
Chapter 3

Microscopic flow characteristics

Contents of the chapter. This chapter describes several (distribution) models that describe

(the relation between) different microscopic traffic variables (such as time headways, distance

headways, etc.). We briefly discuss stochastic arrival processes, headway distributions, and

individual speed distributions.

List of symbols

k veh arrivals

µ - mean

σ - standard deviation

h s time headway

q veh/s traffic intensity

P (h) - probability distribution function

p (h) - probability density function of time headway

φ - fraction of constrained vehicles in composite headway models

3.1 Arrival processes

Intensity varies more, also if the traffic flow is stationary, if the period over which it is observed

is smaller. This is due too the fact that the passing of vehicles at a cross-section is to a certain

extent a matter of chance. When using shorter observation periods, the smoothing of these

random fluctuations reduces. For some practical problems it is useful to know the probability

distribution of the number of vehicles that arrive in a short time interval.

Example 25 The length of an extra lane for left-turning vehicles at an intersection must be

chosen so large that in most cases there will be enough space for all vehicles, to prevent blocking

of through going vehicles. In such a case it is not a good design practice to take account of the

mean value or the 50 percentile. It is better to choose e.g. a 95 percentile, implying that only

in 1 out of 20 cases the length is not sufficient.

Several models describe the distribution of the number of vehicles arriving in a given, rela-

tively short, period. We will discuss three of them.

Poisson-process

If drivers have a lot of freedom they will behave independently of each other. This implies

that the passing of a cross-section is a pure random phenomenon. In general this will be the

case if there is relatively little traffic present (a small intensity and density) and if there are no

upstream ‘disturbances’, such as signalised intersections, that result in a special ordering of the
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Figure 3.1: Probability function of Poisson with ∆t = 20s; left q = 90veh/h (µ = 0.5); right
q = 720veh/h (µ = 4).

vehicles in the stream. The conditions mentioned lead to the so called Poisson-process. The

probability function of the number of arrivals k is given by:

Pr {K = k} = µke−µ

k!
for k = 0, 1, 2, ... (3.1)

This probability function has only one parameter, the mean µ. Note that the parameter µ

need not to be an integer. Fig. 3.1 shows an example of the Poisson probability function at two

intensities.

Example 26 Intensity = 400 veh/h and one wants to know the number of arrivals in a period

of 30 s. Then we have: µ = (400/3600)·30 = 3.33 veh.

A special property of the Poisson-distribution is that the variance equals the mean. This

property can be used to test in a simple way if the Poisson-process is a suitable model: from

a series of observations, one can estimate the mean and the variance. If the variance over the

mean does not differ too much from 1, then it is likely that Poisson is an adequate model.

Binomial-process

When the intensity of a traffic stream increases, more and more vehicles form platoons (clusters,

groups), and the Poisson-process is no longer valid. A model that is suitable for this situation

is the model of a so-called Binomial-process, with probability function:

Pr {K = k} =
µ

n

k

¶
pk (1− p)n−k for k = 0, 1, ..., n (3.2)

Note that in this case, the variance over the mean is smaller than 1. The binomial distribution

describes the number of ‘successes’ in n independent trials, at which the probability of success

per trial equals p. Unfortunately this background does not help to understand why it fits the

arrival process considered here.

Negative-Binomial-process

In discussing the Poisson-process it has been mentioned that it does not fit the situation down-

stream of a signalised intersection. When this is the case, one can state that high and low

intensities follow each other. The variance of the number of arrivals then becomes relatively
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Figure 3.2: Binomial probability function at ∆t = 20s; left q = 90veh/h (p = 0.1, n = 5); right
q = 720veh/h (p = 0.8, n = 8).
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large, leading to variance over mean being larger than 1. In that case the model of a Negative-

Binomial-process is adequate :

Pr {K = k} =
µ

k + n− 1
k

¶
pn (1− p)k for k = 0, 1, 2, ... (3.3)

As with the Binomial-process a traffic flow interpretation of the Negative-Binomial-process is

lacking.

Distribution Mean Variance St.dev Relative St.dev.

Poisson µ µ
√
µ 1/

√
µ

Binomial np np (1− p)
p
np (1− p)

p
(1− p) /np

Negative binomial n (1− p) /p n (1− p) /p2 p
p
n (1− p) 1/

p
n (1− p)

Table 3.1: Mean, variance, standard deviation, and, relative standard deviation of the three

arrival distributions
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3.1.1 Formulae for parameters, probability terms, and parameter estimation

Recursion formulae

These formulae allow to calculate in a simple way the probability of event {K = k} from the

probability of event {K = k − 1}.

• Poisson: Pr{K = 0} = e−µ → Pr{K = k} = µ
k
Pr{K = k − 1} for k = 1, 2, 3, ..

• Binomial: Pr {K = 0} = (1− p)n → Pr {K = k} = p
1−p

n−k+1
k

Pr {K = k − 1}

• Neg. Bin.: Pr{K = 0} = pn → Pr {K = k} = (1− p) n+k−1
k

Pr {K = k − 1}

Estimation of parameters

From observations one calculates the sample mean m and the sample variance s2. From these

two parameters follow the estimations of the parameters of the three probability functions:

• Poisson: µ̂ = m

• Binomial: p̂ = 1− s2/m and n̂ = m2/
¡
m− s2

¢
• Neg. Bin.: p̂ = m/s2 and n̂ = m2/

¡
s2 −m

¢
3.1.2 Applications

Length of left-turn lane

One has to determine the length of a lane for left turning vehicles. In the peak hour the intensity

of the left turning vehicles equals 360 veh/h and the period they are confronted with red light

is 50 s. Suppose the goal is to guarantee that in 95 % of the cycles the length of the lane is

sufficient. In 50 s will arrive on the average (50/3600) x 360 = 5 veh. It will make a difference

which model one uses.

• Poisson: parameter µ = 5 and all probabilities can be easily calculated.
• Binomial with s2 = 2.5: p̂ = (5− 2.5)/5 = 0.5 and n̂ = 25/(5− 2.5) = 10
• Negative-Binomial with s2 = 7.5: p̂ = 5/7.5 = 0.667 and n̂ = 25/(7.5− 5) = 10

With these parameter values the probability functions and the distributions can be calcu-

lated; see Fig. 3.4.

From the distributions can be seen that the Binomial model has the least extreme values; it

has a fixed upper limit of 10, which has a probability of only 0.001. Of the two other models the

Negative-Binomial has the longest tail. From the graph can be read (rounded values) that the

95-percentile of Binomial equals 7; of Poisson it is 9 and of Negative Binomial it is 10. These

differences are not large but on the other hand one extra car requires 7 to 8 extra m of space.

Probe-vehicles

Suppose one has to deduce the state of the traffic stream at a 2 km long road section from

probe-vehicles that broadcast their position and mean speed over the last km. It is known that

on the average 10 probe vehicles pass per hour over the section considered. The aim is to have

fresh information about the traffic flow state every 6 minutes. The question is whether this is

possible.

It is likely that probe vehicles behave independently, which implies the validity of the

Poisson-distribution. Per 6 minutes the average number of probes equals: (6/60) · 10 = 1
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Figure 3.4: Distributions Binomial, Poisson and Negative-Binomial

probe. The probability of 0 probes in 6 minutes then equals: e−1 = 0.37 and this seems to be
much too large for a reliable system.

The requirement is chosen less severe and one decides to update every 20 min. In that case

µ̂ = (20/60) · 10 = 3.33
and the probability of zero probes = exp[-3.33] = 0.036. This might be an acceptable probability

of failure.

Remark 27 In practice the most interesting point is probably whether the road section is con-

gested. At congestion the probes will stay longer at the section and the frequency of their mes-

sages will increase.

3.1.3 Choice of the appropriate model by using statistical testing

Earlier it has been mentioned that the quotient of sample variance and sample mean is a suitable

criterion to decide which of the three distributions discussed, is a suitable model. Instead of

using the rule-of-thumb, one may use statistical tests, such as the Chi-square test, to make a

better founded choice.

3.2 Headway distributions

3.2.1 Distribution of headways and the Poisson arrival process

From the Poisson arrival process, one can derived a specific distribution of the headways: for a

Poisson-process the number of arrivals k in an interval of length T has the probability function:

Pr {K = k} = µke−k

k!
=
(qT )k e−qT

k!
(3.4)

For k = 0 follows: Pr{K = 0} = e−qT . Remember: 0! = 1 and x0 = 1 for any x. Pr{K = 0}
is the probability that zero vehicles arrive in a period T . This event can also be described as:

the headway is larger than T . Consequently Pr {K = 0} equals the probability that a headway
is larger than T . In different terms (replace period T by headway h)

Pr {H > h} = S(h) = e−qh (3.5)

This is the so called survival probability or the survival function S(h): the probability that a

stochastic variable H is larger than a given value h. On the other hand, the complement is the
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Figure 3.5: Survival function S (h) and distribution function P (h) of an exponential distribution

probability that a stochastic variable is smaller than (inclusive equal to) a given value, the so

called distribution function. Consequently, the distribution function of headways corresponding

to the Poisson-process is:

Pr {H ≤ h} = P (h) = 1− e−qh (3.6)

This is the so called exponential distribution function. The survival function and the distribution

function are depicted in Fig. 3.5 for an intensity q = 600veh/h = 1/6veh/s. Consequently the
mean headway in this case is 6 s.

From the distribution function P (h) = Pr{H ≤ h} follows the probability density function
(p.d.f.) by differentiation:

p (h) =
d

dh
P (h) = qe−qh (3.7)

The mean value becomes (by definition):

µ =

Z ∞

0
hp (h)dh =

Z ∞

0
hqe−qhdh =

1

q
(3.8)

We see that the mean (gross) headway µ equals the inverse of the intensity q. The variance σ2

of the headways is:

σ2 =

Z ∞

0
(h− µ)2 p (h) dh =

1

q2
(3.9)

Consequently the variation coefficient, i.e. the standard deviation divided by the mean, equals

1. Note the difference:

• Poisson distribution → Var/mean = 1

• Exponential distribution → St.dev./mean = 1

3.2.2 Use of the headway distribution for analysis of crossing a street

The sequence of headways is governed by a random process. When this process is analysed two

points need to be well distinguished. Namely, this process can be considered:

• per event;

• as a process in time.
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Figure 3.6: Realisation of sequence of gaps with gaps > 5s marked

Example 28 Suppose only headways of 5 and 10 s are present, each with a probability of 0.5,

and also assume that the headways are (stochastically) independent. This means that the events

’headway = 5 s’ and ’headway = 10 s’ occur on the average with the same frequency and in

an arbitrary (random) sequence. Now consider a time axis on which the passage moments of

vehicles are indicated, and by that also the gross headways. Then, on average, 5/15 = 1/3 of

the time will be ’occupied’ by headways of 5 s and 2/3 of the time by headways of 10 s. If one

picks an arbitrary moment of the time axis, the probability to hit a 5 s headway is 1/3. This is

not equal to the probability that a headway of 5 s occurs, which equals 0.5.

Suppose a pedestrian wants to cross a road and needs a headway of at least x seconds.

Terminology: in the context of crossing a street the headway is called a gap; the traffic flow offers

gaps to the pedestrian, which he/she can either accept or reject (more about gap-acceptance

will be discussed in Chapter 12).

The first idea could be that the crossing possibilities are determined by the frequency of

the gaps larger than x s. However, it is more relevant to consider the fraction of time G1(x)
for which the gaps are larger than x seconds? To analyse this, we start from a realisation of

the gap offering process on a time axis (see Fig. 3.6). The required fraction G1 for a given

realisation of the process equals the sum of all gaps > x divided by the sum of all gaps for (=

period considered).

G1 (x) =

P
hi|hi > xP

hi
=

1
n

P
hi|hi > x
1
n

P
hi

(3.10)

In the nominator of Eq. (3.10) all gaps > x s are summed and in the denominator all complete

gaps are summed. If we consider many repetitions of this process, the required fraction G1(x)
is a (mathematical) expectation:

G1 (x) =

R∞
x

hp (h)dhR∞
0 hp (h)dh

= q

Z ∞

x

hp (h)dh (3.11)

The simplification in (3.11) is possible using: mean gap = 1/q. For an exponential distribution
with probability density function p (h) = e−qh, one can derive:

G1 (x) = e−qx (1 + qx) (3.12)
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Figure 3.7: Survival function S(x) = Pr {H > x} and fraction of time that H > x = G1 (x) for
an exponential distribution of gaps at intensity q = 600veh/h.

Proof.

q

Z ∞

x

hqe−qhdh = q2
Z ∞

x

he−qhdh = q2
Z ∞

x

h

−qd
³
e−qh

´
(3.13)

= −q
µ
he−qh

¯̄̄∞
x
−
Z ∞

x

e−qhdh
¶

(3.14)

= −q
µ
he−qh

¯̄̄∞
x
+
1

q
e−qh

¯̄̄̄∞
x

¶
(3.15)

= qxe−qx + e−qx = e−qx (1 + qx) (3.16)

From the illustration in Fig. 3.7 follows that the fraction of time a gap is larger than x, is

larger than the frequency a gap larger than x occurs.

Fraction of time a ‘rest gap’ is larger than x

If we analyse the crossing process more precisely, it turns out that for the crossing pedestrian,

it is not sufficient to arrive in a gap larger than x s. Rather, he/she should arrive before the

moment the period until the next vehicle arrives, equals x s. In other words, the so called restgap

should be larger than x s. To calculate the fraction of time that a restgap is larger than x s,

denoted as G2(x), we consider again a time axis with a realisation of the gap process; see Fig.
3.8.

G2 (x) =

X
(hi − x) |hi > xX

hi
=

1
n

X
(hi − x) |hi > x

1
n

X
hi

(3.17)

=

R∞
x
(h− x) p (h) dhR∞

0 (h− x) p (h) dh
= q

Z ∞

x

(h− x) p (h) dh (3.18)

For an exponential gap distribution it can be derived that:

G2 (x) = e−qx (3.19)
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Figure 3.8: Realisation of sequence of gaps with intervals marked restgap > 5 s

Proof.

G2 (x) = q

Z ∞

x

(h− x) qe−qhdh = (set y = h− x) q

Z ∞

0
yqe−q(y+x)dy (3.20)

= qe−qx
Z ∞

0
yqe−qydy = e−qx (3.21)

Remark 29 Consequently the probability that a restgap is larger than x equals the probability

that a headway, right away, is larger than x. This is a very special property of the exponential

distribution, in fact a unique property, sometimes phrased as: ‘the exponential process has no

memory’.

3.2.3 Use of headway distribution to calculate the waiting time or delay

If the crossing pedestrian arrives at a moment at which the restgap is too small, how long

does he/she have to wait until the next vehicle arrives? Of course no more than x s, but more

interesting is: how long will this take on average? This equals the mean of a drawing from a

headway probability density p(h) under the condition it is less than x:

δ =

R∞
0 hp (h) dhR x
0 p (h)dh

(3.22)

For an exponential distribution it can be derived that:

δ =
1

q
− xe−qx

1− e−qx
(3.23)

Proof. Numerator:Z x

0
hqe−qhdh = (partial integration)

Z x

0
−hd

³
e−qhdh

´
(3.24)

= − he−qh
¯̄̄x
0
+

Z x

0
q
³
e−qh

´
dh = −xe−qx + ¡1− e−qx

¢
/q (3.25)

Denominator: Z x

0
qe−qhdh = 1− e−qx (3.26)
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Figure 3.9: Flow diagram of waiting process

Next the pedestrian is offered the first full headway. If it is too small, then the waiting time

is increased by δ; if it is large enough, then the waiting is over and the crossing can be carried

out. The probabilities of both events are known. See Fig. 3.9 for a flow diagram of the process.

Every time a headway is too small, the waiting time is increased by (on average) δ, but the

probability that this occurs becomes smaller and smaller; it decreases proportional to (1− p)k
where k = 1, 2, 3, ... The expectation of the waiting time W , becomes (first term is p multiplied
by zero):

E [W ] = p · 0 + (1− p) pδ + (1− p)2 p2δ + (1− p)3 p3δ + ... (3.27)

= pδ
h
(1− p) + 2 (1− p)2 + 3(1− p)3 + ...

i
(3.28)

=
δ (1− p)

p
(3.29)

Proof. PM r + r2 + r3 + ... = r
1−r (Geometric Series)

Differentiate and multiply by r→ r
¡
1 + 2r + 3r2 + ...

¢
= r d

dr

³
r
1−r
´

Thus r + 2r + 3r + ... = r

(1−r)2
For the exponential distribution we subsitute p = e−qx, and δ according to Eq. (3.23). This

leads to

E [W ] =
¡
e−qx − qx− 1¢ /q (3.30)

See Fig. 3.10 for an illustration with E[W ] = f(Q) for x = 4, 5, 6, 7 and 8 s.

3.2.4 Real data and the exponential distribution

In general the exponential distribution (ED) of the headways is a good description of reality

at low intensities and unlimited or generous overtaking possibilities. If both conditions are not

fulfilled, then there are interactions between the vehicles in the stream, leading to driving in

platoons (also called clusters and groups).

In that case the ED is fitting reality badly; see Fig. 3.11. The minimum headways in a

platoon are clearly larger than zero, whereas according to the ED the probability of extreme

small headways is relatively large. The differences between the ED and reality have lead to the

use of other headway models at higher intensities. We will first discuss some simple alternatives

for the ED model in section 3.2.5. and after that more complex models, dividing the vehicles

in two categories, in section 3.2.6.
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66 CHAPTER 3. MICROSCOPIC FLOW CHARACTERISTICS

0 5 10 15 20

20

15

10

5

0

relative frequency (%)

time headway(s)

exponential

shifted exponential

Figure 3.12: Non-shifted and shifted exponential probability density functions.

3.2.5 Alternatives for the exponential distribution

• Shifted exponential distribution

The shifted exponential distribution is characterised by a minimum headway hm, leading to

the distribution function:

Pr {H ≤ h} = 1− e−λ(h−hm) with λ =
q

1− qhm
for h ≥ hm (3.31)

and the probability density function:

p (h) = 0 for h < hm (3.32)

p (h) = λe−λ(h−hm) for h ≥ hm (3.33)

The mean value is

µ = hm +
1

λ
(3.34)

the variance equals:

σ2 =

µ
1

λ

¶2
(3.35)

and the variation coefficient
σ

µ
=

1

1 + λhm
(3.36)

which is always smaller than 1 (recall that for the ED, σ
µ
= 1) as long as hm > 0. Fig. 3.12

depicts a non-shifted and a shifted probability density with the same mean value (µ = 6 s) and

a minimum headway hm= 1 s.

In practice it is difficult to find a representative value for hm ; moreover the abrupt transition

at h = hm does not fit reality very well; see Fig. 3.11.

• Erlang distribution

A second alternative for the ED model is the Erlang distribution with a less abrupt function

for small headways.
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The Erlang distribution function is defined by

Pr {H ≤ h} = 1− e−kh/µ
kX
i=0

µ
kh

µ

¶iµ 1
i!

¶
(3.37)

and the corresponding probability density:

p (h) =
hk−1

(k − 1)!
µ
k

µ

¶k

e−kh/µ (3.38)

Note that for k = 1 we have p(h) = (1/µ)e−h/µ. Consequently the exponential distribution is
a special Erlang distribution with parameter k = 1. For values of k larger than 1 the Erlang
p.d.f. has a form that better suits histograms based on observed headways. This is illustrated

by Fig. 3.13. which shows densities for µ = 6 s and k = 1, 2, 3 and 4.The mean of an Erlang

distribution = µ, the variance equals µ2/k and consequently the coefficient of variation equals
1√
k
which is smaller or equal to 1.

• Lognormal distribution

A second alternative headway distribution is the lognormal distribution.

Definition 30 A stochastic variable X has a lognormal distribution if the logarithm ln(X) of
the stochastic variable has a normal distribution.

This can be applied as follows: if one has a set of observed headway hi, then one can

investigate whether xi = loghi has a normal distribution. If this is the case, then the headways
themselves have a lognormal distribution. The p.d.f. of a lognormal distribution is:

p (h) =
1

hσ
√
2π

e
− ln2(hµ)

2σ2 (3.39)

with mean µ∗

E (H) = µ∗ = µe
1
2
σ2 (3.40)
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and variance (σ∗)2

var (H) = (σ∗)2 = µ2eσ
2
³
eσ

2 − 1
´

(3.41)

The coefficient of variation thus equals

Cv =
σ∗

µ∗
=

µe
1
2
σ2
q¡

eσ
2 − 1¢

µe
1
2
σ2

=
p
eσ

2 − 1 (3.42)

In contrast to the previous discussed distributions, the coefficient of variation of the lognormal

distribution, can be smaller as well as larger than 1.

Remark 31 The parameters of the p.d.f., µ and σ are not the mean and st. dev. of the log-

normal variate but of the corresponding normal variate. If µ∗ and (σ∗)2 are given, µ and
σ2 follow from:

µ =
µ∗p
1 +C2v

and σ2 = 2 ln
³p

1 +C2v

´
(3.43)

In fact all alternatives for the exponential headway distribution discussed so far, are based

on selecting a p.d.f. in which small headways have a small frequency and there is a long tail to

the right.

Exponential tail model For estimating capacity we need a model for the p.d.f. of the empty

zone. In contrast to that only large headways are relevant for the overtaking opportunities on

two-lane roads. All headway less than, say 10 s, are too small for an overtaking and the precise

distribution of those headways is not relevant. However, it is relevant how the frequency of

large headways depends on intensity. In preparing backgrounds for new design guidelines the

Transportation Laboratory of TU Delft has developed a headway model that neglects the small

headways, the so called Exponential Tail Model (ETM). It has the following p.d.f.:

p (h) =

½
λP0e

−λ(h−h0) h ≥ h0
not defined h < h0

(3.44)

with parameter P0 is the probability that h > h0. The survival function is:

Pr {H > h} = P0e
−λ(h−h0) for h > h0 (3.45)



3.2. HEADWAY DISTRIBUTIONS 69

(number of time headway > 21 s)/h

ED ETM

70

60

50

40

30

20

10

0 0                200              400              600             800              1000            1200

lane intensity (veh/h)

Figure 3.15: ‘Intensity’ of headways larger than 21 s as a function of lane intensity. according to

exponential distributed headways (ED model) and according to exponential tail model (ETM).

The parameter h0 has been set at 10 s, to be sure that the headways are from free drivers and

consequently are very likely exponentially distributed. Based on observed headways at given

intensities the two model parameters P0 and λ can be estimated. In a second step of the analysis

the relation between those parameters and intensity has been determined. The results were:

P0 = −0.286− 8.24q (3.46)

λ = 0.0314 + 0.475q (3.47)

Substitution of those two relations in eq. (3.45) leads to (for simplicity the logarithm of

eq. (3.45) has been used):

ln (Pr {H > h}) = 0.028− 3.49q − 0.0314h− 0.475qh (q in veh/s and h in s) (3.48)

Using this equation it is easy to calculate the probability of a certain (large) headway. In fact

this is nearly as easy as when using the exponential distribution of headways, but it corresponds

much better to reality.

See Fig. 3.15 for an illustration with a target headways of 21 s, which is a representative

value for a gap that is acceptable for an overtaking at a two-lane road. It can be concluded

that the new model offers much more overtaking opportunities than the exponential model.It

should be added that the ETM is not a good description for intensities smaller than about

300 veh/h. However, for these intensities the simple exponential model is a good description.

For both models it is a requirement that no substantial upstream disturbances (e.g. signalised

intersections) have influenced the traffic stream.

3.2.6 Composite headwaymodels: distributions with followers and free drivers

Comparisons of observed histograms of headways and the simple models discussed earlier have

often lead to models badly fitting data. This has been an inspiration to develop models that

have a stronger traffic behaviouristic background than the simple ones discussed above.

In so-called composite headway models, it is assumed that drivers that are obliged to follow

the vehicle in front (because they cannot make an overtaking or a lane change), maintain a
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certain minimum headway (the so-called empty zone or following headway). They are in a

constrained or following state. If they have a headway which is larger than their minimum,

they are called free drivers. Driver-vehicle combinations are thus in either of two states: free or

constrained. As a result, the p.d.f. p(h) of the headways has two components: a fraction φ of

constrained drivers with p.d.f. pfol(h) and a fraction (1− φ) with pfree (h)

p (h) = φpfol (h) + (1− φ) pfree (h) (3.49)

The remaining problem is how to specify the p.d.f. of both free drivers and constrained drivers.

Different approaches have been presented in the past. Let us discuss the most important ones.

Composite headway model of the Branston type

Several theoretical models have been used to determine expressions for the free and the con-

strained headway distributions. The approach discussed here is relatively straightforward and

was first proposed by [27]. It is based on the idea that the total headway H can be written

as the sum of two other random variates, the empty zone X and the free headway U . The

distribution of the empty zone X is described by the p.d.f. pfol(x). The p.d.f. describing the
free headway is given by the following expression

pfree (u) = φδ (u) + (1− φ)λe−λh (3.50)

where δ (u) is the δ-dirac function defined by
R
f (y) δ (y − x) dy = f (x). The term λe−λh again

denotes the exponential distribution, which is valid for independent arrivals (free flow). The

rational behind this expression is that drivers which are constrained (with probability φ) have

a free headway which is equal to zero. Since the total headway H is the sum of X and U , it’s

p.d.f. p (h) can be determined by convolution

p (h) =

Z
pfol (s) pfree (h− s) ds (3.51)

=

Z
pfol (s)

³
φδ (h− s) + (1− φ)λe−λ(h−s)

´
ds (3.52)

= φpfol (h) + (1− φ)λe−λh
Z h

0
pfol (s) e

−λsds (3.53)

which thus implies

pfol (h) = pfol (h) and pfree (h) = λ

Z
pfol (h− s) e−λhds (3.54)

Model Cowan type III [13]

Cowan’s model [13] assumes that all constrained drivers have the same headway h0 and all

free drivers have a headway that is distributed according to a shifted exponential distribution

(shifted with h0).

p (h) = φδ (h− h0) + (1− φ)H (h− h0)λe
−λ(h−h0) (3.55)

P (h) = H (h− h0)
³
φ− (1− φ)

³
1− e−λ(h−h0)

´´
(3.56)

with delta-function δ and Heaviside-step-function (or unit step function) H; see Fig. 3.16

Although this model is certainly not completely realistic (constrained vehicles do not all

have the same minimum headway), it turns out to be a good description for a class of practical

problems. The value of the minimum headway h0 is in the order of 2 to 3 s.

If intensity increases, the fraction of constrained vehicles φ has to increase too and in the

limiting case, i.e. when intensity reaches capacity, φ should have the value 1. The capacity than

equals 1/h0.
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Figure 3.16: P.d.f. p (h) and distribution function P (h) of Cowan’s model type III

If we assume further that with the increasing of φ, the parameter h0 does not change, then

it is possible to use this model for capacity estimation — as well as the other composite headway

models presented in the remainder of this section. This could be carried out by estimating the

parameter h0 at traffic flow states at which capacity has not yet been reached.

Cowans model type III is not used for this purpose because it is too schematised for that

procedure. We have only discussed this application to explain the principle of the capacity

estimation method. The method is applied using the more detailed headway distribution model

of Branston, discussed in the next session.

Model of Branston [7]

In Cowans model it was assumed that all constrained vehicles had the same headway. Branston

assumes that the headways of constrained vehicles have their own p.d.f. and derives a model of

which a main characteristic is that the p.d.f. of the free drivers is overlapping with the p.d.f. of

the constrained drivers.

The model has a traffic flow background which was used in [7] to derive the model: consider a

one-directional traffic stream on a roadway, which is so wide that practically speaking overtaking

possibilities are unlimited. The headways, referring to the total roadway, then should have an

exponential distribution.

Now consider this wide road narrowing to one lane; consequently overtaking possibilities

become zero. Vehicles arriving at the transition sometimes have to wait until they can enter the

one lane section. It is assumed that the intensity is smaller than the capacity of the one lane

section, otherwise no equilibrium state is possible. For his situation one can derive (see [7]) a

stochastic queueing model, that implies the following headway distribution:

p (h) = φpfol (h) + (1− φ)λe−λh
Z h

0
pfol (η) e

ληdη (3.57)

with pfol (h) an arbitrary probability density function.

In this queueing model the parameter φ is not free but depends on pfol (h) and λ. Branstons
trick has been to define φ as a free parameter, arguing that in this way a realistic headway dis-

tribution is described, because in reality overtaking possibilities are between zero and unlimited.
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Figure 3.17: Branston’s model for the probability density of headways

The p.d.f. of Branstons model has been depicted in Fig. 3.17. A special property of the model

is that rather small headways can be free ones; this might occur in reality due to overtakings.

It is likely that pfol (h) has an upper limit, i.e. there are no constrained vehicles with a
headway larger than, say, h∗; pfol (h) = 0 for h > h∗. This implies that in that region the total
p.d.f. has an exponential character, the so called exponential tail of the headway p.d.f. In fact

parameter h∗ is the most important parameter of the model because it is difficult to estimate.

Example 32 Estimating capacity with composite headway distribution models. According to

the principle explained in the preceding section the capacity can be estimated. To carry out

this procedure the components of the headway model have to be estimated, based on a sample of

observed headways. The procedure consists of two steps:

Step 1. Determining boundary value h∗. Parameter h∗ is the headway where the exponential tail
starts. To determine h∗ the logarithm of the survival probabilities is plotted against the headway.
As long as the tail is exponential, the result will be a straight line; because:

P (h) = 1− e−qh → S (h) = 1− P (h) = e−qh → log (S (h)) = −qh (3.58)

Practical procedure: sort the headways in ascending order; result denoted as: h(i), i = 1, 2, 3, ..., n.
Then i/(n + l) is the estimated probability a headway is smaller than hi and 1 − i/(n + 1) is
the estimated probability a headway is larger than hi; the survival probability. Consider: y(i)
= ln[l − i/(n + l)] as a function of the headway hi; see Fig. 3.18. The headway at which the

function starts to deviate from a straight line is the boundary value h∗. Studies of the Trans-
portation Laboratory of TU Delft, with data from two lane rural roads, have lead to values for

h∗ between 4 and 6 s. On motorways this value is smaller; drivers feel less constrained at the
same small headway, because they have more lateral freedom to manoeuver.

Step 2: Estimation of the other parameters of Branston’s model. The other parameters φ, λ

and pfol (h) can be estimated by new methods developed by [23] and [51]. Discussion of these
methods falls outside the scope of this subject.

Fig. 3.19 shows an example of the result of the method with data from a two-lane rural road. In

general application of this method results in rather high capacity values. The conjecture is that

drivers at an intensity of say, 1/2 capacity, have a different (a shorter) constrained headway

than they have at capacity.

Buckley’s model [10] One of the drawbacks of the Branston model is the fact that the total

headwayH is composed of the free headway U and the following headwayX (H = X+U), where
the former follows the exponential distribution. However, for independent arrivals - e.g. when
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traffic flow conditions are free - the total headway H would follow the exponential distribution,

and drivers would not consider their empty zone. In the model of Buckley [10], this problem

does not occur: drivers either follow at their respective empty zone X or at the free headway U ,

i.e. H = min {U,X}. Let pfol(w) denote the probability density function of W . Let C denote

the random variate describing the state of the vehicle. By convention, let C = 1 and C = 2
respectively denote unconstrained and constrained vehicles. The mathematical formulation of

model is given by the following equation:

p(h) = φpfol(h) + (1− φ)pfree(h) (3.59)

where pfol(h) and pfree(h) respectively denote the headway probability density functions of the
followers (constrained vehicles) and the leaders (free driving vehicles); φ denotes the fraction

of followers. Assuming no major downstream distributions, the headway distribution of the

free drivers can be proven to be exponential in form. As a direct result, for sufficiently large

headways we can write for p(h)

p (h) = (1− φ)pfree (h) = Aλ exp (−λh) for h > h∗ (3.60)

Here h∗ is a threshold headway value corresponding to a separation beyond which there is no

significant probability of interactions between vehicles, i.e. none of the vehicles is following;

λ (arrival rate for free vehicles) and A (the so-called normalization constant, given by A =R∞
0 λ exp(−λs)pfol(s)ds; see [11]) are parameters to be determined from headway data. For

headway values h < h∗ the exponential form is no longer valid and must thus be corrected

to take account of the following vehicles. This correction is effected by removing from the

exponential distribution the fraction of vehicles that have preferred following times larger than

t, since the assumption is that no vehicle will be found at less than its preferred following

headway. This fraction π(h) is given by

π(h) =

Z ∞

h

pfol (s) ds (3.61)

Hence, we write

(1− φ)pfree(h) = Aλ exp (−λh) [1− π(h)] = Aλ exp (−λh)
∙
1−

Z ∞

h

pfol (s) ds

¸
(3.62)

Using pfol (h) =
p(h)−(1−φ)pfree(h)

φ
we can easilty obtain for pfree (h) the following integral equa-

tion

(1− φ)pfree (h) =
Aλ

φ
exp (−λh)

Z h

0
[p (s)− (1− φ)pfree (s)] ds (3.63)

The parameters A and λ can be evaluated from the observed headways in the range h > h∗,
where Eq. (3.60) applies. Then the integral equation can be solved numerically subject to the

constraint φ =
R∞
0 g1 (s) ds to yield the quantity φ and the function (1−φ)pfree (h) in the range

h < h∗.

3.3 Distance headway distributions

Most results discussed for time headways in the earlier sections are also valid, with some mod-

ifications, for distance headways. It is more easy to observe time headways than distance

headways, for the same reason as it is more easy to observe intensity than density.
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Figure 3.20: Probability density functions of local speeds collected at the A9 two-lane motorway

in the Netherlands, for different density values. The distributions are compared to Normal

probability density functions (dotted lines).

3.4 Individual vehicle speeds

Just as time and distance headways, speeds have a continuous distribution function. From ob-

servations and analysis it follows that speeds usually have a Normal (or Gaussian) distribution.

That means the p.d.f., with parameters mean µ and standard deviation σ is:

p (v) =
1

σ
√
2π

e
− (v−µ)2

2σ2 (3.64)

If the histogram of observed speeds is clearly not symmetric, then the Lognormal distribution

is usually a good alternative as a model for the speed distribution. As with the mean speed,

that could be defined locally and instantaneously, one can consider the distribution of speeds

locally and instantaneously.

3.5 Determination of number of overtakings

Vehicles on a road section usually have different speeds, which leads to faster ones catching up

the slower ones, and a desire to carry out overtakings. One can calculate the number of desired

overtakings from the quantity of traffic and the speed distribution. It depends on the overtaking

possibilities to what extend desired overtakings can be carried out.

Consider a road section of length X during a period of length T . Assume the state of the

traffic is homogeneous and stationary. Assume further that the instantaneous speed distribution

is Normal with mean µ and standard deviation σ. Then the number of desired OT’s is:

n = XTk2σ/
√
π (3.65)

The greater part of this equation is obvious. The number of OT’s is:

• linear dependent on the time-road region one considers (term X multiplied by T );
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Figure 3.21: Schematised vehicle trajectories to determine number of overtakings

• increases with the quantity of traffic squared (term k2);

• is larger if the speeds are more different (term σ).

Only the constant term 1/
√
π is not obvious.

Proof. Derivation of eq. (3.65). In a road-space region (X multiplied by T ) a vehicle drives

with speed v1 through a vehicle stream with intensity q2 and uniform speed v2 (v1 > v2);see

Fig. 3.21. At the road section the vehicle overtakes m vehicles. (we apply here the conservation

of vehicle trajectories over a triangle: what comes in over the left and lower side must go out

over the right side).

m = k2X − q2 (X/v1) (3.66)

Suppose we have not one vehicle with speed v1 but an intensity q1 (with density k1). During

a period of T that makes q1T vehicles, that each overtake m slower vehicles. The total number

of OT’s then becomes:

n = q1T (k2X − q2(X/v1)) (3.67)

Putting the terms q2 and X in eq. (3.67) outside the brackets, leads to:

n1 = q1q2XT (k2/q2 − 1/v1) = q1q2XT (1/v2 − 1/v1) (3.68)

An alternative can be derived by replacing the intensities, substituting qi = kivi (i = 1, 2):

n2 = k1v1T (k2X − k2v2(X/v1)) = XTk1k2(v1 − v2) (3.69)

Generalisation to continuous variables: In stead of considering two densities k1 and k2 with

corresponding speeds v1 and v2, one can generalise towards many densities ki with speeds vi.

Then one can sum over all classes i or take continuous variables and integrate. We then get a

multiple integral:

n2 = XT

Z b

v1=a

Z b

v2=v1

k2pM (vi) pM (vj) (vi − vj) dvidvj (3.70)

Substituting a Normal p.d.f. for pM(v), one can calculate equation (3.65).
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The quality of operation on a separate cycle path is assumed to depend on the

number of overtakings

On most cycle paths overtaking possibilities are rather abundant and it is assumed that the

quality of operation is negatively influenced by the number of OT’s a cyclist has to carry out

(active OT) or has to undergo (passive OT).

Example 33 Consider a one-way path of 1 km length during 1 hour. The bicycle (bic) intensity

= 600 bic/h and the moped (mop) intensity = 150 mop/h. From observations it is known that

speeds of bics and mops have, with a good approximation, a Normal distribution: ubic = 19

km/h; σbic = 3 km/h; umop = 38 km/h; σmop = 5 km/h.

Then can be calculated: OT[bic-bic] = (600/19)2 3/
√
π = 1688 and OT[mop-mop] = (150/38)2

5/
√
π = 44. The number of OT[mop-bic] can be calculated with the earlier derived eq. (3.69).

It is valid when both speed distribution do not have overlap and in practice that is the case.

OT[mop-bic] = (600/19) (150/38) (38 — 19) = 2341.

The outcomes of the calculation show clearly that the mopeds are responsible for an enormous

share in the OT’s. The operational quality for the cyclists will increase much if mopeds do not

use cyclepaths.

Remark 34 The measure to forbid mopeds to use cycle paths inside built-up areas has been

implemented in the Netherlands in 2001.

3.6 Dependence of variates (headways, speeds)

When analysing stochastic variables (briefly variates) such as headways and speeds, usually

their distribution is the first point of interest. A secondary point is the possible dependence of

sequential values. This is relevant for the determination of confidence intervals for estimated

parameters and also it is of importance when generating input streams for a simulation model.

For a sample of n independent drawings the following rule holds: the standard deviation of

the mean is the standard deviation of the population divided by
√
n. However, if the elements of

the sample are not independent but positively correlated, then this rule does not hold anymore

and the st. dev. of the mean becomes larger. From practical studies it is known that sequential

time headways of vehicles are usually independent or at most very weakly dependent. This is

certainly not true for speeds, which is obvious if the headways are small. A vehicle in a platoon

has a speed that is very dependent on the speed of its leader. This is illustrated in Fig. 3.22:

inside the platoons the speeds vary less than between platoons.This effect has been used in a

procedure to determine the headway that separates constrained and free driving. One considers

the mean of the absolute relative speeds (relative speed is the speed of a vehicle considered

minus the speed of its predecessor) and depicts it as a function of the headway. Usually then a

boundary valuer is visible in the graph; see Fig. 3.23.
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Figure 3.22: Time series of speeds observed at a cross-section to illustrate platooning; data from

Dutch two lane road
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mean absolute relative speed (km/h)

time headway (s)

Figure 3.23: Results of processing headways and speeds of a cross-section to determine the

boundary between constrained and free driving; data from a Dutch two-lane rural road; lane

intensity = 680 veh/h; sample of 1200 vehicles. Outcome: boundary value ≈ 5 s
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