
Dynamics and Stability AE3-914

Sample problem—Week 3

Centrifuge in Star City

Statement

A centrifuge capable of producing accelerations up
to 8g is available for cosmonaut training in Star City.
The centrifuge can be seen as a massless rotating
arm of length R supporting a simple pendulum of
length l and mass m. A constant moment M is
applied to the arm. The acceleration of gravity is g.

a. Set up the Lagrangian.

b. Are there any ignorable coordinates?

c. Are there any integrals of motion?

When sufficient velocity has been reached the moment M is removed.

d. Are there any ignorable coordinates now? Which integrals of motion do they intro-
duce?

e. Set up the Routhian and find the equation of motion for the explicit coordinate.

f. What are the conditions for steady motion?

Model

The centrifuge is schematised as shown, with the generalised coordinates θ and φ, which
provide a proper description of the motion. The arm of length R remains horizontal and
the pendulum is always contained within a vertical plane.
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a. Set up the Lagrangian

In order to state the Lagrangian function expressions for the kinetic energy T and the
potential V must be found. In this example the absolute velocity of the mass will be
expressed in terms of the XY Z-coordinate system for a given configuration of the gener-
alised coordinates and the time derivatives will be obtained. The absolute position of the
particle is

X = (R + l sin θ) cos φ

Y = (R + l sin θ) sin φ

Z = −l cos θ

(1)

and the corresponding time derivatives are

Ẋ = l cos θ cos φ θ̇ − (R + l sin θ) sinφ φ̇

Ẏ = l cos θ sin φ θ̇ + (R + l sin θ) cos φ φ̇

Ż = l sin θ θ̇

(2)

The kinetic energy is now elaborated as

T =
1

2
m(Ẋ2 + Ẏ 2 + Ż2)

=
1

2
m

(

(R + l sin θ)2φ̇2 + l2θ̇2
)

(3)

Alternatively, inspection of the motion of the mass reveals that the velocity vector has
two orthogonal components that can easily be identified. Other possibility is to consider
a moving xyz-coordinate system such that the x-axis coincides with the line joining the
hinge and the mass, an angular velocity vector can be stated in terms of θ̇ and φ̇ and the
absolute velocity of the mass can be found.

A gravitational potential energy is identified as

Vg = −mgl cos θ (4)

with the zero level at the XY -plane and a moment M is applied to the system. The
virtual work is immediately found to be

δW = Mδφ, (5)

which signifies that the generalised force associated with φ is

Qφ = M. (6)

A generalised potential can be found by simple integration for this generalised force as

Vgen = −Mφ, (7)



which enables us to express the potential function of the system as

V = Vg + Vgen

= −mgl cos θ − Mφ
(8)

The Lagrangian is now expressed as

L = T − V

=
1

2
m

(

(R + l sin θ)2φ̇2 + l2θ̇2
)

+ mgl cos θ + Mφ.
(9)

b. Are there any ignorable coordinates?

Both generalised coordinates θ and φ are present in the Lagrangian and consequently none
of them is ignorable

c. Are there any integrals of motion?

The applied moment M is carrying out work and therefore the mechanical energy E is not
conserved. In other words, E is not an integral of motion.

We have a Lagrangian system, because all forces are conservative or can be derived from
a generalised potential. Moreover the Lagrangian function exhibits no explicit dependence
on time. Thus, the Jacobi energy integral h is an integral of motion. It is expressed as

h = θ̇
∂L

∂θ̇
+ φ̇

∂L

∂φ̇
− L

=
1

2
m

(

(R + l sin θ)2φ̇2 + l2θ̇2
)

− mgl cos θ − Mφ

(10)

The moment M is removed

When sufficient velocity has been reached the moment M is removed. Consequently, the
Lagrangian adopts the form

L = T − V

=
1

2
m

(

(R + l sin θ)2φ̇2 + l2θ̇2
)

+ mgl cos θ.
(11)

d. Are there any ignorable coordinates now?

The Lagrangian (11) does not depend on the generalised coordinate φ explicitly. It can
then be stated that φ is an ignorable coordinate. The corresponding integral of motion is
the generalised momentum conjugate to φ, i.e.,

∂L

∂φ̇
= m(R + l sin θ)2φ̇ = Cφ. (12)



The physical interpretation of (12) is the conservation of angular momentum.

e. Set up the Routhian and find the equation of motion for

the explicit coordinate

The ignorable coordinate can be removed from the Lagrangian by means of the Routh
formalism. First, the ignorable coordinate needs to be expressed as an explicit function of
its corresponding integral of motion,

φ̇ =
Cφ

m(R + l sin θ)2
. (13)

This is substituted in the expression of the Routhian to get

R = Cφφ̇ − L

= −

1

2
ml2θ̇2 +

C2

φ

2m(R + l sin θ)2
− mgl cos θ

(14)

The equation of motion for the explicit coordinate is now obtained from

d

dt

(

∂R

∂θ̇

)

−

∂R

∂θ
= 0. (15)

The generalised momentum is obtained as

∂R

∂θ̇
= −ml2θ̇ (16)

and its rate of change is
d

dt

(

∂R

∂θ̇

)

= −ml2θ̈. (17)

The non-inertial term reads

∂R

∂θ
= −

C2

φ

m(R + l sin θ)3
l cos θ + mgl sin θ. (18)

Substituting (17–18) into (15) and rearranging terms we obtain the equation

θ̈ −

C2

φ

m2l(R + l sin θ)3
cos θ +

g

l
sin θ = 0. (19)

Notice that the presence of the integral of motion Cφ in (19) ensures a coupling between
φ̇ and θ as stated by (12).



f. What are the conditions for steady motion?

Steady motion is attained when the generalized velocity and the rate of change of the
generalised momentum of the explicit coordinate θ vanish, which in view of (17) is simply
written as

θ̇ = θ̈ = 0 θ = constant. (20)

A direct consequence of this, together with the integral of motion (12), is that

φ̇ = constant. (21)

Since the rate of change of the generalised momentum vanishes, the condition for steady
motion is directly obtained from

∂R

∂θ
= 0 (22)

which, considering (18) is written as

C2

φ

m(R + l sin θ)3
l cos θ = mgl sin θ. (23)

Since both θ and φ̇ remain constant in steady motion conditions, the integral of motion
Cφ can be explicitly substituted in (23) to get

φ̇2 =
g tan θ

R + l sin θ
. (24)

Thus, if the initial conditions (i.e., the conditions at the instant that the moment M is
removed) for θ and φ̇ meet the above expression, together with θ̇ = 0, the motion will be
steady. Steady motion can be viewed as an equilibrium state of the non-ignorable (aka
explicit) coordinates.


