
Chapter 8

Shock wave analysis

Summary of the chapter. Flow-speed-density states change over time and space. When these

changes of state occur, a boundary is established that demarks the time-space domain of one

flow state from another. In rough terms, this boundary is referred to as a shock wave. In some

situations, the shock wave can be rather smooth, for instance when a platoon of high-speed

vehicles catches up with a sligthly slower moving vehicle. In other situations, the shock wave

can be a very significant change in flow states, for instance when high-speed vehicles approach

a queue of stopped vehicles.

This chapter presents shock wave analysis. We introduce the concept of kinematic waves

and shock waves, and present a number of examples of application of shock wave analysis.

List of symbols

k veh/m traffic density

q veh/s traffic volume

Q (k) veh/s equilibrium flow as function of density

v, u m/s traffic speed

ω m/s shock wave speed

c m/s kinematic wave speed

qc veh/s capacity

8.1 Kinematic waves

A useful tool to describe dynamic phenomena in traffic flow is the conservation of vehicle

equation. This equations reflects the fact that no vehicles are created or lost, i.e. that vehicles

are conserved. If for a specific roadway sections, more vehicles are entering than leaving, then

the number of vehicles in the section must increase: i.e. the density increases. Let q = q(x, t)
and k = k(x, t) denote the traffic volume and density at instant t and location x. We assume

that q and k are both smooth functions in time and space, and are defined from the smooth

cumulative vehicle count Ñ(x, t). Then, the conservation of vehicle equation equals

∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0 (8.1)

We combine equation (8.1) with the expression of the fundamental diagram q = Q(k),
yielding the following partial derivative in the traffic density (see chapter 2)

∂k(x, t)

∂t
+

dQ

dk

∂k(x, t)

∂x
= 0 (8.2)

Using this partial differential equation, we can describe the dynamics of the traffic flow

under the assumption that the speed of the traffic reacts instantaneously and locally to the traffic
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Figure 8.1: Fundamental diagram Q(k) and speed of the kinematic wave c = dQ/dk as a

function of the density k

density, that is u (x, t) = V (k (x, t)) or q (x, t) = Q (k (x, t))1. The resulting model (conservation
of vehicle equation and fundamental relation) constitutes one of the oldest macroscopic traffic

flow models (kinematic wave model, LWR model), and was first studied by [34]. We can show

that the partial differential equation (8.2) has the following general solution

k(x, t) = F (x− ct, t) where c =
dQ

dk
and F an arbitrary function (8.3)

This means that a certain density k0 propagates with speed c = dQ
dk
(k0). Roughly speaking,

c is the speed with which very small disturbances are propagating; these are called kinematic

waves.

In chapter 4 several examples of fundamental diagrams have been discussed. Some of these,

like Smulder’s function or Daganzo’s function, Q(k) = u0k for small densities (see also Fig.

8.1). Then dQ
dk
= u0 for small densities, i.e. the speed of the traffic flow and the speed of

the kinematic wave are equal. This is why this density region is referred to as the stable area.

For larger densities, the difference between the speed of the traffic u and the kinematic wave

speed c will increase. This region is referred to as the unstable area, since small disturbances

in the density will grow into discontinuities. In the congested area, the kinematic wave speed c

becomes negative implying that small disturbances in the flow will propagate upstream.

1Note that in chapter 5, it was shown how this may not be a realistic assumption.



8.2. SHOCK WAVE SPEEDS 141

de
ns

it
y 

k

S

u1

k1

u2

k2

ω

location x

Figure 8.2: Derivation of shock wave speed

8.2 Shock wave speeds

The waves that occur in the traffic flow are categorised as either kinematic waves of shock waves.

Shock waves are waves that originate from a sudden, substantial change in the state of the traffic

flow. That is, a shock wave is defined by a discontinuity in the flow-density conditions in the

time-space domain.

1. Fig. 8.2 schematises a shock wave. The shock is the boundary between two areas in for

which different traffic conditions hold.

2. The state at the left area is (k1, u1); the state in the right area is (k2, u2). The line S
indicates the shock wave with speed ω. The relative speeds with respect to line S for the

left and the right area are respectively equal to u1 − ω and u2 − ω.

If we consider the area left of line S, then the volume passing S equals

q1 = k1 (u1 − ω) (8.4)

This holds equally for the right area, i.e.

q2 = k2 (u2 − ω) (8.5)

Since the flow into the shock must equal the flow out of the shock, we can easily show that the

wave speed ω equals

ω =
q1 − q2

k1 − k2
(8.6)

Note that for small changes in q and k, equation (8.6) becomes ω = dQ
dk
= c. In other words,

the kinematic wave is the limiting case of a shock wave. Fig. 8.3 shows the following

1. Traffic flow in state (q1, k1) with speed u1 = tanφ1.

2. Traffic flow in state (q2, k2) with speed u2 = tanφ2.

3. The shock wave which occurs when traffic in state (q1, k1) transients into state (q2, k2).
Between both states a shock wave occurs with speed ω = tan θ1 =

q1−q2
k1−k2 . Since q1 − q2 is

positive and k1 − k2 is negative, the shock wave will move upstream.

4. The state (q1, k1) itself propagates with the speed of the accompanying kinematic wave,
i.e. the tangent of Q(k) at k = k1; this holds equally for the state (q2, k2).

The following sections discuss several examples of applications of shock wave analysis, both

to different situations, and using different forms of the fundamental diagram.
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Figure 8.3: Shock waves in the q − k plane
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Figure 8.4: Schematised intensity - density (concentration) relation

8.3 Temporary blockade of a roadway

Blockades occur in practice in a number of circumstances, for instance when a bridge is open,

during a severe incident blocking all the roadway lanes, or during the red-phase of a controlled

intersection. Consider a two-lane road where the volume is equal to 2500 veh/h. The capacity

qc of the road equals 5000 veh/h. The jam-density kj equals 250 veh/km. The blockade starts

at t = t0, and ends at t = t1. At the time the blockade occurs, three shock waves occur (see

Fig. 8.5):

1. The transition for freely flowing traffic (state (1)) to standing-still (state (2)). The speed

of the shock wave equals ω = q1
q1/u1−kj =

2500
25−250 = −11.1. The wave is called the stop

wave.

2. The head of the queue (state (2)) borders on an empty region (state (3)). Formally, this

is a shock wave as well; clearly ω = 0km/h.

3. Downstream of x0 a region in which traffic is present that has just passed x0 before the

blockade occurred. This is also a shock wave with speed w = u0.

When the blockade is removed at t = t1, two more shock waves emerge

4. The transition from queuing (state (2)) to the capacity state (4) (the so-called start-

wave) with speed ω = q4−q2
k4−k2 =

qc
kc−kj = −25km/h, implying that the head of the queue

propagates upstream with a speed of 25km/h.
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Figure 8.5: Trajectories of shock waves and vehicles. Note that the stop wave is often referred to

as the backward forming shockwave; the start wave is also referred to as the backward recovery

wave; furthermore the head of the queue is also called the frontal stationary wave

5. Downstream of x0 exists a boundary between state (4) and the empty road. This shock

wave has speed ω = u0.

Since the start wave has a higher speed that the stop wave, it will eventually catch up, say

at time t = t2. At that time, a new shock wave occurs, reflecting the transition from free-flow

traffic (state (1)) to the capacity state (4). This wave has speed u0.

8.4 Shock wave analysis for non-linear intensity-density curves

In the previous section, shock wave analysis was applied to determine traffic flow conditions

for piecewise linear intensity-density curves. This section discusses application of shock wave

analysis for general Q(k) relations, i.e. relations that are not necessarily piecewise linear. This
is done by revisiting the application examples discussed in the previous section.

8.4.1 Temporary blockade revisited

Let us first reconsider the temporary roadway blockade example, using the Q(k) relation de-
picted in Fig. 8.6. Here, the derivative Q0(k) is a monotonic decreasing function of the density
k, with Q0(k) < 0. As before, the blockade of the roadway starts at t = t0 and ends at t = t1. At

the time the blockade occurs, the shock wave theory will again predict the occurance of three

shock waves (see Fig. 8.6), similar to the case of piecewise linear Q(k). In line with [36], the
shock wave theory predicts that at time t = t1, traffic will start moving along the roadway, fully

using the available capacity qc. This causes a transition from state 3 (empty roadway) to state

4. Note that the speed at which shock between states 3 and 4 moves equals the capacity speed

uc, which is in this case less than the free flow speed u0. The start wave and the stop wave

propagate in a similar fashion as before. However, at the point where the start wave and the

stop wave intersection (i.e. the queue has dissolved), the shock wave separating states 4 and 1

has a different character: its speed is less than the speed of the vehicles in state 1. As a result,

the vehicles in state 1 will eventually catch up with the shock wave and driving into the state

4 region.

Clearly, this result is not very realistic: the shock wave theory predicts that the speed of

the first vehicle in the queue equals the speed at capacity uc, while in fact the first vehicle will
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Figure 8.7: Shockwaves for non-linear Q(k) for temporary blockade example
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accelerate towards the free speed u0. This is caused by the fact that shock wave theory does not

describe the acceleration - nor the decelaration - of the first vehicle in the queue. As a result of

the reduced speed of the first vehicle, the shock that is caused by the temporary blockade will

not dissolve over time. Rather, state 4 will disperse further as time goes by.

8.5 Moving bottlenecks

In this section we consider a more complicated example, namely a moving bottle-neck (b-n)

that is present on a road over a given distance and/or during a given period. The usefulness of

this example is that it implies other relevant cases by assigning values zero to the speed and/or

the capacity of the bottle-neck. Practical examples of a moving bottle-neck are:

1. A slow moving vehicle, e.g. an agricultural tractor with a speed of 20 km/h, on a two-lane

road. The capacity of the b-n is determined by the overtaking opportunities, hence by the

opposing flow and the overtaking sight distance. Those two factors can lead to a more or

less constant capacity of the b-n.

2. A platoon of trucks on a long grade on a motorway. In such conditions trucks form a

slow platoon and more or less block the right hand lane, causing a substantial capacity

reduction.

3. Actions of protesting farmers or truck drivers that from a temporary slow platoon on one

or more lanes of a motorway.

To simplify the case three assumptions will be made:

1. Demand intensity is constant and larger than the capacity of the b-n. If the demand is

lower, the b-n only leads to a speed reduction with relatively little delay.

2. Daganzo’s fundamental diagram is used.

3. The length of the b-n can be neglected; it is set at zero.

8.5.1 Approach 1

Figure 8.8 depicts the phenomena in the q − k plane and the x− t plane. The capacity of the

roadway is 4500 veh/h; speed at capacity uc = 90km/h; jam density kj = 250veh/km. The
moving b-n has a speed v̂ (20 km/h) and covers a distance of 4 km. The b-n has a capacity of

1800 veh/h, a capacity speed of 60 km/h and kj = 125veh/km.
In general terms the b-n will lead to congestion upstream and free flow downstream with an

intensity equal to the capacity of the b-n. After the b-n is removed the congestion will decay until

free flow is restored over the total affected road section. We start looking to the phenomena in

the q− k plane. It is obvious that in the b-n the (traffic flow) state is the cap. state of the b-n;

state 2. At the upstream end of the b-n a transition from a congested state 4 to the state 3

must occur and move with speed v̂. At the downstream end of the b-n a transition from state

4 to free flow 1 occurs and this transition must also have speed v̂. This implies that in the

q − k plane the shock waves are represented by the line going through the capacity point of the

b-n with a slope equal to v̂. Consequently the state in the congestion upstream the b-n is state

3 and the state downstream the b-n is state 4.

Note: Consequently the intensity of the free flow downstream the b-n is not equal to the

capacity of the b-n, as was loosely stated earlier, but it is less. Only if the speed of the b-n is

zero that is the case.

Free flow state 1 and congested state 3 determine the speed of the shock wave at the tail

of the queue. Given this description in the q − k plane the geometrical description in the x− t

plane follows easily and the calculations are straightforward.
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The origin in Fig. 8.9 is where the b-n starts. It moves with speed v̂ until it leaves the road

again. The upstream border of the queue is a shock wave with speed ω13. At a given moment

and position the moving b-n leaves the road (point B). The congested traffic, state 3, then

transforms to the capacity state 5 and a shock wave between state 3 and state 5 starts and

makes the size of congestion shrink. Shock waves S13 and S53 meet at point C, and then starts

a shock wave representing the transition from the undisturbed state 1 to capacity state 5 with

speed ωAE . When this shock wave reaches the position of point 3 the disturbance is virtually

over. Line AB is very special, since it represents state 2; just upstream of a shockwave with

speed ω32 is present and just downstream a shockwave with the same speed ω24.

Note: downstream point B, Daganzo’s diagram works out less realistically. The three states

4, 5, and 1 propagate all with the same speed and do not mix. In reality, u4 > u1 > u5 and

drivers will accelerate to areas with a lower density.

8.5.2 Approach 2

An alternative approach exist to determine the effects of a moving bottleneck. Let us again

consider the situation above, where a moving bottleneck enters the roadway and drives with a

constant speed v̂.The trick is to reformulate the problem with all relevant variables (location,

flows, speeds, etc.) defined relative to a frame of reference moving along with the moving

bottleneck. This is usefull because the moving observers will notice that the relative flows

passing them also obey some q−k relation at each point (albeit different from the origing q−k
relation) and that the bottleneck appears stationary. Thus the solution in the new frame of

reference can be obtained as discussed earlier without any changes, and from this solution one

can then retrieve the desired ‘static’ solution.

The simple mathematical formalism follows. Using primes to denote the variables used in

the moving frame of reference we definde

x0 = x− v̂t, t0 = t, k0 = k, and q0 = q − kv̂ (8.7)

Note that q0 is the relative flow measured by the moving observer, which can be either negative
or positive. It should be obvious that the relative flows must be conserved and thus

∂k0

∂t0
+

∂q0

∂x0
= 0 (8.8)

Of course, this equation can also be obtained by changing variables in ∂k
∂t
+ ∂q

∂x
= 0. Most

importantly, the original relation between q and k is transformed into a relation Q0 (k0, x0) that
is independent of t

q0 = q − kv̂ = Q (k, x− v̂t)− kv̂ = Q0
¡
k0, x0

¢
(8.9)

Thus, the problem has been reduced to the stationary bottleneck case with Eq. (8.8). This new

relation essentially lowers the traffic speed and the wave speed for every k by and amount of v̂.

To retrieve the solution in the original frame of reference, we simply need to adjusr vertically

the edges of the polygons in the (x0, t0) solution using x = x0+v̂t0 while keeping the same density
inside of each polygon (since k = k0).

8.6 Shock wave classification

This chapter has presented shock wave analysis. By means of several examples and exercises we

have seen different types of shock waves. Fig. 8.10 classifies the various types of shock waves.

The high density area is shown in the centre of the figure, while low densities are located on

the outside of the individual shock waves.

A frontal stationary shock wave must always be present at a bottle-neck location and indi-

cates the location where traffic demand exceeds capacity. This may be due to recurrent situa-

tions where each workday the normal demands exceed the normal capacities, or be due to non



148 CHAPTER 8. SHOCK WAVE ANALYSIS

High density
region

Frontal stationary

Forward
forming

Backward
recovery

Backward
forming

Forward
recovery

di
st

an
ce

time

Figure 8.10: Classification of shock waves

recurrent situations where the normal demand exceeds reduced capacity (caused by an acci-dent

or an incident) which may occur at any location and at any time. The term ‘frontal’ im-plies

that it is at the front (or downstream edge) of the congested region with lower densities farther

downstream and higher densities upstream. The term ‘stationary’ means that the shock wave

is fixed by location.

Backward forming shock waves must always be present if congestion occurs and indicates the

area in the time-space domain where excess demands are stored. The term ‘backward’ implies

that over time, the shock wave is moving backward or upstream in the opposite direc-tion of

traffic. The term ‘forming’ implies that over time, the congestion is (gradually) ex-tending to

sections farther downstream. The time-space domain to the left of this shock wave has lower

densities, and to the right the density levels are higher. There are examples of backward forming

shock waves in the examples and exercises presented in the previous sec-tions.

The forward recovery shock wave is the next most commonly encountered type of shock-wave

and occurs when there has been congestion, but demands are decreasing below the bottle-neck

capacity and the length of the congestion is being reduced. The term ‘forward’ means that over

time the shock wave is moving forward or downstream in the same direction as the traffic. The

term ‘recovery’ implies that over time, free-flow conditions are gradually occurring on sections

farther downstream.

The rear stationary shock wave may be encountered when the arriving traffic demand is

equal to the flow in the congested region for some period of time. The backward recovery

shock wave is encountered when congestion has occurred but then due to increased bottle-neck

capacity the discharge rate exceeds the flow rate within the congested region. The last type of

shock wave is the forward forming shock wave, which is not very common. It may occur when

the capacity decreases slowly in the upstream direction, for instance in case trucks are slowed

down due to the grade of the roadway.
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