
Chapter 7

Queuing analysis

Summary of the chapter. In this chapter the deterministic queuing model will be introduced

briefly and applied to determine congestion probabilities at a single bottle-neck over a year. This

is of importance because the Dutch method to assess quality of traffic operation on motorways

is based on this model.

List of symbols

D veh/s arrival rate

C veh/s capacity / queue discharge rate

Pc - fraction of vehicle experiencing congestion

Rt s collective delays

Rmean s/veh mean delay per vehicle

F - demand multiplication factors

ε - errors

f - capacity multiplication factors

n veh number of vehicles in queue

7.1 Deterministic queuing theory

The queueing model to determine delay is not a realistic description of the real traffic process,

the main deviation being that vehicles are stored vertically in a queue. Nevertheless with this

model the delay can be calculated correctly. In chapter 2, we have introduced the notion of the

cumulative vehicle plot and its applications. Let us briefly recall some of the key elements of this

chapter, and introduce some new ones along the way. Recall that Ñ (x1, t) denotes the arrival
curve at some cross-section x1. Ñ (x2, t) denotes the departure curve at some other cross-section
x2. The arrival time of vehicle i at cross-section x1 is denoted by A

−1 (i); its departure time by
D−1 (i). Clearly, the travel time of vehicle i equals — assuming that overtaking is not possible —

Ri = N−1 (i;x2)−N−1 (i;x1) (7.1)

The collective travel times for all vehicles i = 1, ...,N then equals

R =
NX
i=1

Ri =
NX
i=1

£
N−1 (i;x2)−N−1 (i;x1)

¤
(7.2)

which approximately equals the area between the arrival and the departure curve (i.e. neglecting

the small errors made at the boundaries), i.e.

R =

Z T

t=0
[N (x1, s)−N (x2, s)] ds (7.3)
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Figure 7.1: Temporarily oversaturation: (a) realistic; (b) schematised

Note that overtaking does not compromise the determination of the collective travel times R,

but overtaking does imply that the individual travel times cannot be adequately determined.

In chapter 2 we have also shown how we can determine the delays experienced by drivers /

collective delays by introducting the virtual departure curve. This curve is equal to the arrival

curve, translated along the t axis.

7.2 Determination of delay with a queueing model

Let us consider a bottle-neck situation sketched in Fig. 7.2. As long as the demand flow is

less than the capacity flow, we can determine the traffic flow conditions using the fundamental

diagram. But what happens when the demand exceeds the capacity? Let us consider both

situations in detail.

Situation A: no oversaturation. As long as the demand D is smaller than the bottle-neck

capacity C there is no congestion. On the entire road, free flow conditions exists q (x, t) = D.

In the bottle-neck, a small delay may be incurred due to the higher densities.

Situation B: oversaturation. When the demand D exceeds the capacity C, vehicles can not

pass the bottle-neck without experiencing delays. The next chapter on shock wave analysis with

provide an in-depth discussion of the dynamics of the traffic flow conditions in this situation.

However, we can also approximate the queue dynamics by using queuing theory, as is described

in the remainder of this chapter.

To this end, it is assumed that all vehicles drive unhindered (without delay) to the position

where the bottle-neck begins. They wait at this spot, as said before in a vertical queue, for

their turn to drive through the bottle-neck. The growth of the queue depends on the difference

between demand D and capacity of the bottle-neck C. The queue starts growing when for the

first time D is larger than C. This process is usually visualised in a graph with time on the

horizontal axis and the cumulative number of vehicles on the vertical axis (we have already

addresses cumulative arrival curves in chapter 2). The so called ‘arrival’ curve is a line with

demand D as slope. The ‘departure’ curve has the capacity C as slope; see Fig. 7.3 - at least

when there is a queue.

The distance between the arrival curve and the departure curve at a given moment (the

vertical distance) equals the length of the queue (expressed in number of vehicles). The distance

between the arrival curve and the departure curve for a given arriving vehicle (the horizontal

distance) equals the time the vehicle spends in the queue, assuming the queue discipline is ‘First

in, first out’ (FIFO) implying no overtaking.
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Figure 7.2: Characteristics of a traffic flow on a road with a bottleneck

Remark 51 Both the length of the queue and the time spent in the queue are not realistic but

refer to the vertical queue.

When D becomes smaller than C, the slope of the arrival curve becomes smaller than the

slope of the departure curve. When both curves intersect, the congestion is finished.

The delay equals the area between the arrival and the departure curve, because the area

equals the sum of all horizontal distances between the arrival and the departure curve.

It is evident that congestion does not end at the moment D becomes smaller than C; the

queue that has been built still has to be broken down. The rate of decay, like the growth rate,

depends on the difference D − C. The (vertical) queue is at its maximum at the moment D

becomes smaller than C.

This model determines the (collective) delay correctly, but not how the queue is present

over the road upstream of the bottle-neck. In reality vehicles experience their delay by slowing

down and possibly stopping now and then for short periods. It is important to understand that

the delay only depends on the capacity of the bottle-neck and the undisturbed (by definition)

demand as a function of time. This holds as long as the congestion itself does not induce extra

disturbances which lead to a lower capacity.

Fig. 7.4 illustrates that the delay is independent on the form of the vehicle trajectories in

congestion between cross-section x1, upstream of the congestion, and cross-section x2, the begin

of the bottle-neck. The delay is the difference between the moment the vehicle drives through

the beginning of the b-n and its virtual moment of arrival at the same cross-section. From

the figure can also be concluded that overtakings in congestion do not change the collective

delay. The smaller delay of the overtaker is compensated by the larger delay of the vehicle

being overtaken.

Remark 52 A part of the delay is not accounted for by the queueing model. It is the delay due

to the fact that the vehicles usually have to decelerate when they enter the b-n. However, if the

queueing has any relevant size, then this extra delay can usually be neglected.
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Figure 7.3: Modelling with vertical queues. C denotes the capacity of the bottleneck and D

denotes the traffic demand during ‘overload’.

x1

x2

position

time

upstream of congestion 

begin of bottle-neck

virtual moment
of arrival

delay

moment of departure

Figure 7.4: Possible vehicle trajectories in congestion.
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The relatively simple queueing model has been used in a Dutch approach to take account

of congestion and its fluctuation over a year in deciding how much capacity is needed. It will

be discussed in the remaining part of this chapter. The main drawback of the approach is that

the queue is modelled as a vertical queue, i.e. the amount of space taken up by the queue is

not considered explicitly.

7.2.1 Computations with the queuing model

With the deterministic queuing model, we can derive several relations that provide insight into

the characteristics of queuing and congestions.

Situation: from time t = 0 the capacity is exceeded. This oversaturation lasts until t = t1,

after which the demand is reduced to some value below C. This means: between 0 and t1,

the queue increases; after t1 the queue reduces again. Let ND (t) denote the cumulative arrival
curve; q1 denotes the flow rate between 0 and t1; q2 denotes the flow rate after t1. C denotes the
capacity. We aim to determine: the time t2 at which the queue has dissappeared; the duration

T of congestion; the number of vehicles M that experienced congestion; the collective delay R,

the mean delay Rmean and the maximum individual delay Rmax.

Computational steps:

1. Auxilary point (cumulative vehicle count at time t1): N (t1) = t1D1 = t1 tanα1 = t1q1

2. Maximum queue length Max = N (t1)−Ct1

3. Maximum delay (at time t1) via

tanα1 =
Max

Rmax
Rmax =

Max

C
=

t1 (q1 −C)

C
(7.4)

4. Duration of congestion T by intersection of the cumulative demand curve

ND (t) =

½
q1t 0 < t < t1

q1t1 + q2 (t− t1) t > t1
(7.5)

and supply curve

NC (t) = Ct (7.6)

yields

q1t1 + q2 (T − t1) = CT → T =
(q1 − q2) t1
C − q2

(7.7)

5. Total number of vehicles M that has been in the queue

M = CT (7.8)

6. Total collective loss R

R =
Max

2
T (7.9)

or

R =
M

2
Rmax (7.10)

7. Mean time loss

Rmean =
R

M
(7.11)

or

Rmean =
1

2
Rmax (7.12)
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Note that Rmean does not depend on q2. Futhermore, it turns out that the collective loss R

increases quadratically with the duration of the oversaturation, but the individual loss Rmean

increases linearly. When q2 is only slightly smaller than C then

• the duration of the queue will be high
• there will be many vehicles that experience travel time delays
• the collective waiting time R will be large

• the mean delays will not increase

Therefore, it can be concluded that when after congestion in the peak hour, the demand

is only slightly smaller than the bottle-neck capacity, the congestion may last for a significant

period of time.

7.3 QUAST-method to take account of variability of congestion

Congestion has existed as long as there has been traffic and transportation. Congestion occurs

when the demand for the use of a system is larger than its capacity. Delay, often unexpected and

unpredictable in size, is a characteristic of congestion. Because of this characteristic, congestion

leads to uncertainties in the planning of activities and transportation, the use of sometimes

unnecessary time margins, or to unexpected delay. Congestion on motorways is a ‘relatively

new phenomenon’. During the time that the main part of the motorway system was built, the

missing links in the motorway network formed the bottle-necks of the national network. Even

then there were days when a great deal of congestion took place on the motorways, for example

on Easter Monday and Whitmonday. It was soon decided that the capacity of the network did

not need to be so high as to be able to facilitate such exceptional demand patterns.

Nowadays congestion seems to attract a lot of attention. People fear grid-lock; in more ob-

jective terms they think that the accessibility of important centres (sea ports, airports, business

areas in cities, etc) will degrade too much.

One of the decisions that has to be made in the design of a road is the level of service that

should be offered. A commonly used rule is that a road should be able to facilitate the predicted

design traffic volumes in a design year, with a certain minimum Level of Service. Since around

1970 a cost-benefit analysis in the Netherlands led to the rule: offer a Level of Service of C on

inter-regional roads. This comes down to a capacity of about 4/3 of the design demand and will

provide a situation in which travelling speeds are high, and freedom to manoeuver and driving

comfort are also at an acceptable level.

After some time it became clear that building new roads did not (by far) keep up with the

growth of the demand and congestion on motorways has become a daily returning phenomenon.

This resulted in a study by working group QUAST (derived from QUAlity and STructure of

the main road network) from Rijkswaterstaat (Part of Ministry of Transport) about what level

of capacity should be offered . It was found that a certain amount of congestion led to an

optimum in terms of costs and benefits (elements: costs of building roads, delay, accidents, and

road-maintenance); see [52].

In this study the ‘probability to experience congestion’ was chosen as criterion for the quality

of traffic operation. This is the fraction of daily road users that experiences congestion on a link.

This fraction is determined as an average over all working days of a year. New in this approach

is that a year is no longer represented by a single representative value. Instead, fluctuations of

all kinds of factors during a year have influence; see [50].

The economic optimum appeared to be at the point of 2% probability of congestion. Later,

this standard was relaxed. Whereas the 2% probability of congestion is only valid for hinterland-

connections, for the rest of the main road network a 5% probability of congestion is accepted. In
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addition, these are national normative values. In fact one should make a cost-benefit analysis for

every section and corridor. In areas where the building costs of roads are high, the acceptable

level of congestion could be higher.

7.3.1 QUAST-model

Needed is a calculation of the characteristics of congestion as a function of demand and capacity.

This has been carried out using a deterministic queueing model with vertical queues.

The task of this model is to calculate:

• the fraction of vehicles that experience congestion (Pc);
• the extra travel time or delay for vehicles that experience congestion, collectively (Rt) as

well as the mean value per vehicle (Rmean);

based on the demand pattern over a year, D(t), and a capacity pattern, C(t).
The queueing model with vertical queue is especially suitable to fulfill this task. It is applied

to those network parts that are bottle-necks, i.e. road elements that determine the capacity of

a section.

The model confronts the demand pattern and the capacity pattern with each other and

calculates the resulting congestion; see Fig. 7.5. The demand pattern is represented by the

fluctuations of demand over the 24 hour period of the working days of a year. Over the hours

of a day the demand varies; there is a morning peak period and an evening peak period. The

demand D(t) also systematically varies with the day of the week (factor Fday) and the month
of the year (factor Fmonth).

Finally there are random fluctuations ε (t)); given a time of the day, on a given day of the
week, in a given month of the year, there is a mean value for the demand intensity. A random

variable εD (t) is added to this mean value; it has a mean value of 0 and a normal distribution
with a given standard deviation. This term will further be referred to as noise.

D (t) = D0 (t)FmonthFday + εD (t) (7.13)

Comparison of the demand patterns generated with formula (7.13), with the results of [3],

showed that the demand pattern was fluctuating too wildly. This problem was solved by adding

noise with interdependency (correlated noise). It is plausible that if the demand during period i

is higher than the average value, it is likely (probability > 0.5) that it is also higher than average

in the next period i+ 1. This can be achieved by smoothing independent random variables ε0
with the model (α = smoothing factor; 0 ≤ α ≤ 1):

εD (t) = αεD (t− 1) + (1− α) ε0 (t) (7.14)

At first glance one might think that the capacity pattern is a constant. However, this is

not the case, certainly not under changing weather (factor Fweather) and light conditions (factor

Flight). It is known that with rain road capacity reduces by about 10% and in darkness capacity

reduces by about 5%. Rain is distributed randomly in time, whereas darkness is a systematic

factor.

Similar to the demand, the capacity also has a non-systematic or random component. Under

ideal and sustaining circumstances the capacity still varies. This can be explained by the

different characteristics of vehicle-driver elements. However, these characteristics can not be

observed and their influences are not known, but it is clear that they affect capacity; see [56].

C (t) = C0fweatherflight + εC (t) (7.15)

The random component εC (t) has a mean value of 0 and a normal distribution with a
standard deviation equal to 6 % of capacity. In contrast to the noise term of the demand, the

noise of the capacity is not correlated.
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Figure 7.5: Queueing model with vertical queue

Figure 7.6: Results of a simulation for a day.

Remark 53 The model (7.15) has not been used literally but in a simplified way. Research in

the scope of the QUAST study has led to the following rule of thumb: ’bad weather (including the

effect of darkness) occurs during 10% of the peak hours and brings about a reduction of capacity

of 12%’. This rule has been interpreted even more deterministically in this model. On the

first Tuesday and Wednesday of every month of 20 days bad weather is assumed. Tuesday and

Wednesday were chosen because the intensities on these days differ the least from the average

daily value. This procedure achieves the fraction of 10% of time bad weather per year exactly.

In practice the effect of bad weather and darkness will lead to more varying outcomes than this

model produces.

Fig. 7.6 shows the results of a simulation over a day. The capacity and demand are depicted

as a function of the time of a day. There are short periods with demand higher than capacity,

resulting in a queue indicated at the bottom line. Note that the demand and capacity are

intensities and the queue is a number of vehicles; consequently the scale of the queue in Fig.

7.6 is arbitrary.

Because the pattern of the demand and capacity is now variable, the calculations have to
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Factor Cap. increase (%)

Noise on capacity 2.9

Noise on demand 3.7

Month factor 1.9

Day factor 1.1

Bad weather 2.6

All factors 9.9 (sum = 12.2)

Table 7.1: Effect of different factors on roadway capacity

be carried out per time step (15 minutes), using the equation:

n (t) =

Z t

t1

(D (s)−C (s))ds (7.16)

The number of vehicles in the queue n is the integral of the over saturation D(t) − C(t) and
the integration starts at moment t1 as D(t) for the first time becomes larger than C(t).

The collective delay Rt is the integral of n(t) over time.

Rt (t) =

Z t

t1

n (s) ds (7.17)

7.4 QUAST application results

The remainder of this chapter presents some results of application of the QUAST method.

7.4.1 Effect of factors on required capacity

Investigations with the model have begun with a strictly deterministic case: a fixed demand

pattern and a constant capacity, chosen at a level such that Pc equals 5%. The ‘basic capacity’

needed to obtain this Pc value, given the demand pattern, is denoted as C0. In next steps other

sources of variation are added to the model. It turns out that the addition of every factor leads

to a higher Pc. Increasing the capacity by a certain amount, Pc can be reduced to its original

value of 5 %. It is this increase, expressed as a multiplier, that has been chosen as a yard

stick for the influence of the factor. Table 7.1 presents an overview of the effects of the factors

investigated. It appears that the sum of the separate effects is larger than the combined effect

of all factors together. Further, there are no factors significantly more or less important than

others. Consequently, it can not be concluded that one or several factors can be neglected.

The calculated delay in the most extended model at the normative Pc = 5%, is clearly less
than the values given in publications on outcomes of QUAST (2 min against 4-5 min). Probably

the explanation for this difference is that in the QUAST method of Rijkswaterstaat, the value

found for Rmean is multiplied by a factor of 2 in order to account for other factors that lead to

delay.

7.4.2 Distribution of congestion characteristics

Besides the mean values of Pc, Rmean and Rt, their distributions over the days of a year are

also of importance. Especially the travel time reliability of the system of main roads is closely

related to them. Fig. 7.7 shows the (cumulative) distributions functions where all factors are

included in the model and with an overall value for Pc of 5%.

It appears that all three distributions have the same character. There are many zero or

nearly zero values and the tail is long. This means high values appear with a low frequency.

These results are not convenient, because it means that congestion is hard to forecast. In other
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Figure 7.7: Statistical distribution functions over working days of a) Pc (probability of ex-

periencing congestion); b) Rt (collective delay) and c) Rmean (average delay per vehicle that

experiences congestion).

words its unpredictability is relatively high. Pc and Rmean both show about 30% zero-values.

Rt even shows 50% zero-values. This means that the collective delay is nearly zero on 50% of

the days.

The scale on the axis of Rt requires some explanation. This scale is in minutes per percent

of AADT ; this means that the value should be multiplied by (1/60)AADT/100 in order to find
vehicle-hours.

Example 54 AADT = 50.000 vehicles. The point on the scale at 100 corresponds to a value
of 833 vehicle-hour. If the delay is valued 10 Euro per hour, then it represents an amount of

Euro 8333.

Lastly, the mutual dependence of the characteristics Pc, Rt and Rmean is important. The

interdependence between Pc and Rmean (see Fig. 7.6a) is nearly linear, but the scatter is large.

The dependence between the other two (see Fig. 7.6b) is clearly not linear. Rt is small for Pc <

10% and beyond this point grows more rapidly than linear with Pc. The dependence between

Rmean and Rt can easily be concluded from the other two dependencies.

7.5 Final remarks

Some remarks are due about the model application:

• Calculations were made with 15-minute time-steps, whereas the Ministry of Transport
used 1-hour time steps.

• For the sake of simplicity calculations were made with 12 months of 20 working-days.
• Simulations were made for the time period between 7.00h and 22.00h. Congestion will
not occur outside this time period in this model. The nighttime intensity has been taken

into account in the 24-hour value.

• A simulation over a period of one year (240 working days) is usually not enough to get
stable outcomes. One should average over a few years.
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The analysis of the findings obtained with the model is far from complete. Some issues can

be brought forward:

• Most analysis has focussed on the probability to experience congestion; more attention
should be given to the collective and individual delay.

• The deterministic demand-pattern over the time of a day has not been varied; it is a
pattern with two peak periods that differ slightly. Research should be done into the

effects of this choice.

• The sensitivity of the results for change in the parameters should be determined.
• As far as the model is concerned, the factors for darkness and rain might be introduced
separately.

Finally it should be born in mind that capacity in fact can only be attuned to the demand

to a very limited extent. In most cases a road section capacity can only be adjusted by varying

the number of lanes. The main goal of the preceding analysis has been to gain more insight

into the several factors that contribute to congestion on a yearly basis and to illustrate the

fluctuations in congestion. Apart from over saturation there are other factors that can cause

congestion, e.g. exceptional weather conditions (dense fog, storms), road works, incidents and

accidents.

Drivers can react to congestion experienced in the past by changing their travel behaviour.

On a short term the change of departure time is the most likely reaction. This could lead to

even more fluctuations in congestion, if the reaction is badly timed, e.g. drivers react to the

congestion they experienced yesterday. In fact the process of how drivers respond to congestion

is not yet very well understood.
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