
Chapter 4

Fundamental diagrams

Contents of this chapter. This chapter introduces the concept of the fundamental diagram.

Some models used in practice will be discussed, also one with a so called capacity drop. This

capacity drop has implications for using the diagram for capacity estimation. Also the link with

a simple model for an indivudual driver is discussed. Finally some aspects of studies about the

diagram will be discussed and a practical result of the effect of rain on the diagram.

List of symbols

q veh/s flow rate, intensity, volume

k veh/m traffic density

u m/s instantaneous speed

qc veh/s critical flow / capacity

kc veh/m critical density

kj veh/m jam density

uc m/s speed at critical density

4.1 Introduction

It is reasonable to assume that drivers will on average do the same under the same average

conditions: if drivers are driving in a traffic flow that has a certain speed u, they will on average

remain the same distance headway s with respect to the preceding vehicle. This implies that

if we would consider a stationary traffic flow, it is reasonable to assume that there exists some

relation between the traffic density k = 1/s and the instantaneous mean speed u (and since

q = ku, also between the density and the flow, or the flow and the speed). This relation — which

is sometimes refered to as the equilibrium situation — will depend on the different properties of

the road (width of the lanes, grade), the composition of the flow (percentage of trucks, fraction

of commuters, experienced drivers, etc.), external conditions (weather and ambient conditions),

traffic regulations, etc.

In traffic flow theory the relations between the macroscopic characteristics of a flow are

called ‘fundamental diagram(s)’. Three are in use, namely:

• intensity - density q = q(k)

• speed - density u = u(k)

• speed - intensity u = u(q)

It is important to understand that these three relations represent the same information:

from one relation one can deduce the other two; See Fig. 4.1.
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Figure 4.1: Three interrelated forms of the fundamental diagram

Remark 35 Sometimes density k is replaced by occupancy β but this does not influence the

character of the relations substantially.

It is tempting to assume that the fundamental diagram implicates causality amongst density,

flow and speed. One might argue that the average speed u of the drivers is determined by the

density k , i.e. u = u(k) (or equivalently, the speed u is determined by the average distance

headways 1/k). However, care should be taken when making such inferences, as is illustrated
by the following example.

Consider a situation when traffic conditions are congested, and overtaking opportunities are

limited, drivers will be following the vehicle in front and will thus adopt to the speed of the

latter to do so. In other words, the follower can only control the distance s with respect to

the vehicle in front. It can thus be argued that under these circumstances the distance s is a

function of the speed u. In fact, the following relation has been proposed in the literature to

express the relation between the distance s and the speed u

s = s0 + Tru (4.1)

where s0 denotes the minimal gap between two vehicles, and Tr denotes the reaction time. On

average, this relation implies the following relation between the speed and the density

k = k (u) =
1

s0 + Tru
(4.2)

or

q = ku =
u

s0 + Tru
(4.3)

Since by definition the average speed will always be smaller than the free speed, i.e. u ≤ u0,

from Eq. (4.3) we can conclude that the flow is bounded from below, i.e. q ≥ u0
s0+Tru0

and can

thus not be valid for dillute traffic conditions, where the flow is very small.

On the contrary, assuming free flow conditions, the speed u is generally not determined by

the vehicle in front, but rather by the free speed u0 and an occasional interaction between a
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slower vehicle (assuming sufficient passing conditions). Then, the density is a function of the

flow q and the free speed u0, i.e.

k = k (q) =
q

u0
(4.4)

Note that derivation of the fundamental relation from a microscopic model is discussed later in

this chapter.

4.1.1 Special points of the fundamental diagram

Special points of the diagram are:

• (mean) Free speed u0; this is the mean speed if q = 0 and k = 0; it equals the slope of the
function q(k) in the origin;

• Capacity qc; this is the maximal intensity, sometimes called critical intensity;

• Capacity density or critical density kc ; i.e. the density if q = qc;

• Capacity speed uc ; i.e. the mean speed if q = qc;

• Jam density kj ; i.e. the density if u = 0 and q = 0.

Note that u(q) is a two-valued function, i.e. at one value of q there are two possible values
for u, and k. Note also that capacity is not a special point of the function u(k).

Notation 36 The part of q(k) with a constant speed is called the ‘stable region’ of the diagram1.
As soon as speed decreases with increasing density, one enters the ‘unstable region’.

Notation 37 The region in which densities are greater than the capacity density, is called

‘congestion region’ or ‘congestion branch’. The entire region with k < kc is sometimes called

‘free operation’ and the congestion region ‘forced operation’.

4.1.2 Importance of the fundamental diagram

• Definition of Level of Service (LOS) - the LOS - a yard stick for the quality of the traffic
operation - is related to the fundamental diagram. The LOS is discussed further in chapter

6.

• The diagram contains also information about the relation between intensity and travel

time; this is used in traffic assignment. Fig. 4.2 shows the relations between density and

intensity on the one hand and travel time on the other.

• Determination of the capacity qc, which is an important parameter in traffic planning and
control, is sometimes based on a specific form of the diagram, as will be shown in section

4.2.3.

• Often the fundamental diagram is a basic element of more comprehensive models that

describe the traffic operation on a network, e.g. METANET, or describe assignment and

traffic operation in combination, e.g. 3DAS [15].

• On the other hand microscopic models, e.g. the model FOSIM, can be used to derive
fundamental diagrams.

1 In chapter 4 on shockwave analysis, this namegiving will become clear.
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Figure 4.2: Travel time per distance as a function of density and intensity

4.1.3 Factors influencing the diagram

The fundamental diagram is not a physical law but is dependent on characteristics of:

1. the road;

2. the drivers and their vehicles;

3. conditions such as lighting and weather.

In practical terms the most important factors are:

• Type of road and, for a given type, characteristics such as lane width, curvature, grades,
and quality of surface.

• Vehicle composition; this is normally made operational by a division of the flow between
cars and trucks (in the USA recreational vehicles are often taken into account as a separate

vehicle category).

• Type of traffic with respect to travel purpose and familiarity of the drivers with the road.
E.g., home-work travel over relatively short distances shows a different behaviour than

long distance holiday traffic.

• Measures, such as speed limits, either permanent or dynamic.
• Lighting conditions, e.g. darkness (with or without road lighting) and daylight.
• Weather conditions: dry, rain, fog.

To give some indication of the influence of these different aspects, Tab. 4.1 shows an overview

of the capacity reductions for different weather and ambient conditions.

Over the years vehicles have changed (better road-holding, better brakes, more comfort) and

so have drivers, especially their experience in handling dense traffic at relatively high speeds.

These factors have led to an increase in capacity of motorways during the last few decades;

estimates range from 0.4 to 1.0 % per year4.

4American Highway Capacity Manual: under ideal conditions (road, traffic, external factors) the capacity of

one lane of the motorway has increased from 2000 veh/h in 1950 to 2400 veh/h in 2000, corresponding to a

growths of 0.37 % per year.
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Circumstances Capacity

Ideal conditions 100%

Darkness (no illumination) 95%

Darkness (with illumination) 97%

Dense Asphalt Concrete (DAC) 2with rain 91%

Open Asphalt Concrete (OAC) with rain3 95%

DAC / rain / darkness 88%

DAC / rain / darkness / illumination 90%

OAC / rain / darkness 91%

OAC / rain / darkness / illumination 92%

Table 4.1: Capacity reduction effects

4.2 Models of the fundamental diagram

Looking through the literature one finds a lot of models for the diagram. They are based on:

• Driving behaviour theories; e.g. car-following theory. By aggregating the individual micro-
scopic behaviour, one can obtain the macroscopic fundamental diagram. The aggregation

can be done analytically or by means of a microscopic simulation model. It’s obvious

that keeping distance is especially relevant for the congestion region. At free operation a

mixture of keeping distance and free driving determines the diagram. Analogies with a

queueing system exist; the queueing is the driving behind a slower leader that cannot be

overtaken immediately. Wu’s diagram in the next section uses this analogy.

• Empirical observations. Using a ‘curve fitting’ technique a function is determined that fits
the data well and preferably does not contradict elementary conditions. The importance

of this type of model has increased with the abundant availability of data. The models of

Smulders and De Romph in the next section are Dutch examples of this development.

• Analogy with flow phenomena from different fields of science, e.g. the mechanics of a

stream of gas of fluid. The importance of these type of models has decreased because

the knowledge about the behaviour of drivers has increased and it is really different from

gas molecules and fluid particles. This type of model will not be included in these notes;

interested readers are referred to [18].

Often an analysis starts with the function u(k) because that function is monotonic. It is
always advisable to determine the other relations q(k) and u(q), too, and inspect them for

consistency and plausibility. Because the derivative of q(k) is the speed of the kinematic wave,
this function is also useful for checking the model.

4.2.1 Model specifications

• Fundamental diagram of Greenshields [22].

This is certainly one of the oldest models of traffic flow theory. It is based on the simple

assumption that mean speed decreases linearly with density. The model was validated using 7

(seven!) data points obtained by aerial photography.

u(k) = u0

µ
1− k

kj

¶
(4.5)

with u0 = free speed and kj = jam density. The function q(k) follows simply:

q = ku⇒ q(k) = ku0

µ
1− k

kj

¶
= ku0 − k2u0/kj (parabola) (4.6)
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Figure 4.3: Greenshields’ fundamental diagram
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Figure 4.4: Smulders’ fundamental diagram

The critical values for q, k, and u follow from the condition that at the capacity point:

dq

dk
= 0⇒ dq

dk
= u0 − 2ku0/kj = 0⇒ kc = kj/2 (4.7)

and thus, by substition into eqn. (4.5)

uc = u0 (1− kc/kj) = u0/2 (4.8)

For the capacity, we find

qc = kcuc =
1

4
u0kj (4.9)

The function q(u) is also simple to derive: substitute in (4.5) k = q/u

u = u0 (1− (q/u) /kj)⇒ 1− u/u0 = (q/u) /kj (4.10)

or

q(u) = ukj − (kj/u0)u2 (4.11)

Greenshields’ model is still used very much because of its simplicity; see Fig. 4.3. However,

for motorways it deviates from present reality since u does not decrease that strongly for small

densities, and the fact that capacity density is much smaller than half of the jam density (0.2

would be a better number).

• Fundamental diagram of [49]
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Figure 4.5: De Romphs’ fundamental diagram for a 3-lane roadway

In developing a dynamic macroscopic model for traffic flow on motorways, Smulders intro-

duced the diagram: (see Fig 4.4):

u(k) =

½
u0 (1− k/kj) for k < kc
γ (1/k − 1/kj) for k > kc

(4.12)

Parameters are: u0, kc, kj, γ. The parameter γ is not free but follows from the requirement

that u(k) is continuous at point k = kc. It is left to the reader to derive that γ = u0kc.

Smulders chose for a Dutch motorway: u0 = 110km/h, kc = 27veh/km, and kj = 110veh/km
(all variables per lane). Capacity then becomes: qc = 2241veh/h.

Remark 38 For this diagram the requirement dq/dk = 0 in the capacity point does not neces-
sarily hold.

• Fundamental diagram of De Romph

De Romph (1994) has generalised Smulders’ diagram to:

u(k) =

½
u0 (1− αk) for k < kc

γ (1/k − 1/kj)β for k > kc
(4.13)

At first glance there are 6 parameters: u0, kc, kj, α, β, γ. The required continuity at k = kc
reduces the number of independent parameters to 5.

The reader is invited to derive that: γ = u0 (1− αkc) / (1/kc − 1/kj)β. Using extended
measurements on the ring road of Amsterdam, the parameters of this model have been estimated

for different elements of the motorway; e.g. 2-lane roadways, 3-lane roadways; single lane on-

ramps; roadways in a tunnel; etc.

Example 39 For a 3-lane roadway the results (average values for one lane) are:

• Example 40 — u0 = 110km/, kc = 23veh/km, α = 5.710
−3, and β = 0.84.

— Assumed is: kj = 100veh/km. Then it can be calculated:

— γ = 1672, and capacity qc = 2215veh/h; see Fig. 4.5.

Remark 41 The speed of the kinematic wave at jam density for this model is minus infinity,

which is far from reality. Derivation:

q(k) = γk (1/k − 1/kj)β ⇒ dq

dk
= γ (1/k − 1/kj)β − γk−1β (1/k − 1/kj)β−1 (4.14)

If k → kj then the first term of dq/dk → 0, but the second term → ∞ because β < 1. β has

to be < 1 because otherwise the congested branch of q(k) is convex, which is not feasible either.
Moreover, De Romph has found β < 1 based on data.
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• Schematised fundamental diagram of Daganzo [14]

When developing new models for traffic operation one needs a fundamental diagram that is

simple but represents the essential properties of the traffic flow correctly. The simple parabola

model of Greenshields is an example fulfilling these requirements. Daganzo has introduced an

alternative in which the function Q(k) is represented by two straight lines; see Fig. 4.6. It is
left to the reader to determine the relations u(k) and u(q).This model has three parameters:
u0, qc (or kc) and kj. It is remarkable that the diagrams of De Romph and Daganzo are rather

similar if one chooses the parameter values correctly.

4.2.2 Concept of discontinuous diagram

Edie [19] was the first researcher to indicate the possibility of a discontinuity in the diagram

around the capacity point. This idea is based on the observation that a traffic stream with

increasing density (starting from stable or free flow) reaches a higher capacity value (‘free flow

capacity’, qc1) than a traffic stream starting from a congested state (in the extreme case from a

standing queue) that ends in the so called ‘queue discharge capacity’, qc2. This idea is illustrated

in Fig. 4.7 in which a so called ‘capacity drop’ is present.
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4.2.3 Wu’s fundamental diagram with capacity drop

Recently Wu [58] has developed a model for the diagram with a capacity drop, based on as-

sumptions about microscopic behaviour. In this model two regimes are distinguished: free flow

and congested flow. Free flow has densities from k = 0 up to k = k1. Congested flow has a

density range from k = k2 up to the jam density kj. Both regimes are overlapping in terms of

density range, i.e. k1 > k2.

Main assumption for free flow state

In this state it is assumed the traffic flow is a mixture of free driving vehicles with mean speed

u0 and platoons with speed up. If the fraction of free driving vehicles (in terms of density) is

pfree, then the fraction of vehicles in platoon is (1 − pfree), and the overall space mean speed
equals:

u = pfreeu0 + (1− pfree)up (4.15)

Parameters: pfree = 1 for k = 0 and pfree = 0 for k = k1.

It can be argued, based on queueing theory, that for a two lane roadway (for one-directional

traffic) pfree decreases linearly with density, i.e.

pfree = 1− k/k1 (4.16)

For a three-lane roadway pfree = 1−(k/k1)2 and in general the exponent equals the number
of lanes minus 1, i.e. for n lanes:

u(k) = (1− (k/k1)n−1)u0 + (k/k1)n−1up (4.17)

It is left to the reader to derive that (4.17) implies u(k) starts flatter if the roadway has more
lanes.

At density k1 every vehicle drives in a platoon with speed up. This implies a relation between

the nett time headway, h
f
nett, in this platoon, the effective vehicle length (1/kj) and speed. It

is left to the reader to derive:

k1 =

µ
uph

f
nett +

1

kj

¶−1
(4.18)

Given parameters up and kj , either h
f
nett or k1 is a free parameter of the model. Wu has chosen

h
f
nett because it can be observed in practice more easily than k1, especially if it is assumed that

h
f
nett is a constant parameter for all free flow states.

Assumption for congested flow state

In congested flow every vehicle is (more or less) in a car-following state and maintains a constant

nett time headway, hcnett, over the density range k2 < k < kj. This assumption implies a straight

line for the congested part of the function q(k). Hence in this aspect the model is the same as
Daganzo’s and Smulders’.

Derivation:

snett = uhcnett with u = mean speed (4.19)

sgross = 1/kj + uhcnett (4.20)

k =
1

sgross
=

1

1/kj + uhcnett
(4.21)
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Solving for u leads to

u =
1

hcnett

µ
1

k
− 1

kj

¶
and apply q = ku (4.22)

yielding

q =
1

hcnett

µ
1− k

kj

¶
(4.23)

Parameter k2: This parameter can be determined by assuming that the maximum speed of the

congested state is at most equal to the speed that corresponds to 100 percent platooning at free

flow state. Consequently using eq. (4.21):

k2 =
1

1/kj + uph
c
nett

=

µ
uph

c
nett +

1

kj

¶−1
(4.24)

Note the similarity of eq. (4.24) and eq. (4.20).

Example 42 The model has 5 parameters. Typical values (standardized to lane values) for a

two-lane roadway with 100 % cars are: u0 = free flow speed = 110 km/h; up = speed of free flow

platoon = 80 km/h; kj = jam density = 150 veh/km; h
f
nett = nett time headway in free flow

platoon = 1.2 s; and hcnett = nett time headway at congested flow = 1.6 s. Because the nett time

headway at free flow is smaller than at congestion the two branches of the fundamental diagram

in the u-k plane do not coincide. In the example the free flow capacity is 2400 veh/h and the

discharge capacity 1895 veh/h (21 % less); see Fig. 2.8. Capacity drops found in practice are

usually smaller.

Remark 43 The capacity drop offers a substantial possible benefit of ramp metering. If one

can control the input flows such that the intensity on the main carriageway does stay below,

say, 2200 veh/h per lane, than most of the time the smaller discharge capacity is not relevant.

However, in practice the benefits of ramp metering are less than according to this reasoning.

4.2.4 Diagram for roadway and lane

The interpretation of diagrams for separate lanes of a roadway and for the total roadway is not

straightforward. The diagram for the roadway is not just the sum of the diagrams of the lanes

because the distribution of the traffic over the lanes plays a role.

The mean speed as a function of intensity on a roadway of a motorway, the upper branch

of u(q), is often remarkably flat until rather high intensities. This can be partly explained by
the changing distribution of the roadway intensity over the lanes. We explain this mechanism

by means of a schematised situation.

Consider a two-lane roadway of a motorway with two types of vehicles; with free speed v1
and v2. The fast ones will use the left lane more and more with increasing roadway intensity.

Denote

• qt = roadway intensity

• qr= intensity on right lane and ql = intensity on left lane

• v1 = speed of fast vehicles and v2 = speed of slow vehicles

• c = slope of u(q) for right lane

• α = fraction of qt on right lane
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for roadway and lanes

The distribution of vehicles over v1 and v2 is 1:1. When qt is near 0, all vehicles use the

right lane and with increasing qt more and more fast ones will use the left lane. We can divide

the roadway intensity as follows:

qt :

⎧⎨⎩ Right αqt :

½
0.5qt (slow)

αqt − 0.5qt (fast)
Left (1− α) qt (fast)

(4.25)

yielding

ur = {0.5v2 + (α− 0.5)v1}/α (4.26)

We require that for the right lane the mean speed decreases linearly with its intensity:

ur = 0.5 (v1 + v2 − cqr) (4.27)

The question is which function α (qt) brings about correspondence between (4.26) and (4.27).
Set (4.26) = (4.27) and substitute qr = αqt

{(α− 0.5) v1 + 0.5v2} /α = 0.5 (v1 + v2)− cαqt (4.28)

This is a second degree equation for α with the solution:

α =
−δv +

p
δv2 + 8cqtδv

4cqt
with δv = v1 − v2 (4.29)

It turns out that α (qt) corresponds qualitatively with reality.

Example 44 v1 = 120km/h, v2 = 80km/h, c = 0.02. At qt = 2000veh/h all fast vehicles drive
on the left lane and all slow ones drive on the right lane; Note: ur is linear as function of qr
but not as function of qt.

4.2.5 Fundamental diagram based on a car-following model

Consider a situation in which vehicle i drives behind vehicle i− 1. Vehicle i considers a gross
distance headway of si. Both vehicles have the same speed v. Driver i includes the following in

determination of the gross distance headway
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1. Vehicle i− 1 may suddenly brake and come to a complete stop
2. Driver i has a reaction time of Tr seconds

3. Braking is possible with an deceleration of a (with a > 0)

4. When coming to a full stop behind the preceding vehicle, the net distance headway between

the vehicles i− 1 and i is at least d0

5. The decelaration of the vehicle i− 1 is α times the deceleration of vehicle i
It should be clear that the parameter α is somehow a measure for the aggressiveness of

the driver: larger values of α imply that the follower assumes more abrupt deceleration of the

follower, which will result in larger distance headways. It is left to the reader to determine that

the minimal distance si to the leader of vehicle i

si + v2i −
1

2αai
= L+ d0 + viTr +

v2i
2ai

(4.30)

or in words: the gross distance headway + braking distance of the leader = length of the follower

+ margin + reaction distance + braking distance follower.

If we assume that s0 = L+ d0 (gross stopping distance headway = vehicle length + safety

distance margin) then we have

si = s0 + viTr +
v2i
2ai

µ
1− 1

α

¶
(4.31)

To transform this microscopic relation into a macroscopic description of traffic flow, we need to

make the following substitutions: replace the gross distance headway si by the inverse of the

density 1/k, replace the individual speed vi by the flow speed u and replace the gross stopping

distance headway s0 by the inverse of the jam density 1/kj . We get

1

k
=
1

kj
+ uTr +

u2

2a

µ
1− 1

α

¶
(4.32)

Since q = ku, we get the following expression for the relation between flow and speed

q (u) =
u
1
k

=
u

1
kj
+ uTr +

u2

2a

¡
1− 1

α

¢ (4.33)

Fig. 4.9 shows the resulting relation between the speed and the flow. Note that the speed is

not restricted in this model.

Let us now show how we can determine the capacity from the car-following model. Fig. 4.9

shows how the flow rate depends on the speed for a large range of speeds for a certain set of

parameters. We can now distinguish two situations

1. The flow speed u is — within certain boundaries — free and the drivers can choose it

arbitrarily. This is the case for motorway traffic and it appears from practise that the

maximum flow can be attained in this situations

2. The maximum flow speed um is prescribed and is lower that the optimal speed uc yielding

the capacity. In that case, the capacity is given by q (um) (Eq. (4.33)).

If we first consider situation 1, then we can determine the speed uc for which capacity

results by taking the derivative of q with respect to u and setting it to zero. After checking that

this indeed yields the maximum (and not the minimum), we can determine that the optimal

(critical) speed, capacity and critical density are given by

uc =

s
2

kj

a

(1− 1/α) qc =
uckj

2 + Truckj
kc =

kj

2 + Truckj
(4.34)
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Figure 4.9: Flow - speed curve u (q) derived from simple car-following strategy

Sensitivity of capacity

We can also express qc as a function of α, Tr, kj and a to determine the effect of changes in the

parameters on the capacity

qc =
1

Tr +
q

2
kj

1−1/α
a

<
1

Tr
(4.35)

From Eq. (4.35), we observe that the capacity increases when

• the reaction time Tr decreases;
• the jam-density kj increases (shorter cars);
• the braking deceleration a is larger (improved braking system, e.g. ABS);

• the parameter α is closer to 1 (drivers are less cautious).

Furhtermore, it is remarkable that the critical speed uc is not a function of the reaction time

Tr. How can that be explained?

From Eq. (4.34) we can see that when α → 1 that uc → ∞; this implies that we need to
restrict our choice for α by assuming that α > 1. Clearly, this does not hold when there is a
speed limit.

The model provides us an explanation for the following observations: it turns out that as

time goes by, capacity increases steadily. For example, in the USA the capacity has increases

from 2000 veh/h (in 1950) to 2400 veh/h (in 2000) under ideal circumstances. Using the derived

model, we can explain this 20% increase. It is left to the reader to verify that the parameter

α has the biggest influence on the capacity. We can thus explain the capacity increase by a

decrease in α (drivers are more daring and are more experienced), a shorter reaction time Tr
and higher deceleration a.

Brick wall following strategy

A special case of the model described here results when the following driver assumes that the

leading vehicle is able to abruptly come to a full stop. This implies that the leader may have
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Figure 4.10: Models for u(k) and a set of data points

an infinite deceleration — in practise, a very large deceleration. Consider for instance a car

that crashes into a stopped truck. This pessimistic scenario is especially important for systems

in which not the individual drivers have responsibility, but the operator (e.g. Combi-road or

people movers).

4.3 Studies of the fundamental diagram

4.3.1 General points

If one wants to determine the fundamental diagram for a road section the following points are

relevant:

• Does one need the complete diagram or only a part of it; e.g. only the free operation

part (k < kc) or only the congestion branch. A more fundamental point is whether it is

possible to determine the complete diagram at one cross-section; see next section.

• Is the road section homogeneous? If this is the case, one can do with observations at a
single cross-section. Otherwise road characteristics are variable over the section and a

method such as the moving observer might be suitable.

• Period of analysis: If this is chosen too short, random fluctuations will have too much

influence; if it is too long then it is questionable whether the state of the flow is stationary

over the period. In practice the balance between randomness and stationarity has led to

periods of 5 to 15 minutes.

• Finally, one has to estimate the parameters of the model chosen. This is mostly done by
using a regression technique.

Fig. 4.10 (from [17]) shows that a given set of data points can be used to fit quite a few

different models. In general models without too many parameters are preferred.

4.3.2 Influence and importance of data collection location

In order to get quantitative data about a fundamental diagram one has to carry out measure-

ments at selected sites and periods. This will be illustrated with the data one can get when
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Figure 4.11: Traffic flow conditions at different cross-sections for a under and oversaturated

bottle-neck

taking measurement around an overloaded bottle-neck. Fig. 4.11 depicts a roadway of a mo-

torway of 3 lanes with a bottle-neck (b-n) section of 2 lanes wide. Measurements will be carried

out at 4 cross-sections:

A This cross section is so far upstream the bottle-neck that congestion due to an overloading

of the b-n will not reach it.

B This cross-section is closer to the b-n than A and congestion will reach it.

C A cross-section inside the b-n.

D A cross-section downstream of the b-n.

The fundamental diagrams of Greenshields have been assumed to hold for all cross-sections.

They are the same for cross-sections A, B and D. For cross-section C the form is similar but

the capacity and jam density are 2/3 of the values at A. We assume that the intensity increases

gradually from a low value to a value that is just a little smaller than the capacity of the b-n;

this capacity is 2C0 with C0 = capacity of one lane. The data points resulting from such a

demand pattern are depicted as * in the diagrams. At cross-section A, B and D intensity is not

higher than 2/3 of the capacity. This means free operations with high speeds. At cross-section

C the capacity is nearly reached. In a realistic case this would mean somewhat lower speeds

but here that is not the case because Greenshield’s diagram is used.

Now we assume demand increases further until a value that equals 2.5 times C0 and discuss

which data points we will get on the 4 cross-sections.

A It has been assumed that congestion will not reach this cross-section, so the state of the flow

remains free. The data points, depicted by open circles, are in a range of 4000 to 5000

vehicles per hour and speeds remain high.

B When the higher demand reaches the beginning of the b-n, congestion will start, move

upstream and reach cross-section B after some time. Before that moment data points
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are still on the free flow part of the diagram and afterwards on the congestion part. The

intensity then equals (on average) the capacity of the b-n and the mean speed equals the

speed corresponding to this intensity according to the congested part of the diagram (in

this case around 30 km/h).

C In the b-n intensity is limited to the capacity value of the b-n and the state does not change

much relative to the state at the end of the demand increase discussed before.

D Here the intensity is not larger than 2C0 because the b-n does not let through more vehicles
and traffic operation remains free.

When demand is reduced to low values the process will develop in reverse order. Looking

to the total results it appears that at cross-section A and D only free traffic operation can be

observed. In the b-n one can observe the total free part of the diagram. Most information about

the diagram is seen at cross-section B. But it should be realised that also here the information

about the congested part of the diagram is rather limited. To collect data about the complete

congested part of the diagram, one requires a b-n with a capacity varying from zero to, in this

case, 3C0.
Concluding:

• The site of data collection determines which traffic flow states one can observe.
• Only in a bottle-neck one can observe a long lasting capacity state. If one wants to

estimate capacity and has observations carried out at sites not being a bottle-neck, some

form of extrapolation is always required.

An important consequence of the discussion above is that the capacity state can only occur

in a bottle-neck. If one wants to determine the capacity from observations, not carried out in

a bottle-neck, some form of extrapolation is needed.

4.3.3 Estimation of capacity using the fundamental diagram

In the light of the capacity drop two capacities do exist; free flow capacity and queue discharge

capacity. Both values are relevant and require a different estimation method.

Estimating free flow capacity

Capacity can be estimated by fitting a model of the function q(k) to data. The calculated
maximum of q(k) is an estimate of capacity. It turns out that this model is not suitable for
nowadays motorway traffic, where it does not hold that the model for the free flow part of q(k)
has a maximum with the derivative dq/dk = 0 at capacity.

An alternative method is to assume a value of the capacity density kc, fit a curve to a model

for the free flow part of q(k) and estimate the capacity by q(kc). It is obvious that the outcome
of the estimation depends on the value of kc and this makes the methods more suitable for

comparisons than for absolute values. The procedure has been applied in determining the effect

on capacity of road lighting; see [6].

“To estimate a capacity shift due to road lighting a before-and-after study set-up has been

chosen. In its most simple form this implies estimating the average capacity of a roadway before

and after installing of lighting. However, the disadvantages of such a ‘naive’ before-and -after

study are great because there are so many factors that could have an influence on capacity and

be different in both periods. Therefore the capacities have also been estimated under daylight

conditions in before and after periods.

This set-up also enables determining the effect on capacity of darkness, without and with

lighting, with daylight capacity as the reference situation. Such a comparison can give additional

information on the relative contribution of lighting to a capacity improvement.
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Daylight Darkness

Before After Before After

Site I NB Treatment 100 99.1 90.3 92.9

Site I SB Treatment 100 96.8 93.5 95.4

Site II Treatment 100 100.4 95.5 97.1

Site III Comparison 100 98.8 95.1 94.4

Table 4.2: Set-up of study. Cells with double lining indicate cases with road lighting

In total, data from 3 motorway sites has been used. At Site I (motorway A50) data was

available from both directions (North Bound=NB and SB), which was analysed separately. At

the second motorway, A12, only data from one roadway was available. However, along the

same roadway (approximately 14 km downstream) data was available from a road section with

lighting in before and after period, which has been used as an extra comparison group. The

total set-up is shown in Table 4.2, in which double lined cells represent cases with road lighting.”

Results in the table are presented as an index. The estimated capacities of the cells ‘Daylight-

Before’ have been set at 100. Overall the positive effect of road lighting on capacity could be

convincingly shown but it is rather small (2.5 % at the 2-lane roadway and 1.7 % at the three

lane roadway).

Estimating queue discharge capacity

This capacity can only be estimated in an overloaded bottle-neck. Ideally three measuring

stations are required:

• Upstream of the bottle-neck; data from this cross-section can be used to determine if

overloading occurs (mostly mean speed is used as a criterion).

• Downstream of the bottle-neck; the state of the traffic flow should be free at this cross-

section. If this is not the case, then a more severe bottle neck is present downstream.

• At the bottle-neck; intensities at this spot are capacity measurements if the traffic state
upstream is congested and the state downstream is free.

Remark 45 At an overloaded bottle-neck intensity at all three measuring stations is the same.

It is an advantage to use the intensity at the downstream section to estimate capacity because

traffic flow is more smooth than at the other stations and this reduces measuring errors.

Remark 46 The fact that large parts of motorway networks all over the world exhibit daily

overloading is beneficial for the knowledge of capacity values.

4.4 Capacity state on a motorway and the effect of rain

Finally an illustration of the fundamental diagram by means of data from a motorway (road-

way with three lanes) near Rotterdam under two conditions: dry and fair weather, and rainy

conditions; see Fig. 4.12 and 4.13.

The road section considered is more or less a bottle-neck with a length of 4 km. At a speed of

70 to 80 km/h drivers stay 3 to 3.5 minute in this traffic flow state. Apparently they are capable

to deliver a high performance over this relatively short period, leading to high capacities. It is

questionable if drivers are able to maintain this over a period of, say, one hour.
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Number of points : 146

Intensity (veh/h)

Figure 4.12: Relation speed-intensity in dry weather

Number of points: 66

Intensity (veh/h)

Figure 4.13: Relation speed-intensity in case of rain

MO-team Roadway (3 lanes) Average per lane

qc uc kc qc kc s̄ h̄

veh/h km/h veh/km veh/h veh/km m s

Dry 7400 80 92.5 2460 30.8 32.4 1.46

Rain 6300 70 92.7 2100 30.9 30.9 1.71

Table 4.3: Characteristics capacity state at dry and wet weather
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