10 points

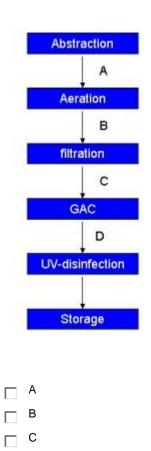
Save

CT4471-OCW DRINKING WATER TREATMENT 1 (2006-2007) (4383-2006OCW) > CONTROL PANEL > PREVIEW ASSESSMENT: SOFTENING

Preview Assessment: Softening

Name	Softening
Instructions	Answer the questions in small groups (2 persons). Think well and you are allowed to consult your lecture notes or other sources.
Multiple Attempts	Not allowed. This Test can only be taken once.
Force Completion	This Test can be saved and resumed later.

* Question Completion Status:


Question	1		10 points	Save
		tening is amongst others applied to decrease the release of heavy metals from the ribution network and to reduce scaling of household equipment.		
	\odot	True		
	O	False		
Question	2		10 points	Save
	A w	rater hardness of 6 oD (German Degrees) is equivalent to		
	O	6 mmol/l		
	0	1.6 mmol/l		
	igodot	1 mmol/l		
	C	0.6 mmol/l		
Question 3		10 points	Sav	
	Wh	ich of the following chemicals can be used for softening of drinking water		
		Caustic soda (NaOH)		
		Iron chloride (FeCl3)		
		Aluminium sulphate (Al2(SO4)3)		
		Sodium carbonate (Na2CO3)		
		Lime water (Ca(OH)2)		
		Gipsum (CaSO4)		
Question 4		10 points	Sav	
		e of the disadvantages of softening in the storage lakes compared to softening in pellet teners are the high investment costs.		
	\odot	True		
	0	False		

Question 5

Water with a concentration Na of 63 mg/l, K of 5 mg/l, Ca of 45 mg/l, Mg of 9 mg/l and Fe of 4 mg/l has a hardness of 1.5 mmol/l.

Indicate possible locations for softening in the following ground water treatment train

Question 7

10 points Save

10 points

Save

The disadvantage of softening aerated groundwater is that is has a high carbondioxide concentration.

⑦ True

False

Question 8

Assume a water with the following characteristics: ca2+ = 3 mmol/l; Mg2+ = 0.5 mmol/l; HCO3- = 6 mmol/l; CO2 = 2 mmol/l.

Determine the lime dosing and the effluent HCO3- at an effluent total hardness of 1.5 mmol/l

- \bigcirc Ca(OH)2 = 4 mmol/l; HCO3- = 2 mmol/l.
- \bigcirc Ca(OH)2 = 2 mmol/l; HCO3- = 2 mmol/l.

- \bigcirc Ca(OH)2 = 4 mmol/l; HCO3- = 4 mmol/l.
- \bigcirc Ca(OH)2 = 2 mmol/l; HCO3- = 4 mmol/l.

The softening of water for the ¿Berenplaat¿ is performed by dosing Ca(OH) ₂ to the storage pond of the ¿Brabantse Biesbosch¿. The water quality of the river Meuse is (the river Meuse is the feed of the storage lakes): Ca ²⁺ = 53 mg/l; Mg ²⁺ = 17,5 mg/l; Na ⁺ = 37 mg/l; HCO ₃ ⁻ = 154 mg/l;	
-	
PH = 7,9; Temperature = 10°C. What is the hardness of the raw water in mmol/I and the amount of Ca(OH) ₂ needed to lower the hardness to the regulated value of 1.5 mmol/I	
Mardness is 1.33 mmol/l	
Dosing of Ca(OH)2 is 0.6 mmol/l Mardness is 2.04 mmol/l	
Dosing of Ca(OH)2 is 0.6 mmol/l Mardness is 1.33 mmol/l	
Dosing of Ca(OH)2 is 0.65 mmol/l Hardness is 2.04 mmol/l	
Dosing of Ca(OH)2 is 0.65 mmol/l	
Question 10 10 po	ints 🔤
One of the advantages of using Ca(OH) ₂ for softening is that no Na ⁺ -increase takes place. One of the disadvantages of using Ca(OH) ₂ is that the buffering capacity of the water decreases more than by using NaOH	
⊙ True	
© False	
Question 11 10 po	ints 🔅
Of a water type the water composition is known: $Ca^{2+} = 100 \text{ mg/l}$; $Mg^{2+} = 6.1 \text{ mg/l}$; HCO_3^-	
= 347.7 mg/l; CO ₂ = 11.44 mg/l; Na ⁺ = 10.8 mg/l;	
The legislation for the water composition is: total hardness = 1.5 mmol/l; concentration $HCO_3^- > 2 \text{ mmol/l}$; concentration $Na^+ < 5.2 \text{ mmol/l}$	
NaOH is the chemical for softening that is most suited for this water.	
⑦ True	
© Faise	
Question 12 10 po	ints
The most important reason that split treatment during softening is not applied, is:	
© Supersaturation of calcium carbonate in the mixed effluent.	

- $_{\ensuremath{\mathbb{C}}}$ Costs of construction of the softening reactors.
- $_{\ensuremath{\mathbb{C}}}$ High magnesium concentrations in the raw water.

Question 13 10	points	Save
The most important reason(s) why split treatment is applied, is/are:		
(more answers can be right)		
Supersaturation of calcium carbonate in the mixed effluent.		
Low temperatures during winter, thus kinetics of crystallisation are slow.		
Construction costs of the pellet reactors.		
High magnesium concentrations in the raw water.		
Question 14 10	points	Sav
Of a water type the water composition is known: $Ca^{2+} = 100 \text{ mg/l}$; $Mg^{2+} = 6.1 \text{ mg/l}$; HCO_3^{-}	-	
= 347.7 mg/l; CO ₂ = 11.44 mg/l; Na ⁺ = 10.8 mg/l;		
The legislation for the water composition is: total hardness = 1.5 mmol/l; concentration $HCO_3^- > 2 \text{ mmol/l}$; concentration Na ⁺ < 5.2 mmol/l		
There is a possibility to soften in a split stream. How large should the split stream be if this spilt stream can be softened to 0.7 mmol/l?		
0.61 times total flow		
O.39 times total flow		
O.77 times total flow		
© 0.23 times total flow		
Question 15 10	points	Sav
The kinetics of crystallisation of calcium carbonate on the pellets, depends amongst others on temperature, grain size and flow velocity		
⊙ True		
⑦ False		
Question 16 10	points	Sav
With an increase of temperature the specific surface area in a fluidised bed increases, because of a decrease in porosity		
⊙ True		
⊙ False		
Question 17 10	points	Save
The head loss in a fluidised bed is amongst others dependent on the filterbed height, the density of the pellets and the flow velocity.		
⊙ True		

⑦ True

	© False	
Question 18	10 points	Save
	What is the head loss in a fluidised bed, assuming the following data:	
	Fixed bed height = 2 m; maximum pellet grain size 1 mm; fixed bed porosity = 0.4; minimum fluidised bed porosity = 0.5; density pellets = 2700 kg/m3 ; flow velocity = 80 m/h ; temperature = 10 oC .	
	⊙ ² m	
	○ 2.04 m	
	○ 1 m	
	O 1.02	
Question 19	10 points	Save
	What is the bed height of a fluidised bed, assuming the following data:	
	Fixed bed height = 2 m; pellet grain size 1 mm; fixed bed porosity = 0.4 ; density pellets = 2700 kg/m3; flow velocity = 80 m/h; temperature = 10 oC.	
	⊙ 2.68 m	
	⊙ 3.27 m	
	⊙ 4.13 m	
	⊙ 5.39 m	
Question 20	10 points	Save
	Normally, several softening reactors are placed in parallel. What is the main reason for that?	
	○ The limited size of the steel reactors.	
	C Flexibility in operation.	
	C Equal distribution of chemicals over the bottom.	
	Construction costs of softening reactors	

Question 21

10 points Save

What type of reactor you see on the photograph

- ⊙ Spiractor
- Blackpool reactor
- ⊙ Amsterdam reactor
- $_{\bigodot}$ Woerden reactor

Save Submit