CT4471-OCW DRINKING WATER TREATMENT 1 (2006-2007) (4383-2006OCW) > CONTROL PANEL > TEST MANAGER > TEST CANVAS

🖄 Test Car	ıvas						
Add, modify, and re questions. Use Cre creation.	emove questions. Select eation Settings to establis	a question type from the Add Question drop- h which default options, such as feedback a	-down list and click Go to add nd images, are available for question				
Add Calculated	Formula	GO Creation Settings					
Name Description Instructions	Softening Questions about softeni Answer the questions in lecture notes or other so	ing of CT4471 Drinking Water Treatment 1 n small groups (2 persons). Think well and yo purces.	ou are allowed to consult your				
			Modify				
			Add Question Here				
Question 1	True/False	10 points	Modify Remove				
	Question Softening is a distribution network and Answer	mongst others applied to decrease the relea to reduce scaling of household equipment. True False	se of heavy metals from the				
			Add Question Here				
Question 2	Multiple Choice	10 points	Modify				
	Question A water hardr Answer	ness of 6 oD (German Degrees) is equivalen 6 mmol/l	t to				
		1.6 mmol/l ✓ 1 mmol/l 0.6 mmol/l					
	Correct Feedback Incorrect Feedback	See table 5.2 in lecture notes See table 5.2 in lecture notes					
			Add Question Here				
Question 3 🗨	Multiple Answer	10 points	Modify Remove				
	Question Which of the f Answer	following chemicals can be used for softening Caustic soda (NaOH) Iron chloride (FeCl3) Aluminium sulphate (Al2(SO4)3) Sodium carbonate (Na2CO3) Lime water (Ca(OH)2) Gipsum (CaSO4)	g of drinking water				
	Correct Feedback Depending on the situation NaOH, Na2CO3 or Ca(OH)2 is dosed.						
	Incorrect Feedback De	pending on the situation NaOH, Na2CO3 or	Ca(UH)2 IS dosed.				
Question 4	True/False	10 points	Modify Remove				
	Question						
	One of the disadvantag are the high investment	es of softening in the storage lakes compa t costs.	ared to softening in pellet softeners				

	Answer	True					
		🗸 False					
	Correct Feedback	One of the advant softeners are the produced sludge a	tages of softening in the s low investment costs. Dis and flexibility related to lo	storage lakes compared t sadvantages are short cir ocation in the treatment tr	o softening ir cuiting, remo ain.	n pellet val of	
	Incorrect Feedback	One of the advant softeners are the produced sludge	tages of softening in the s low investment costs. Dis and flexibility related to lo	storage lakes compared t sadvantages are short cir ocation in the treatment tr	o softening ir cuiting, remo ain.	n pellet val of	
					Add Questic	<u>on Here</u>	
Question 5	True/False		10 points		Modify	emove	
	Question Wamg/I has a ha	/ater with a concentration Na of 63 mg/l, K of 5 mg/l, Ca of 45 mg/l, Mg of 9 mg/l and Fe of 4 nardness of 1.5 mmol/l.					
	Answer		🗸 True				
			False				
	Correct Feed	lback	1.13 mmol/l Ca and	1 0.37 mmol/l Mg.			
	Incorrect Fe	edback	1.13 mmol/l Ca and	1 0.37 mmol/l Mg.			
				,	Add Questic	<u>on Here</u>	
Question 6	Multiple Ans	wer	10 points		Modify	emove	
	Question						
	Indicate poss	ible locations for so	ftening in the following gro	ound water treatment train			
	Abs	traction					
		A					

Correct

Feedback

Incorrect

Softening is possible on raw water, after aeration and after filtration. However, carry over filtration should always be present.

Softening is possible on raw water, after aeration and after filtration. However, carry

D

	Feedback	over filtration should always be present.				
			Add Question Here			
Question 7	True/False	10 points	Modify Remove			
	Question The disadvantage of softening aerated groundwater is that is has a high carbondioxide concentration.					
	Answer	True				
		✓ False				
	Correct Feedback	Raw groundwater can have a high carbondioxide concentratio stripped during aeration.	n. Carbon dioxide is			
	Incorrect Feedback	Raw groundwater can have a high carbondioxide concentratio stripped during aeration.	n. Carbon dioxide is			
			Add Question Here			
Question 8	Multiple Choice	10 points	Modify Remove			
	Question					
	Assume a water w mmol/l; CO2 = 2 n	ith the following characteristics: $ca2+ = 3 \text{ mmol/l}$; Mg2+ = 0.5 r mmol/l.	nmol/I; HCO3- = 6			
	Determine the lime Answer	e dosing and the effluent HCO3- at an effluent total hardness of	1.5 mmol/l			
		Ca(OH)2 = 4 mmol/l; HCO3- = 2 mmol/l.				
		Ca(OH)2 = 2 mmol/l; HCO3- = 2 mmol/l.				
		Ca(OH)2 = 4 mmol/l; HCO3- = 4 mmol/l.				
		Ca(OH)2 = 2 mmol/l; HCO3- = 4 mmol/l.				
	Correct Feedbac	C Deacidification: 2CO2 + Ca(OH)2 => 2HCO3- + Ca2+				
		result: dosing of 1 mmol/l; HCO3- = 8 mmol/l; Ca2+ =	4 mmol/l			
		Softening: Ca(OH)2 + Ca2+ + 2HCO3- => 2CaCO3	+ 2h2O			
		result: dosing of 3 mmol/l; HCO3- = 2 mmol/l; Ca2+ =	1 mmol/l			
	Incorrect Feedba	Total lime dosing: 4 mmol/lckDeacidification: 2CO2 + Ca(OH)2 => 2HCO3- + Ca2+				
		result: dosing of 1 mmol/l; HCO3- = 8 mmol/l; Ca2+ =	4 mmol/l			
		Softening: Ca(OH)2 + Ca2+ + 2HCO3- => 2CaCO3	+ 2h2O			
		result: dosing of 3 mmol/l; HCO3- = 2 mmol/l; Ca2+ =	1 mmol/l			
		Total lime dosing: 4 mmol/l				
			Add Question Here			
Question 9	Multiple Choice	10 points	Modify Remove			

Question

- The softening of water for the ¿Berenplaat¿ is performed by dosing Ca(OH)₂ to the storage pond of the ¿Brabantse Biesbosch¿. The water quality of the river Meuse is (the river Meuse is the feed of the storage lakes): Ca²⁺ = 53 mg/l; Mg²⁺ = 17,5 mg/l; Na⁺ = 37 mg/l; HCO₃⁻ = 154 mg/l; PH = 7,9; Temperature = 10°C.
- What is the hardness of the raw water in mmol/l and the amount of Ca(OH)₂ needed to lower the hardness to the regulated value of 1.5 mmol/l

Answer

Hardness is 1.33 mmol/l

Dosing of Ca(OH)2 is 0.6 mmol/l

Hardness is 2.04 mmol/l

Dosing of Ca(OH)2 is 0.6 mmol/l

Hardness is 1.33 mmol/l

Dosing of Ca(OH)2 is 0.65 mmol/l

```
1
```

Hardness is 2.04 mmol/l

Dosing of Ca(OH)2 is 0.65 mmol/l

Correct Feedback The hardness is 53/40+17.5/24.3=2.04 mmol/l

pH = pK1-log([CO2]/[HCO³⁻]) --> 7.9 = 6.46-log([CO2]/[2.52]) \rightarrow CO2 = 0.1 mmol/l Dosering Ca(OH)2 first removes CO2 $CO2 + Ca(OH)2 \rightarrow Ca^{2+} + 2 \cdot HCO3$ 0.1 1.33 2.52 -0.1 -0.05 +0.05 +0.1 -----+ 1.38 n 2.62 Afterwards the softening reaction till a calcium hardness of 0.78 mmol/l takes place Ca(OH)2 + Ca²⁺ + 2·HCO3 \rightarrow 2·CaCO3 + 2·H2O 1.38 2.62 - 0.6 - 1.2 -0.6 -----0.78 1.42

In total 0.05 + 0.6 = 0.65 mmol Ca(OH)2 is dosed.

Incorrect Feedback

The hardness is 53/40+17.5/24.3=2.04 mmol/lpH = pK1-log([CO2]/[HCO³⁻]) --> 7.9 = 6.46-log([CO2]/[2.52]) \rightarrow CO2 = 0.1 mmol/l Dosering Ca(OH)2 first removes CO2 CO2 + Ca(OH)2 \rightarrow Ca²⁺ + 2.HCO3 0.1 1.33 2.52 -0.1 -0.05 +0.05 +0.1

	()	1.38	2.62	
	/	Afterwards the so	ftening read	ction till a calcium	hardness of 0.78 mmol/l
	t (akes place Ca(OH)2 + Ca ²⁺ 1.38	+ 2·HCO3 2.62	→ 2·CaCO3 + 2	2·H2O
		-0.6 - 0.6	- 1.2		
	-	0.78	1.42		+
	I	n total 0.05 +0.6	= 0.65 mmo	ol Ca(OH)2 is dose	ed.
					Add Question Here
Question 10 -	True/False	10 p	oints		Modify
	Question One of the advantages the disadvantages than by using NaC	s of using Ca(OH) ₂ of using Ca(OH) ₂ DH	for softenin is that the bu	g is that no Na ⁺ -incr uffering capacity of t	ease takes place. One of he water decreases more
	Answer			✓ True False	
	Correct Feedback Incorrect Feedback			No commen No commen	t t
					Add Question Here
Question 11	True/False	10 p	oints		Modify Remove
	Of a water type the water type the water type the water type the water mg/l; $CO_2 = 11.44 \text{ mg/}$. The legislation for the mmol/l; concentration	tter composition is /l; Na ⁺ = 10.8 mg/l; water composition Na ⁺ < 5.2 mmol/l	known: Ca ²⁺ is: total harc	⁻ = 100 mg/l; Mg ²⁺ = Iness = 1.5 mmol/l;	6.1 mg/l; $HCO_3^- = 347.7$ concentration $HCO_3^- > 2$
	NaOH is the chemical Answer	for softening that i ✓ True False	s most suite	d for this water.	
	Correct Feedback	dosing NaOH: Ca ²⁺ : Mg ²⁺ : Na ⁺ : HCO ₃ - CO ₂ :	1.51 mm 1.25 mmol 0.25 mmol 1.98 mmol : 4.71 mmol 0 mmol/l	iol/I /I /I /I	
		dosing Ca(Ol Ca ²⁺ : Mg ²⁺ : Na ⁺ : HCO ₃ ⁻ CO ₂ :	H)2: 1.51 mr 1.25 mmol 0.25 mmol 0.47 mmol : 3.22 mmol 0 mmol/l	nol/l /l /l /l	
		Ca(OH)2 is t	he most app	propriate chemical fo	or softening
			-		Add Question Here
Question 12	Multiple Choice	10 p	oints		Modify

http://blackboard.tudelft.nl/webapps/assessment/do/authoring/modifyAssessment

	Question The	e most imp	ortant reasor	n that split treatme	nt d	dur	ing softening is	s not app	lied, is:	
	Answer	Supe	rsaturation o	f calcium carbonat	te in	n th	ne mixed efflue	nt.		
		Low te	emperatures of	during winter and t	thus	s sl	low crystallisati	on.		
		Costs	s of construct	ion of the softening	g re	eac rav	ctors.			
	Correct	Calcium r	eduction in a	pellet reactor is li	mite	ed	to aproximately	v 0.5 mm	nol/I. When	hiah
	Feedback	magnesiu apply spli	im concentra t treatment fo	tions occur in the in or softening until a	raw tota	wa al ł	ater (up to 1 mi nardness of 1.5	mol/l), it mmol/l.	is not poss	ible to
	Incorrect Feedback	Calcium r magnesiu apply spli [;]	eduction in a im concentra t treatment fo	pellet reactor is lin tions occur in the r or softening until a	mite raw tota	ed / wa al h	to aproximately ater (up to 1 mi nardness of 1.5	y 0.5 mm mol/l), it 5 mmol/l.	nol/I. When is not poss	high ible to
									Add Que	estion Here
Question 13	Multiple Ans	wer		10 points					Modify	Remove
	Question									
	The most imp	ortant reas	son(s) why sp	olit treatment is app	plied	ed,	is/are:			
	(more answei	rs can be ri	ight)							
	Answer	1								
		Sur	oreaturation	of calcium carbon	ato	in	the mixed offly	iont		
	Low temperatures during winter, thus kinetics of crystallisation are slow									
		∠ Co	onstruction co	osts of the pellet re	eact	tor	s.			
		Hi	igh magnesiu	m concentrations	in th	he	raw water.			
	Correct Feedback	Applyir level o	ng split treatr	nent less reactors ated calcium carbo	can onate	n b te.	e build and the	e mixed e	effluent has	a lower
	Incorrect Feedback	Applyir level o	ng split treatr of supersatura	nent less reactors ated calcium carbo	can onate	n b te.	e build and the	e mixed e	effluent has	a lower
									Add Que	estion Here
Question 14 💌	Multiple Choi	ice		10 points					Modify	Remove
	Question Of a water ty	pe the wat	ter compositi	on is known: Ca ²	^{!+} = ¹	10)0 mg/l; Mg ²⁺ =	= 6.1 mg	ŋ∕l; HCO ₃ ⁻	= 347.7
	mg/l; CO ₂ = 11.44 mg/l; Na ⁺ = 10.8 mg/l;									
	The legislation for the water composition is: total hardness = 1.5 mmol/l; concentration $HCO_3^- > 2$									
	mmol/l; concentration Na ⁺ < 5.2 mmol/l									
	There is a po stream	ວssibility to າ can be sc	o soften in a postened to 0.7	split stream. How 7 mmol/l?	larg	ge	should the sp	lit strear	n be if this	spilt
	Answer		🥒 0.61 tir	nes total flow						
			0.39 tir	nes total flow						
			0.77 tir	nes total flow						
	• • -		0.23 tir							4+0
	Correct Feed	Jback adhaak	$Q^{1.5} = (Q^{1.5} = Q^{1.5})$	$(-R)^2.75 + R^0.7$	>		1.25°Q = 2.05° 1.25*O = 2.05*	'K -	> R = 0.6	1^Q 1*O
		EUDACK	Q 1.5 = (G	(-R) 2.75 + R 0.7	>	•	1.25 Q = 2.05	л -	-5 K = 0.0	
Question 15 👻	True/False			10 points					Modify	Remove
	Question The kinetics of crystallisation of calcium carbonate on the pellets, depends amongst others on									

	temperature, gr	rain size	and flow velocity				
	Answer		✓ True False				
	Correct Feedb	back	The kinetic constant (and the porosity) is dependent o	n temperature.			
			The grain size influences the specific crystallisation su	ırface area.			
	Incorrect Feed	dback	The flow influences the porosity and thus the specific of The kinetic constant (and the porosity) is dependent of	crystallisation surface area. n temperature.			
			The grain size influences the specific crystallisation su	ırface area.			
			The flow influences the porosity and thus the specific crystallisation surfac				
				Add Question Here			
Question 16 -	True/False		10 points	Modify Remove			
	Question With because of a de	an increce	ease of temperature the specific surface area in a fluidis	sed bed increases,			
	Answer	🗸 Т	rue				
		Fa	alse				
	Correct Feedback	S = 6	S*(1-pe)/d				
		pe ³ /($1-pe)^{0.8} = 130v^{0.3}/g*\rho_w/(\rho_p-\rho_w)*v^{1.2}/d^{1.8} d$				
		Incr	ease of temperature => decrease of viscosity =	decrease of porosity =>			
	In	incr	ease of specific surface area.				
	Feedback	5=0	ο"(1-pe)/α				
		pe ³ /($1-pe)^{0.8} = 130v^{0.3}/g*\rho_w/(\rho_p-\rho_w)*v^{1.2}/d^{1.8} d$				
		Incr	ease of temperature => decrease of viscosity => ease of specific surface area.	decrease of porosity =>			
				Add Question Here			
Question 17 -	True/False		10 points	Modify Remove			
	Question The l	head lo bellets a	ss in a fluidised bed is amongst others dependent on th nd the flow velocity.	e filterbed height, the			
	Answer	Tru	e				
		🗸 Fal	Se				
	Correct Feedback	The he height	ead loss in a fluidised bed is amongst others dependent , the fixed filter bed porosity and the density of the pelle	on the fixed filter bed ts. Not on flow velocity.			
	Incorrect Feedback	The he height	ead loss in a fluidised bed is amongst others dependent , the fixed filter bed porosity and the density of the pelle	on the fixed filter bed ts. Not on flow velocity.			
				Add Question Here			
Question 18	Multiple Choic	е	10 points	Modify Remove			
	Question						
	What is the head loss in a fluidised bed, assuming the following data:						
	Fixed bed heigl bed porosity = 0	ht = 2 m 0.5; der	r; maximum pellet grain size 1 mm; fixed bed porosity = sity pellets = 2700 kg/m3; flow velocity = 80 m/h; tempe	0.4; minimum fluidised erature = 10 oC.			
	Answer		2 m				

			✓ 2.04 m 1 m						
			1.02						
	Correct Feed	dback	H = (1-p)*L*(rhop-rhow)/rho	w = 2.04 m					
	Incorrect Fe	edback	H = (1-p)*L*(rhop-rhow)/rho	w = 2.04 m					
				Add Question Here					
Question 19 🗨	Multiple Cho	ice	10 points	Modify					
	Question								
	What is the bed height of a fluidised bed, assuming the following data:								
	Fixed bed height = 2 m; pellet grain size 1 mm; fixed bed porosity = 0.4; density pellets = 2700 kg/m3; flow velocity = 80 m/h; temperature = 10 oC.								
	Answer		🗸 2.68 m						
			3.27 m						
			4.13 m						
			5.39 m						
	Correct Feed	dback	Le = (1-pe)/(1-po)L;						
			$pe^{3}/(1-pe)^{0.8}=130v^{0.3}/g*\rho_w/(\rho_p-\rho_w)$	$)*v^{1.2}/d^{1.8} => pe = 0.55$					
			=> Le = 2.68 m						
	Incorrect Fe	edback	Le = (1-pe)/(1-po)L;						
			$pe^{3}/(1-pe)^{0.8}=130v^{0.3}/g*\rho_w/(\rho_p-\rho_w)$	$)*v^{1.2}/d^{1.8} => pe = 0.55$					
			=> Le = 2.68 m						
				Add Question Here					
Question 20 -	Multiple Cho	ice	10 points	Modify Remove					
	Question								
	Normally, sev	veral soften	ing reactors are placed in parallel. What is	the main reason for that?					
	Answer	The lir	mited size of the steel reactors.						
		🗸 Flexib	ility in operation.						
		Equal	distribution of chemicals over the bottom.						
		Const	ruction costs of softening reactors						
	Correct Feedback	The softer flow can h is therefor	ning reactors can handle a flow velocity be eve that magnitude that one reactor is not e necessary to install more than one react	tween 60 and 100 m/h. Variations in sufficient. For flexibility in operation it or (apart from maintenance purposes).					
	Incorrect Feedback	The softer flow can h is therefor	ning reactors can handle a flow velocity be eve that magnitude that one reactor is not e necessary to install more than one react	tween 60 and 100 m/h. Variations in sufficient. For flexibility in operation it or (apart from maintenance purposes).					
				Add Question Here					
Question 21 -	Multiple Cho	ice	10 points	Modify					

 $\ensuremath{\textbf{Question}}$ What type of reactor you see on the photograph

Answer

Spiractor

Blackpool reactorAmsterdam reactor

Woerden reactor

Correct Feedback Incorrect Feedback

is characterised by its flat bottom. You see a Amsterdam reactor. The reactor is placed at Amsterdam Water Supply and is characterised by its flat bottom.

You see a Amsterdam reactor. The reactor is placed at Amsterdam Water Supply and

Add Question Here

ОК