here
Question 2 -	Multiple Answe	~	10 points		Modify	Remove
	Question Indic possible).	A C	of coagulation in	the treatment train (more	answers can b	e
	Correct Feedback Incorrect Feedback	blooms). Coagulation removal. Coagulation before th	after the reservo	e used for nutrient remova ir is used for turbidity (and e used for nutrient remova ir is used for turbidity (and	l organic matte	er) ae

	Question Match t	he coagulation mecha	anisms			
	Answer	Match Question	Items		Answer Items	
		B A. Attach	ment to positive hydro	olysis products	Α.	
					0	
					Sweep coagulation	
		AB. Incorpo	oration in hydroxide f	IOCS	В.	
					Adsoptive coagulation	
		C C. Positiv	e ions destabilise col	loids	C. Electrostatic coagulation	
	Correct Feedbac	k No comments				
	Incorrect Feedba	ack No comments				
					Add Question Here	
Question 6	Matching	1	0 points		Modify	
			-		Nouly Konovo	
		coagulation mechanis				
	Answer		Items Answer Item	S		
		B A. Low pł	H A.			
			Sweep coagu	lation		
		C B. High tu	Irbidity B. Adsorptive	e coagulation		
		A C. Low tu	rbidity C.			
			Electrostatic o	roadulation		
	Correct Feedbac	k No comments	Licenostatie	Joagulation		
	Correct Feedback No comments Incorrect Feedback No comments					
					Add Question Here	
Outestien 7		_			•	
Question 7	Matching	1	0 points		Modify Remove	
	Question The following three water types are coagulated with Ferric Chloride					
	The following three	ee water types are co	agulated with Ferric	: Chloride		
	The following three	ee water types are co Watertype A	agulated with Ferric Watertype B		С	
	Suspended solid	Watertype A s very high	Watertype B low	Watertype low	С	
	Suspended solids	Watertype A	Watertype B low high	Watertype	С	
	Suspended solids Color pH	Watertype A s very high low 8	Watertype B low high 6,5	Watertype low low 8		
	Suspended solids Color pH Which coagulatic	Watertype A s very high low 8 on mechanisms are ir	Watertype B low high 6,5 wolved during the co	Watertype low low 8	C ne different water types?	
	Suspended solids Color pH	Watertype A s very high low 8 on mechanisms are ir Match Question Ite	Watertype B low high 6,5 wolved during the co	Watertype low low 8 bagulation of th		
	Suspended solids Color pH Which coagulatic	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C A. Water typ	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic of	Watertype low 8 bagulation of th		
	Suspended solids Color pH Which coagulatic	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C. - A. Water typ B. - B. Water typ	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic o e B B. Adsorptive co	Watertype low 8 bagulation of th		
	Suspended solids Color pH Which coagulatic	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C A. Water typ	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic o e B B. Adsorptive co	Watertype low 8 bagulation of th		
	Suspended solids Color pH Which coagulatic	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C. - A. Water typ B. - B. Water typ	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic o e B B. Adsorptive co	Watertype low 8 bagulation of th coagulation bagulation		
	Suspended solid: Color pH Which coagulatic Answer	Watertype A very high low 8 on mechanisms are in Match Question Ite C. - A. Water typ B. - B. Water typ C. - C. Water typ	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic of e B B. Adsorptive co e C C. Sweep coagulation	Watertype low 8 bagulation of th coagulation bagulation		
	Suspended solids Color pH Which coagulatic Answer	Watertype A s very high low 8 on mechanisms are in Match Question Ite C. - A. Water typ B. - B. Water typ C. - C. Water typ Water type A: destal not much iron neces	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic of e B B. Adsorptive co e C C. Sweep coagulation asary.	Watertype low 8 bagulation of th coagulation bagulation on n because of th	ne different water types? The high suspended solids,	
	Suspended solid: Color pH Which coagulatic Answer	Watertype A s very high low 8 on mechanisms are in Match Question Ite C. - A. Water typ B. - B. Water typ C. - C. Water typ Water type A: destal not much iron neces	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic of e B B. Adsorptive co e C C. Sweep coagulation asary.	Watertype low 8 bagulation of th coagulation bagulation on n because of th	ne different water types?	
	Suspended solid: Color pH Which coagulatic Answer	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C. - A. Water typ B. - B. Water typ C. - C. Water typ Water type A: destal not much iron neces Water type B: adsord dose of iron needed Water type C: swee	Watertype B low high 6,5 avolved during the co ms Answer Items e A A. Electrostatic of e B B. Adsorptive co e C C. Sweep coagulation pilisation coagulation asary. rptive coagulation re	Watertype low 8 bagulation of th coagulation bagulation on because of th move a part of	ne different water types? The high suspended solids,	
	Suspended solid: Color pH Which coagulatic Answer Correct Feedback	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C. - A. Water typ B. - B. Water typ C. - C. Water typ Water type A: destal not much iron neces Water type B: adsord dose of iron needed	Watertype B low high 6,5 avolved during the co ms Answer Items e A A. Electrostatic of e B B. Adsorptive co e C C. Sweep coagulation pilisation coagulation asary. rptive coagulation re	Watertype low 8 bagulation of th coagulation bagulation on because of th move a part of	ne different water types? The high suspended solids,	
	Suspended solid: Color pH Which coagulatic Answer Correct Feedback	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C. - A. Water typ B. - B. Water typ C. - C. Water typ Water type A: destal not much iron necess Water type B: adsord dose of iron needed Water type C: sweet remove pathogens. Water type A: destal	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic of e B B. Adsorptive co e C C. Sweep coagulation asary. ptive coagulation re p coagulation high co pilisation coagulation	Watertype low 8 bagulation of th coagulation bagulation on because of th move a part of dose needed. (ne different water types? The high suspended solids,	
	Suspended solid: Color pH Which coagulatic Answer Correct Feedback	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C. - A. Water typ B. - B. Water typ C. - C. Water typ C. - C. Water typ Water type A: destal not much iron necess Water type B: adsord dose of iron needed Water type C: swee remove pathogens. Water type A: destal not much iron necess	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic of e B B. Adsorptive co e C C. Sweep coagulation asary. ptive coagulation re p coagulation high co pilisation coagulation asary.	Watertype low 8 bagulation of th coagulation bagulation on because of th move a part of dose needed. (h because of th	he different water types? The high suspended solids, The color at low pH. High Coagulation is also used to The high suspended solids,	
	Suspended solid: Color pH Which coagulatic Answer Correct Feedback	Watertype A s very high low 8 on mechanisms are ir Match Question Ite C. - A. Water typ B. - B. Water typ C. - C. Water typ C. - C. Water typ Water type A: destal not much iron necess Water type B: adsord dose of iron needed Water type C: swee remove pathogens. Water type A: destal not much iron necess	Watertype B low high 6,5 wolved during the co ms Answer Items e A A. Electrostatic of e B B. Adsorptive co e C C. Sweep coagulation asary. ptive coagulation re p coagulation high co pilisation coagulation asary.	Watertype low 8 bagulation of th coagulation bagulation on because of th move a part of dose needed. (h because of th	ne different water types? The high suspended solids, The color at low pH. High Coagulation is also used to	

		remove pathogens.		
				Add Question Here
Question 8 💌	Multiple Choi	ce 10 p	points	Modify Remove
	Question The	term "Enhanced Coagulation	on" is used when the purpos	se is to remove
	Answer	Turbidity		
		 Organic matter Pathogenic micro-organ 	anisms	
		Organic micro-pollutar		
	Correct Feedback			creased and the pH is lowered. and organic matter is incorporated
	Incorrect Feedback			creased and the pH is lowered. and organic matter is incorporated
				Add Question Here
Question 9 🗨	True/False	10 p	points	Modify
		ower temperatures coagula Iller speed and/or applying		using higher coagulant doses,
	Answer	✓ True False		
	Correct Feedback	impeller speed have to be in	creased. Setlling of flocs w	G-value decreases. Therefore, ill be more difficult, thus larger and increased coagulant dose will
	Incorrect Feedback	impeller speed have to be in	creased. Setlling of flocs w	G-value decreases. Therefore, ill be more difficult, thus larger and increased coagulant dose will
				Add Question Here
Question 10 🔽	Multiple Choi	ce 10 p	points	Modify
	height o The coa 500 m ³ / of 10°C	0,2 m. The shear of mixing gulation compartment is a n, only one unit is used. Wh (one unit in use).	g (G _c) at a temperature of bit over dimensioned and	ulant is added in a cascade with a 10 °C is for this situation 1500 s ⁻¹ I therefore, if the velocity is below ity of 500 m ³ /h and a temperature
	Answer	1430 1530 1630 ✔ 1730		
	Correct Feedback	At the design flow all the	hixing is 1500 s ⁻¹ = ((ρ^*g^*	750/2 = 375 m ³ /h per unit. The G- Δh /($\mu^* \tau$)) ^{1/2} , resulting in a
				through 1 unit the contact time will value (shear) will be 1730 s ⁻¹ .
	Incorrect			

		contact time of 0.67 secondes.			
		When 500 m ³ /h instead of 375 m ³ /h flows through 1 be: $375/500.0.67 = 0.50$ secondes. The G-value (she			
			Add Question Here		
Question 11 -	True/False	10 points	Modify		
	Question In	floc formation orthokinetics is the predominant mechanism.			
	Answer	✓ True False			
	Correct Feedback	During peri-kinetic floc formation particles collide as a result of B During ortho-kinetic floc formation the collision frequency is artifi of the size of the flocs the latter is the predominant mechanism.			
	Incorrect Feedback	During peri-kinetic floc formation particles collide as a result of B During ortho-kinetic floc formation the collision frequency is artifi of the size of the flocs the latter is the predominant mechanism.			
			Add Question Here		
Question 12 -	True/False	10 points	Modify Remove		
	Question When the temperature drops from 20 0 C to 10 0 C, the dissipated power of a stirring device should decrease with a factor 1.14 to obtain equal G-values.				
	Answer	True ✔ False			
	Correct Feedback	When the temperature drops from 20 0 C to 10 0 C, the dissip stirring device should increase with a factor 1.14 to obta			
	Incorrect Feedback	When the temperature drops from 20 0 C to 10 0 C, the dissip stirring device should increase with a factor 1.14 to obtain			
			Add Question Here		
Ouestien 12	- -				

Question 13 **True/False**

е

10 points

Modify Remove

Question In the production location of Berenplaat (watercompany Evides), 80 sludge blancket clarifiers (5.7x8.3x3 m) are used for a combined coagulation/flocculation/sedimentation. About 2/3 of the sludge blanket clarifier is stirred mechanically (40 W per basin). The water production is 22000 m³/h. The G_v -value in the flocculation part of the sludge blanket clarifier is equal to 20 s⁻¹.

Answer

🗸 True

		False			
	Correct Feedback	Gv= $(P/(V^*\mu))^{1/2} = (40/(94.6/1000))^{1/2} = 20$) s ⁻¹		
	Incorrect Feedback	Gv= $(P/(V^*\mu))^{1/2}$ = $(40/(94.6/1000))^{1/2}$ = 20) s ⁻¹		
			Add Question Here		
Question 14	True/False	10 points	Modify		
		cculation chamber the flow is perpendicular to the stirri a chamber where the flow is parallel to the stirring axis			
	flow perpendicular	to stirring axis			
	Answer True				
	🗸 Fals	se			
	FeedbackcircuitinIncorrectIn a flo	cculation chamber where flow is perpendicular to the s ng occurs than in a chamber where the flow is parallel cculation chamber where flow is perpendicular to the s ng occurs than in a chamber where the flow is parallel	to the stirring axis. tirring axis more short		
			Add Question Here		
Question 15	Multiple Choice	10 points	Modify Remove		
	Question Assuming a G	G-value of 50 ${ m s}^{-1}$, a contact time of 10 minutes and the	factor $k_a.c_v=0.0001$,		
	what are the concentrations of primary particles in the effluent of a plug flow and a completely stirred flocculation chamber respectively?				
	Answer	• 0.05 n_0 for plug flow and 0.25 n_0 for complete	etely stirred tank		
		reactor	·····		
		0.05 n_0 for plug flow and 0.15 n_0 for comple	etely stirred tank		
		reactor	ataly atimad tapl		
		0.10 n_0 for plug flow and 0.25 n_0 for complete reactor	etery stiffed tank		
		0.10 n_0 for plug flow and 0.15 n_0 for comple	etely stirred tank		
		reactor			
	Correct Feedback	plug flow: $n = n_0 e^{-k} c_{av}^{C} Gt = n_0 e^{-0.0001 * 50 * 10 * 60} = 0.05 n_0$ completely stirred: $n = 1/(1 + k_a c_v Gt) = 1/(1 + 0.0001 * 50 * 10 * 60) = 0.25 n_0$			
	Incorrect Feedback	plug flow: $n = n_0 \cdot e^{-k} \stackrel{c}{a} \stackrel{Gt}{v} = n_0 \cdot e^{-0.0001 * 50 * 10 * 60} = 0.05 n_0$			

	completely stirred: $n = 1/(1 + k_a c_v Gt) = 1/(1+0.0001*50*10*60)$	$(0) = 0.25 n_0$
		Add Question Here
Question 16 True/False	10 points	Modify Remove
Question During floc 5.3 rotations per minu	formation the maximum rotation speed of a ute.	an impeller with a radius of 1.8 m is
Answer	✓ True False	
Correct Feedback Incorrect Feedback	Vtip = 2*pi*r*N = 1 m/s => N=1/(2*pi*1 Vtip = 2*pi*r*N = 1 m/s => N=1/(2*pi*1	
		Add Question Here
Question 17 💌 Multiple Choice	10 points	Modify Remove
Question The picture Image: Constraint of the picture Image: Constraint	e shows the following device:	

	Rapid mixer Mechanical mixer ✓ Hydraulic mixer Flocculent settler
Correct Feedback	The picture shows a hydraulic mixer that is frequently applied in developing countries, because of its robustness and low energy consumption.
Incorrect Feedback	The picture shows a hydraulic mixer that is frequently applied in developing countries, because of its robustness and low energy consumption.

Add Question Here

ОК