
Chapter 11

Longitudinal driving taks models

Summary of chapter - The description of a traffic stream at microscopic level is about the move-

ments of individual driver-vehicle combinations or driver-vehicle elements (DVE’s). Microscopic

models describe the interactions between the DVE’s and sometimes are called manoeuver mod-

els.

An important aspect ot these microscopic model is how they describe the longitudinal driving

task, both with respect to the road, and with respect to the other vehicles in the traffic stream.

These are discussed in this chapter. Other manoeuver models concern e.g. overtaking on a road

with oncoming vehicles; entering the roadway of a motorway from an on-ramp; crossing a road;

weaving, etc. These will in part be discussed in the following chapter.

We have seen that the longitudinal driving task pertains both to the interaction with the

roadway and the interaction with the other vehicles in the traffic stream. With respect to

the former, the longitindal roadway subtask will rougly describe how vehicles will accelerate

towards their free speed (or desired speed), when no other vehicles are directly in front of them.

The longitudinal interaction task rougly describes how vehicles interact with other, generally

slower vehicles. In particular, it describes the car-following behaviour. This section in particular

describes the interaction subtask.

List of symbols

si m distance headway of vehicle i

Tr s reaction time

vi - speed of vehicle i

τ s reaction time

ai m/s2 acceleration of vehicle i

xi m position of vehicle i

κ 1/s sensitivity

u - mean speed

11.1 Model classification

In presenting the different modelling approaches that exist to describe the longitudinal driving

task, the following approaches are considered1:

1. Safe-distance models

2. CA-models

1This list is certainly not exhaustive, but merely identifies the main modelling approaches to describe the

longitudinal driving tasks.

187



188 CHAPTER 11. LONGITUDINAL DRIVING TAKS MODELS

3. Stimulus-response models

4. Psycho-spacing models

5. Optimal velocity models / optimal control models

6. Fuzzy-logic / rule-based models

Safe distance models are static and therefore do not descibe the dynamics of vehicle interac-

tions. CA-models are discrete (in time and space) dynamic models, which provide a very coarse

(but fast) description of traffic flow operations. Stimulus-response models, Pshycho-spacing

models, and optimal control models provide a continuous time description of traffic flow.

Headway distribution models can also be considered microscopic models. These statistical

models describe the headway distributions, and are generally based on very simple assumptions

regarding the behaviour of drivers. Section 3.2 presented several distribution models as well as

several applications. For a discussion on headway distribution models, the reader is referred to

section

11.2 Safe-distance models

The first car-following models were developed in [44]. He stated that a good rule for following

another vehicle at a safe distance S is to allow at least the length of a car between your vehicle

and the vehicle ahead for every ten miles per hour of speed at which the vehicle is travelling.

si = S (vi) = S0 + Trvi (11.1)

where S0 is the effective length of a stopped vehicle (including additional distance in front), and

Tr denotes a parameter (comparable to the reaction time). A similar approach was proposed by

[20]. Both Pipes’ and Forbes’ theory were compared to field measurements. It was concluded

that according to Pipes’ theory, the minimum headways are slightly less at low and high veloc-

ities than observed in empirical data. However, considering the models’ simplicity, agreement

with real-life observations was amazing (cf. [43]).

Leutzbach [33] discusses a more refined model describing the spacing of constrained vehi-cles

in the traffic flow. He states that the overall reaction time Tr consists of:

• perception time (time needed by the driver to recognise that there is an obstacle);
• decision time (time needed to make decision to decelerate), and;
• braking time (needed to apply the brakes).

In line with the terminology presented in chapter 10, the perception-response time PRT

consists of te perception time and the decision time; the control movement time is in this case

equal to the braking time.

The braking distance is defined by the distance needed by a vehicle to come to a full stop.

It thus includes the reaction time of the driver, and the maximal deceleration. The latter is a

function of the weight and the road surface friction µ, and eventual acceleration due to gravity

g (driving up or down a hill). The total safety distance model assumes that drivers consider

braking distances large enough to permit them to stop without causing a rear-end collision with

the preceding vehicle if the latter come to a stop instantaneously. The safe distance headway

equals

S (vi) = S0 + T 0rvi +
v2i
2µg

(11.2)

A similar model was proposed by [30]. Consider two successive vehicles with approximately

equal braking distances. We assume that the spacing between the vehicles must suffice to avoid
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a collision when the first vehicle comes to a full stop (the so-called reaction time distance model).

That is, if the first vehicle stops, the second vehicle only needs the distance it covers during the

overall reaction time T 0r with unreduced speed, yielding Forbes’ model. Jepsen [30] proposes
that the gross-distance headway S effectively occupied by vehicle i driving with velocity vi is a

function of the vehicle’s length Li, a constant minimal distance between the vehicles dmin, the

reaction time T 0r and a speed risk factor F

S (vi) = (Li + dmin) + vi
¡
T 0r + viF

¢
(11.3)

Experienced drivers have a fairly precise knowledge of their reaction time Tr. For novice

drivers, rules of thumb apply (“stay two seconds behind the vehicle ahead”, “keep a distance

of half your velocity to the vehicle ahead”). From field studies, it is found that the delay of

an unexpected event to a remedial action (perception-response time + control movement time;

see chapter 10) is in the order of 0.6 to 1.5 seconds. The speed-risk factor F stems from the

observation that experienced drivers do not only aim to prevent rear-end collisions. Rather,

they also aim to minimise the potential damage or injuries of a collision, and are aware that

in this respect their velocity is an important factor. This is modelled by assuming that drivers

increase their time headway by some factor — the speed-risk factor — linear to v. Finally, the

minimal distance headway dmindescribes the minimal amount of spacing between motionless

vehicles, observed at jam density.

Note that this occupied space equals the gross distance headway only if the following vehicle

is constrained. In the remainder of this thesis, this property is used. Otherwise, the car-following

distance is larger than the safe distance needed. Dijker et al. [16] discuss some empirical findings

on user-class specific car-following behaviour in congested traffic flow conditions.

11.3 Stimulus-response models

Stimulus response models (ofter referred to as car-following models) are dynamic models that

describe the reaction of drivers as a function of the changes in distance, speeds, etc., relative to

the vehicle in front. Generally speaking, these models are applicable to relatively busy traffic

flows, where the overtaking possibilities are small and drivers are obliged to follow the vehicle

in front of them.

One can considerer as an example the cars on the left (or fast) lane of a motorway. They do

not want to maintain a distance headway that is so large, that it invites other drivers to enter it.

At the same time, most drivers are inclined to keep a safe distance with respect to their leader.

As a consequence, the drivers must find a compromise between safety and the encouragement

of lane changes.

On a two-lane road (for two directions) drivers that can not make an overtaking, due to

the presence of oncoming vehicles or a lack of sight distance, are obliged to follow the vehicle

in front. In that case the intruding of other vehicles in the gap in front is less frequent but

nevertheless it appears that drivers maintain a rather short distance headway. Also in dense

traffic on urban roads drivers are often obliged to follow the vehicle in front.

As traffic grows faster than the road network is expanding, drivers will more and more be

engaged in car-following. Especially as capacity is reached, nearly all driver-vehicle units are in

a car-following state.

How does a driver carry out his car-following task? He/she must keep a sufficient large

distance headway and respond, or at least be prepared to respond, to speed changes (especially

speed reductions) of the vehicle in front. This boils down to the fact that a driver must maintain

a certain minimum distance headway that will be dependent on the speed. In the sequel we

will assume that this is the case and discuss the consequences for dynamic situations.

Which variable can a driver control? At first sight that is the speed, but at second thought

he/she operates the gas pedal and the break pedal, in other words the acceleration is controlled.
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Measured value Tr (s) κ (1/s)

minimum 1.00 0.17

average 1.55 0.37

maximum 2.20 0.74

Table 11.1: Parameter estimates for stimulus-response model

Measured value Tr (s) κ0 (1/s)

minimum 1.5 40.3

average 1.4 26.8

maximum 1.2 29.8

Table 11.2: Parameter estimates for stimulus-response model

It is evident that drivers have a certain response time, they can not respond immediately

but have to go through the cycle of ‘observation, processing, deciding, action’. Taking this into

account the following linear car-following model has been proposed:

ai (t+ Tr) = γ (xi−1 (t)− xi (t)− s0) (11.4)

Eq. (11.4) is an example of a so-called stimulus-response model. These stimulus response

models assume that drivers control their acceleration, given some response time Tr. This fi-

nite response time stems from the observation time (perception and information collection),

processing time and determining the control action (decision making), and applying the action

(operating the gas-pedal, braking, shifting). In general terms, the stimulus response model is

given by the following equation

response (t+ Tr) = sensitivity × stimulus (11.5)

The response typically equals the vehicle acceleration. Various definitions for the stimulus,

other than the stimulus in Eq. (11.4), have been put forward in the past. As an example, a well

known model is the model of [12], using the relative speed vi−1 (t)− vi (t) for the stimulus, i.e.

d

dt
vi (t+ Tr) = κ (vi−1 (t)− vi (t)) (11.6)

In eqn. (11.6), κ denotes the sensitivity. Field experiments were conducted to quantify the

parameter values for the reaction time Tr and the sensitivity κ. The experiment consisted of

two vehicles with a cable on a pulley attached between them. The leading driver was instructed

to follow a pre-specified speed pattern, of which the following driver was unaware. Tab. 11.1

shows the results of these experiments.

It turned out that the sensitivity depended mainly on the distances between the vehicles:

when the vehicles were close together, the sensitivity was high. When the vehicles were far

apart, the sensitivity was small. Hence, the following specification for the sensitivity κ was

proposed

κ =
κ0

xi−1 (t)− xi (t)
(11.7)

Tab. 11.2 depicts the resulting parameter estimates.For this simple model, the steady-state will

occur when the speed of the preceding vehicle i−1 is constant, and the acceleration of i is zero.

11.3.1 Model stability

One of the main points in any control model is its stability, i.e. will small disturbances damp

out or will they be amplified. Whether the control model is stable will depend on the charac-ter

and the parameters of the control model (11.6). For car-following models, two types of stability

can be distinguished:
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rC Tκ= ⋅

Non-oscillatory Damped-oscillatory 

1/e0 1/2 π/2

Locally unstableAsymptotically unstable

Stable region Unstable region

Figure 11.1: Relation between C = κTr and stability

1. Local stability, concerning only the response of a driver on the leading vehicle i− 1.
2. Asymptotic stability, concerning the propagation of a disturbance along a platoon of ve-

hicles that are (car-) following each other.

The second type of stability is of much more practical importance than the local stability.

If a platoon of vehicles in asymptotically unstable, a small disturbance of the first vehicle is

amplified as it is passed over to the next vehicle, which in turn can lead to dangerous situations.

Fig. 11.1 shows the relation between the local and asymptotic stability of the car-following

model, and the parameter C = κTr Let us briefly consider both.

Application of Laplace transforms to local stability analysis

There are various approaches to investigate stability. The most straightforward approach is to

apply techniques from conventional system’s control theory. The local and asymptotic stability

of the model depends on the sensitivity κ and the reaction time Tr. It can be proven that the

model is locally stable if

C = κTr ≤ π

2
(11.8)

Proof. Let us consider the simple car-following model eqn. (11.6) and apply the Laplace

transform to it. Recall that the Laplace transform is defined as follows

F (s) = L (f (t)) =
Z ∞

0
e−stf (t)dt (11.9)

Let us also recall the following important properties of the Laplace tranform

L (f (t− t0)) = e−t0sL (f (t)) (11.10)

L
µ
d

dt
f (t)

¶
= sL (f (t)) (11.11)

Let Vi (s) = L (vi (t)). In applying the Laplace transformation to both the left-hand-side and
the right-hand-side of Eq. (11.6), we get

seTrsVi (s) = κ (Vi−1 (s)− Vi (s)) (11.12)

This expression enables us to rewrite the Laplace transform of the speed Vi (s) of vehicle i as a
function of the Laplace transform Vi−1(s) of the leading vehicle i, i.e.

Vi (s) = H (s)Vi−1 (s) =
κe−Trs

s+ κe−Trs
Vi (s) (11.13)

In control theory, the function H (s) = κe−Trs
s+κe−Trs is often referred to as the unit-response (since it

describes how the system would respond to a unitary signal (Vi−1 (s) = 1)) or transfer function.
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The transfer function describes how the output Vi(s)of the control system relates to the input

function Vi−1(s).
The stability of the control system can be studied by studying the properties of the transfer

function H(s). To ensure stability of the system the so-called poles of the transfer function

H(s) must be on the left hand side of the imaginary plane. The poles are defined by the points
where the denominator D (s) of H(s) are equal to zero, i.e.

D (s) = s+ κe−Trs = 0 (11.14)

To study stability, let s = x+ jy, where j2 = −1 defines the unit imaginary number. The
denominator D(s) then equals

D (s) = x+ jy + κe−Tr(x+jy) = x+ κe−Tr cos (Try) + j
¡
y − κe−Trx sin (Try)

¢
(11.15)

where we have used that e−jTry = cos (Try)− j sin (Try). To determine the boundary of local
instability, consider the limiting case x = 0. Then, the necessary condition for the pole is given
by the following expression

κ cos (Try) + j (y − κ sin (Try)) = 0 (11.16)

Since both the real part of eqn. (11.16) and the imaginary part of eqn. (11.16) must be equal

to zero, we have for the real part

κ cos (Try) = 0→ yk =
1

Tr

³π
2
+ kπ

´
(11.17)

For the imaginary part, we then have

yk − κ sin (Tryk) =
1

Tr

³π
2
+ kπ

´
− κ

³π
2
+ kπ

´
(11.18)

=
1

Tr

³π
2
+ kπ

´
− κ (−1)k = 0 (11.19)

implying ³π
2
+ kπ

´
= κTr (−1)k (11.20)

Consider k = 0. Eqn. (11.20) will only have a solution when

κTr =
π

2
(11.21)

This implies that eqn. (11.21) defines the boundary between stable and unstable parameter

values. It can also be shown that for

κTr >
π

2
(11.22)

the model is both locally and (thus also) asymptotically unstable.

In illustration, Fig. 11.2 shows the behaviour of the car-following model in case of local un-

stable parameter settings. Clearly, the amplitude of the oscillations grows over time, eventu-ally

leading to a collision of the lead car and the following car.

The local stability region is further divided into two regions: non-oscilatory (C < 1/e) and
damped oscillatory (C > 1/e). In the latter case, the response of the following vehicle oscillates,
but these oscillations damp out over time.
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Figure 11.2: Gap between vehicle i−1 and vehicle i, assuming that leader i−1 brakes suddenly
at t = 10s for Tr = 1s and κ = 1.6s−1

Figure 11.3: Position of vehicles with respect to platoon leader, when leader brakes suddenly

at t = 10s in case: Tr = 1.00s and κ = 0.4s−1 (left); Tr = 1.00s and κ = 0.7s−1 (right)

Asymptotic stability

A platoon of vehicles is asymptotically unstable if

C = κTr >
1

2
(11.23)

Fig. 11.3 (left) shows a simulation example of a platoon of 15 vehicles, of which the leader

brakes abruptly at t = 10 s. In this case, the parameters yield a locally and asymptotically

stable system. Fig. 11.3 (right) shows the same case, but for parameter settings yielding a

locally stable but asymptotically unstable system. See how the amplitude of the disturbance

grows when it passes from one vehicle to the next.

Note that the local stability is less critical than the asymptotic stability. If the controller is

locally stable, it can still be asymptotically unstable. Furthermore, observe that eqn. (11.23)

shows that the car-following model becomes unstable for large response times as well as large

sensitivity values. Reconsidering the empirical values of the response time Tr and the sensitivity

κ shows that the average values satisfy the local stability condition. However, the conditions

for asymptotic stability are not met. Moreover, the minimum values are neither asymptotically,

nor locally stable.

Proof. The study of asymptotic stability of the car-following model is based on the analysis

of periodic functions of the form Aie
jω. In this respect, let us first note that we can approximate

any periodic function f (t) of time by a series of such signals, i.e. we can write f (t) =
P

k ake
jωkt.
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This thus also holds for the behaviour of the leading vehicle i− 1, i.e.

vi−1 (t) =
X
k

a
(i−1)
k ejωkt (11.24)

(Fourier series). Here, ωk =
2πk
T
denotes the frequency of the signal, T denotes the period of

the function f (t) (defined by f (t) = f (t+ T )), and ak denotes the amplitude of the contribution

ejωkt. To study asymptotic stability, we consider one of these terms a
(i−1)
k ejωkt. The speed of

the following vi (t) is the solution of a delayed differential equation (11.6). This solution can be
written in the following form

vi (t) =
X
k

a
(i)
k ejωkt (11.25)

Let us now substitute If we now substitute Eq. (11.25) into Eq. (11.6):

d

dt
vi (t+ Tr) = κ (vi−1 (t)− vi (t)) (11.26)

⇔X
k

jωka
(i)
k ejωk(t+Tr) = κ

ÃX
k

³
a
(i−1)
k − a

(i)
k

´
ejωkt

!
(11.27)

If this equation holds for all t, then Eq. (11.26) implicates

jωka
(i)
k ejωk(t+Tr) = κ

³³
a
(i−1)
k − a

(i)
k

´
ejωkt

´
for all k ≥ 0 (11.28)

Let us now determine what happens to the amplitude a
(i)
k as it passes from vehicle i − 1 to

vehicle i. By rewriting Eq. (11.28), we can easily show that

a
(i)
k

a
(i−1)
k

=
κ

jωkejωkTr + κ
(11.29)

To ensure asymptotic stability, it is required that the amplitude of the speed profile decreases

as it passes from vehicle i− 1 to vehicle i (and from vehicle i to vehicle i+ 1, etc.), implying
that ¯̄̄̄

¯ a
(i)
k

a
(i−1)
k

¯̄̄̄
¯ =

¯̄̄̄
κ

jωkejωkTr + κ

¯̄̄̄
< 1⇔ κ <

¯̄
jωke

jωkTr + κ
¯̄

(11.30)

Rewriting

jωke
jωkTr + κ = jωk (cos (ωkTr) + j sin (ωkTr)) (11.31)

= jωk cos (ωkTr)− ωk sin (ωkTr) (11.32)

and substituting the result in eqn. (11.30), we get¯̄
jωke

jωkTr + κ
¯̄
= |jωk cos (ωkTr)− ωk sin (ωkTr)| (11.33)

=

q
(κ− ωk sin (ωkTr))

2 + ω2 cos2 (ωkTr) (11.34)

=
q
κ2 + ω2k − 2κωk sin (ωkTr) (11.35)

We can show that this the condition becomes critical for very small ωk. Hence, we may use the

approximation

sin (ωkTr) ≈ ωkTr (11.36)

yielding

ω2k > 2κω
2
kTr → κTr <

1

2
(11.37)
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Situation Reponse time (s/100)

Cue free, i.e. left to driver 50

Driver has to concentrate on brake lights vehicle in front 63

Cue free; first car is only one with functioning brake lights 101

Table 11.3: Effect of ‘cue’ (stimulus) on response timel

Asymptotic stability thus requires C = κTr <
1
2 .

On the test track of General Motors around 1960 much research has been carried out con-

cerning the car-following model has been investigated. It was found that the response time Tr
varied between 1.0 to 2.2 s and the sensitivity κ0 from 0.2 to 0.8 s−1. It appeared that often
platoons were nearly asymptotic unstable. Two examples of experiments:

• Effect on response time

The situation concerns a platoon of 11 cars that follow each other closely. The first car

brakes strongly at an arbitrary moment.

The conclusion is that a driver uses not only the brake lights to anticipate a needed speed

reduction (0.63 > 0.50) but that brake lights as such are useful (1.01 > 0.50).

• Effect of extra information at rear side of car

The brake lights were modified as follows:

• acceleration ≥ 0 → blue;

• no break and no gas (coasting) → yellow;

• braking → red.

The effect of this modification, that offers more information, was: response time smaller;

sensitivity larger; product of both hardly changed, which means the same stability; a smaller

distance headway at the same speed (→ smaller time headway too). An interpretation of this

is a gain in capacity but not in safety.

This simple model has several undesirable and unrealistic properties. For one, vehicles tend

to get dragged along when the vehicle in front is moving at a higher speed. Furthermore, when

the distance si(t) is very large, the speeds can become unrealistically high. To remedy this
deficiency, the sensitivity κ can be defined as a decreasing function of the distance. In more

general terms, the sensitivity can be defined by the following relation

κ = κ0
vi (t+ Tr)

m

[xi−1 (t)− xi (t)]
l

(11.38)

where κ0 and Tr denote positive constants. Equation (11.38) implies that, the following vehicle

adjusts its velocity vi(t) proportionally to both distances and speed differences with delay Tr.

The extent to which this occurs depends on the values of κ0, l and m. In combining eqns.

(11.6) and (11.38), and integrating the result, relations between the velocity vi (t+ Tr) and the
distance headway xi−1(t)−xi(t) can be determined. Assuming stationary traffic conditions, the
following relation between the equilibrium velocity u (k) and the density k results

u (k) = uf

Ã
1−

µ
k

kj

¶l−1! 1
1−m

(11.39)

for m 6= 1 and l 6= 1.
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Proof. In combining eqns. (11.6) and (11.38), we get

d

dt
vi (t+ Tr) = κ0

vi (t+ Tr)
m

[xi−1 (t)− xi (t)]
l
(vi−1 (t)− vi (t)) (11.40)

which can be, by re-arranging the different terms, and noticing that vi (t) =
d
dt
xi (t), written as

follows
d
dt
vi (t+ Tr)

vi (t+ Tr)
m = κ0

d
dt
(xi−1 (t)− xi (t))

[xi−1 (t)− xi (t)]
l

(11.41)

Assuming m 6= 1 and l 6= 1, we have
1

m− 1
d

dt

µ
1

vi (t+ Tr)
m−1

¶
=

d
dt
vi (t+ Tr)

vi (t+ Tr)
m (11.42)

and
κ0

l − 1
d

dt

Ã
1

[xi−1 (t)− xi (t)]
l−1

!
= κ0

d
dt
(xi−1 (t)− xi (t))

[xi−1 (t)− xi (t)]
l

(11.43)

yielding

vi (t+ Tr)
1−m = C + κ0

1−m

1− l
[xi−1 (t)− xi (t)]

1−l (11.44)

i.e.

vi (t+ Tr) =

µ
C + κ0

1−m

1− l
[xi−1 (t)− xi (t)]

1−l
¶ 1

1−m
(11.45)

where C is an integration constant. Under stationary conditions, both si (t) = xi−1 (t)− xi (t)
and vi (t) will be time-independent. Furthermore, under stationary conditions, the speeds and
the distances headways of all vehicles i must be equal to u and s = 1/k. We then have

u = u (k) =

µ
C + κ0

1−m

1− l
kl−1

¶ 1
1−m

(11.46)

For k = 0, we have u (0) = uf (mean free speed), and thus

Cm−1 = uf (11.47)

For k = kj, we have u (kj) = 0 (speed equals zero under jam-density conditions), and thus

κ0

C

m− 1
l − 1 kl−1j = −1→ kj =

µ
C

κ0

l − 1
1−m

¶ 1
l−1

(11.48)

In sum, we have determined the following relation between the mean speed u and the density

u (k) = u0

Ã
1−

µ
k

kj

¶l−1! 1
1−m

(11.49)

Car-following models have been mainly applied to single lane traffic (e.g. tunnels, cf. [40])

and traffic stability analysis ([25], [36]; chapter 6). That is, using car-following models the limits

of local and asymptotic stability of the stream can be analysed.

The discovery of the possibility of asymptotic instability in traffic streams was considered

to explain the occurring of congestion without a clear cause, ‘Stau aus dem Nichts’ (phantom

jams); Fig. 11.4 (from [53]) shows a famous measurement from those years in which the first

generation of car-following models was developed. The vehicle trajectories have been determined

from aerial photos, taken from a helicopter, and exhibit a shock wave for which there seems to

be no reason. It can also be noted that the shock wave more or less fades out, al least becomes

less severe at the right hand side of the plot. From the plot can be deduced a shock wave speed

of approximately -20 km/h.
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Figure 11.4: Traffic stream with shock wave at lane of motorway

11.4 Psycho-spacing models / action point models

The car-following models discussed so far have a rather mechanistic character. The only human

element in the models so far is the presence of a finite response time, but for the rest a more or

less perfect driver is assumed. In reality a driver is not able to:

1. observe a stimulus lower than a given values (perception threshold);

2. evaluate a situation and determine the required response precisely, for instance due to

observation errors resulting from radial motion observation;

3. manipulate the gas and brake pedal precisely;

and does not want to be permanently occupied with the car-following task.

This type of considerations has inspired a different class of car-following models, see e.g.

[33]. In these models the car-following behaviour is described in a plane with relative speed

and headway distance as axis. The model is illustrated with Fig. 11.5. It is assumed that the

vehicle in front has a constant speed and that the potential car-following driver catches up with

a constant relative speed v0r. As long as the headway distance is larger than sg, there is no

response.

Moreover, if the absolute value of the relative speed is smaller than a boundary value vrg,

then there is also no response because the driver can not perceive the relative speed. The

boundary value is not a constant but depends on the relative speed. If the vehicle crosses the

boundary, it responds with a constant positive or negative acceleration. This happens in Fig.

11.5 first at point A, then at point C, then point B, etc.

Leutzbach [33] has introduced the term ‘pendeling’ (the pendulum of a clock) for the fact

that the distance headway varies around a constant value, even if the vehicle in front has a

constant speed. In this action-point model the size of the acceleration is arbitrary in the first

instance, whereas it was the main point of the earlier discussed car-following models.
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Figure 11.5: Basic action-point car-folllowing model

Figure 11.6: Action-point model with variable perception thresholds and a response time

The first version of the basic action point model has been extended with the following

1. a separate threshold for catching up (= approaching from a large distance);

2. different perception thresholds for negative and positive vr;

3. a zone in stead of a function for the perception threshold;

4. an extra response if the vehicle in front shows its brake lights;

These extensions are illustrated in Fig. 11.6, and Fig. 11.7 where the following points are

indicated:

• d1: distance at speed 0

• d2: minimum desired distance at small vr

• d3: maximum s at pendeling

• d4: threshold if catching up

• d5: threshold at pendeling
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Figure 11.7: Thresholds in the vr − s plane used in a simulation model

• d6: threshold at pendeling if vr < 0

• d7: no response at al, if vr > 0.

The action point models form the basis for a large number of contemporary microscopic

traffic flow models, such as FOSIM, AIMSUN2 and VISSIM.

11.5 Optimal control models

The conceptual model discussed in chapter 10 can also be applied to establish a mathematical

model. Since we are only considering the longitudinal driving task, the state x (t) of the system
can be described by the locations ri (t)

2 and the speeds vi (t) of the drivers i,i.e.

x = (r1, ..., rn, v1, ..., vn) (11.50)

where n is the number of vehicles in the traffic system. Let us consider driver i. The prediction

model used by i to predict the conditions of the traffic system are very simple

d

dt
rj = vj and

d

dt
vj = aj for j = 1, ..., n (11.51)

where aj denotes the acceleration of vehicle j. In fact, the accelerations can be considered the

controls u of the traffic system (i.e. accelerating and braking). Note that driver i can only

directly influence the acceleration ai, i.e. u = ai; in principle, he/she can indirectly influence

the control behaviour of the other drivers j 6= i. For the sake of simplicity, we assume that

driver i predicts that the other drivers will not accelerate/decelerate during the considered time

period, i.e. aj = 0 for j 6= i.

Having specified the prediction model Eq. (10.5), we need to specifying the driving cost

function J(i) incurred by driver i. We assume that the driving cost are of the following form

J(i)
¡
u[t,∞)|t, x̂ (t)

¢
=

Z ∞

t

e−ηsL (x (s) , u (s)) ds (11.52)

subject to the prediction model

ẋ (s) = f (x (s) , u (s)) for s > t with x (t) = x̂ (t) (11.53)

2We have used the notation ri (t) to describe the location of driver i to avoid confusion with the state x (t) .
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where η > 0 is the so-called temporal discount factor, describing that drivers will discount the
running cost L (x, u) over time (i.e. the cost incurred in the near future are more important
than the cost incurred in the far future).

The running cost reflect the cost that driver i will incurr during a very short interval [t, t+dt).
The total cost J(i) are thus determined by integrating the running cost L with respect to time.

In this section, we will assume that the running cost will consist of three different factors,

namely

1. running cost incurred due to not driver at the free speed

2. running cost incurred when driving too close to the vehicle i− 1 directly in front

3. running cost incurred due to accelerating/braking

Let v
(i)
f denote the free speed of driver i. The running cost due to not driving at the free

speed is modelled as follows
c1

2

³
v
(i)
f − v

´2
(11.54)

where c1 > 0 is a parameter expressing the relative importance of this cost component.

Similarly, the running cost incurred due to driving too close to the vehicle i− 1 directly in
front (so-called proximity cost) equals

c2Φ (ri−1 − ri, vi−1 − vi) = c2e
−(ri−1−ri)/S0 (11.55)

where c2 > 0 again denotes the relative importance of this cost component, and where S0 is
some scaling parameter. Eq. (11.55) shows that as the distance between vehicle i−1 and vehicle
i increases, the running cost decreases and vice versa.

Finally, we propose using the following expression to describe the running cost incurred due

to acceleration/deceleration
c3

2
u2 (11.56)

where c3 > 0 is the relative importance of this cost component.

Now, all the components are in place to derive the model. To mathematicall derive the

model, we define the so-called Hamilton function H as follows

H = e−ηtL+ λ0f (11.57)

The vector λ denotes the so-called shadow-costs. The shadow cost describe the marginal changes
in the total cost J(i) due to small changes in the state x. We can show that for the control u
to be optimal, it has to satisfy the so-called optimality condition

∂H

∂u
= 0→ u∗ = − 1

c3
eηtλv1 (t,x) (11.58)

where λvi (t,x) denotes the marginal cost of the speed vi of driver i. Eq. (11.58) shows that

when the marginal cost λvi (t,x) of the speed vi is positive, the control is negative, meaning

that the driver will decelerate (u∗ < 0). On the contrary, when the marginal cost of the speed
is negative, it makes sense to further increase the speed and thus to acceletate (u∗ > 0). When
the marginal cost λvi (t,x) = 0, driver i will keep driving at constant speed.

The remaining problem is to determine the shadow cost. From optimal control theory, it is

well known that the marginal cost satisfy

λ̇ = −∂H
∂x

(11.59)
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The fact that we are considering a time-independent discounted cost problem implies furhter-

more that λ̇ = −ηλ. Let us first consider the marginal cost of the location ri. We can easily

determine that

ηλri =
∂H

∂ri
= e−ηt

∂L

∂ri
= e−ηt

∂Φ

∂ri
(11.60)

This equation shows that the marginal cost of the location of driver i only depends on the

proximity cost function. Note that generally, ∂Φ
∂ri

> 0, that is, the proximity cost will increase

with increasing ri. For Φ = c2e
−(ri−1−ri)/S0 , we would have

∂Φ

∂ri
=

c2

S0
e−(ri−1−ri)/S0 (11.61)

We can then easily determine the marginal cost of the speed vi of driver i. We find

ηλvi =
∂H

∂vi
= e−ηt

∂L

∂vi
+ λri (11.62)

= e−ηt
µ
c1

³
v
(i)
f − vi

´
+

∂Φ

∂vi

¶
+ λri (11.63)

= e−ηt
µ
c1

³
v
(i)
f − vi

´
+

∂Φ

∂vi
+
1

η

∂Φ

∂ri

¶
(11.64)

This equation shows how the marginal cost of the speed vi of driver i depends on the difference

in the free speed of driver i, the function Φ (proximity cost) and the marginal cost of the position
of driver i.

We can now very easily determine that for the optimal acceleraton, the following equation

holds

d

dt
vi = u∗ =

v
(i)
f − vi

τ
−A0

µ
∂Φ

∂ri
+ η

∂Φ

∂vi

¶
(11.65)

=
v
(i)
f − vi

τ
−A0e

−(ri−1−ri)/S0 (11.66)

where the acceleration time τ and the interaction factor A0 are respectively defined by

1

τ
=

c1

ηc3
and A0 =

c2

η2c3
(11.67)

Eq. (11.65) shows how the acceleration of driver i is determined by the driver’s aim to driver

at the free speed v
(i)
f , and a factor that describes effect of driving behind another vehicle at a

certain distance si = ri−1 − ri. In appendix E we present the NOMAD pedestrian flow model,

which has been derived using the optimal control paradigm discussed in this chapter.

Let us consider the stationary case, where the speed vi (t) is time-independent. Stationarity
implies that the acceleration d

dt
vi = 0. This implies

vi = v
(i)
f − τA0e

−si/S0 (11.68)

This equation shows the relation between the stationary speed vi, the free speed v
(i)
f and the

distance si between vehicle i− 1 and vehicle i.
The following model was developed by [2]

d

dt
vi (t) = κ0

£
V 0 (si (t))− vi (t)

¤
(11.69)

where κ0 describes the sensitivity of the driver reaction to the stimuli, in this case the difference

between the speed V (si (t)) - a function of the distance between vehicle i and its leader i− 1 -
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and the current speed vi (t). This model is equal to the optimal control model describes by Eq.
(11.65), assuming that

V 0 (si (t)) = v
(i)
f −A0τ

µ
∂

∂ri
+ η

∂

∂vi

¶
Φ (11.70)

and κ0 = 1/τ . In [2], the following relation is used

V 0 (s) = tanh (s− 2) + tanh2 (11.71)

For this particular choice, it turns out that traffic flow becomes unstable at critical densities

and that small distrurbances will cause stop-and-waves. For small and large vehicle densities,

the flow is however stable. More precisely, the traffic flow is unstable when

d

ds
V 0 >

κ0

2
(11.72)

Proof. To determine the instability criterion (11.72), we first linearise Eq. (11.69) around

the spatially homogeneous solution

xei (t) = x0 − is+ V 0 (s) t (11.73)

For the variable

δxi (t) = xi (t)− xei (t) (11.74)

with |δxi (t)| ¿ s, we can then derive the following dynamic equation

d2 (δxi (t))

dt2
= κ0

½
dV 0

ds
[δxi−1 (t)− δxi (t)]− d

dt
(δxi (t))

¾
(11.75)

δxi (t) can then be written as a Fourier-series

δxi (t) =
1

N

NX
k=1

ck−1 exp
µ
2πj

i− 1
N

(k − 1) + (λ− jω) t

¶
(11.76)

again with j2 = −1, which can in turn be substituted into the dynamic equation, yielding

(λ− jω)2 + κ0 (λ− jω)− κ0
dV 0

ds

∙
exp

µ
−2πj k − 1

N

¶¸
= 0 (11.77)

It can subsequently be shown that when we determine solutions for k = 1, 2, ...,N , these solu-
tions λ̃ (k) = λ (k)− jω (k) will have a positive damping rate λ (k) > 0 when Eq. (11.72) holds.
Hence, the solutions are not stable.

11.6 Fuzzy Logic Models

Some researchers recognized that the reactions of the following vehicle to the lead vehicle might

be based on a set of approximate driving rules developed through experience. Their approach

to modeling these rules consisted of a fuzzy inference system with membership sets that could

be used to describe and quantify the behavior of following vehicles. However, the logic to define

the membership sets is subjective and depends totally on the judgment and approximation of

the researchers. Furthermore, no field experiments were conducted to calibrate and validate

these fuzzy membership sets under real driving conditions. While we agree with the premise of

the paper, and seek to resolve similar issues, the methodology employed does not warrant any

further explanation. Some researchers may argue over semantics, but there are no quantitative

problems in fuzzy logic that cannot be solved in an equivalent manner using classical methods.
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11.7 Cellular automata models

The CA models (Cellular Automata) divide the roadways into small cells. For instance, in the

model of [38], these cells have a constant length of ∆x = 7.5m. The cells can either be occupied
by one vehicle or not. Besides the location of the vehicles, also their speeds v is discretised, and

can only attain discrete values

v = v̂
∆x

∆t
with v̂ = 0, 1, ..., v̂max (11.78)

With respect to the discretisation in time, the time-step is chosen such that a vehicle with speed

v̂ = 1 precisely moves 1 cell ahead during one time step. Thus, in case of a time-step ∆t = 1s,
a maximum speed of 135 km/h holds. Despite this rather coarse represation, the CA-model

describes the dynamics of traffic flow fairly well.

The updating of the vehicle dynamics is achieved using the following rules

1. Acceleration. If a vehicle has not yet reached its maximum speed v̂max, and if the leading

vehicle is more that v̂ + 1 cells away, then the speed of the vehicle is raised by one, i.e.
v̂ := v̂ + 1.

2. Braking. If the vehicle driving with speed v̂ has a distance headway ∆j with ∆j ≤ v̂, then

the speed of the vehicle is reduced to (∆j − 1). As a result, the minimum safe distance

of (v̂ + 1)∆x is maintained.

3. Randomisation. With a probability p̂ will the speed be reduced with 1, i.e. v̂ := v̂ − 1.
This describes the fact that the vehicle is not able to perfectly follow its predecessor.

4. Convection. The vehicle will move ahead with v̂ cells during a single time step.

The updating of the vehicles can be achieved in a number of ways, e.g. in a random order,

in the direction of travel, or just in the opposite direction. For the particular model here, the

updating order does not affect the model behaviour.

Due to the simplicity of the model, complex networks with a large number of vehicles can be

simulated in real-time. By varying the parameters v̂max and p̂, different fundamental diagrams

can be established, approximating real-life traffic flow at different levels of accuracy. The CA

model describes the spontaneous formation of traffic congestion (unstable traffic conditions)

and stop-and-go waves.

A large number of modifications to the basic CA model of [38] have been established, e.g.

including lane changing. Also analytical results were obtained for simplified model dynamics.

11.7.1 Deterministic CA model

Let us briefly consider some of the properties of the CA model by excluding the randomisation

rule. In that situation, all initial conditions eventually lead to one of the following two regimes

(depending on the overall density of the system):

1. Free-flow traffic. All vehicles move with speed vmax and the gap between the vehicles is

either vmax or larger. As a result, the flow rate in this regime equals

q = kvmax (11.79)

2. Congested traffic. If the density k is larger than the critical density kc, not all vehicles

will be able to move at maximum speed. In that case, the average speed of the drivers

equals

u =
1

k
− 1 (11.80)

and the average flow thus equals

q = 1− k (11.81)
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The two regimes meet at the critical density kc, which equals kc =
1

kj+1
. The capacity equals

qc =
vmax

vmax+1
.
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