
Chapter 2

Actions, behaviour, equivalence

and abstraction

In this chapter the basic notions of (inter)action and behaviour are explained in terms

of transition systems. It is discussed when different transition systems can behave the

same and it is indicated how complex behaviour can be abstracted by hiding actions.

2.1 Actions

Interaction is everywhere. Computer systems, humans, machines, animals, plants,

molecules, planets and stars are all interacting with their environment. The classi-

cal view is that such interactions are continuous such as gravity pulling stellar objects

towards each other. There is a long mathematical tradition in researching such contin-

uous communication.

But many systems communicate by having infrequent, short interactions. We use

the term discrete interactions to contrast such communications with the classical con-

tinuous interaction. Human communication is a typical example. People meet, shake

hands, exchange messages and proceed to communicate with others. The communi-

cation in and especially among computers has the same pattern. The whole nature

of computers seems to be to receive, process and send messages. And as many of

the systems that we make these days contain computers inside, they can be viewed as

discretely interacting systems.

The complexity of message exchanges among computerised systems is steadily in-

creasing and has reached a level where it is very hard to understand. This complexity

needs to be tamed by making models and having the mathematical means to under-

stand these models. The first purpose of this book is to provide the modelling means

and mathematical analysis techniques to understand interacting systems. The second

derived purpose is to provide the means to design such systems such that we know for

sure that these systems work in the way we want.

Basic actions, also called interactions, represent the elementary communications

and are the main ingredients of such models. We denote them abstractly by letters a,

17



b, c or more descriptively by names such as read , deliver , and timeout . They are

generally referred to as actions and they represent some observable atomic event. For

instance, action deliver can represent the event of a letter being dropped in a mailbox.

Action read can consist of reading a message on a computer screen.

Actions can be parameterised with data; an action a taking data parameter d is

denoted by a(d); examples of such actions are read(1), write(true, 2) and draw(1.5,
2.5, sqrt(2)), where sqrt(2) is a data expression denoting the square root of 2. This

feature is essential in modelling reactive systems that communicate data and make

decisions based on the values of communicated data.

The fact that an action is atomic means that actions do not have distinct start and

end moments and hence, cannot overlap each other. For every pair of actions a and b,
the one happens before the other, or vice versa. Only in rare cases a and b can happen

exactly at the same moment. We write this as a|b and call this a multi-action. It is

possible to indicate that an action can take place at a specific time. E.g., a֒3 denotes

that action a must take place at time 3. For the moment multi-actions and time are

ignored. We come back to it in chapters 4 and 8, respectively.

We use an alarm clock as our running example throughout this chapter. Our simple

alarm clock has three basic actions, namely, set, reset and alarm. Also, we specify a

variant of alarm clock in which the number of alarms can be given to the clock; in this

variant we use actions of the form set(n), where n is a natural number denoting the

number of times the alarm should go off.

Exercise 2.1.1. What are the actions of a CD-player? What are the actions of a text-

editor? And what of a data-transfer channel?

2.2 Labelled transition systems

The order in which actions can take place is called behaviour. Behaviour is generally

depicted as a labelled transition system, which consists of a set of states and a set of

transitions labelled with actions that connect the states. Labelled transition systems

have an initial state, which is depicted by a small incoming arrow. They may have

terminating states, generally indicated with a tick (X). In figure 2.1, the behaviours of

two simple processes are depicted. Both can perform the actions a, b, c and d. At the

end, the lower one can terminate, whereas the upper one cannot do anything anymore;

it is said to be in a deadlock, i.e., in a reachable state that does not terminate and has

no outgoing transitions.

X
a b c d

a b c d

Figure 2.1: Two simple linear behaviours of which the lower one can terminate

Such simple diagrams are already useful to illustrate different behaviours. In figure

18



2.2 the behaviours of two alarm clocks are drawn. The behaviour at the left allows for

repeated alarms, whereas the behaviour at the right only signals the alarm once. Note

also that the behaviour at the left only allows a strict alternation between the set and

the reset actions, whereas this is not the case in the right diagram as for instance the

trace set alarm set is possible.

set

reset

alarm

set

alarm

reset

Figure 2.2: Two possible behaviours of an alarm clock

Our model of the alarm clock can be extended with a feature for specifying the

number of alarms to go off. This is achieved by parameterising the action set , with a

natural number as depicted in figure 2.3. In this picture we assume that the pattern of

behaviour is repeated and hence, we have an infinite labelled transition system.

set(1)

set(2)

alarm alarm

reset

reset

Figure 2.3: An alarm clock with a multiple alarm feature

A state can have more than one outgoing transition with the same label to different

states. The state is then called nondeterministic. A deterministic transition system con-

tains no reachable nondeterministic states. Nondeterminism is a very strong modelling

aid. It allows to model behaviour of which the details are not completely known, or are

too complex to be modelled fully. The first use of nondeterminism is called underspec-

ification. The second use is called abstraction allowing for simple models of complex

phenomena.

In figure 2.4 sounding the alarm is modelled using nondeterminism. If an alarm

sounds, you cannot tell whether it is the last one, or whether there are more to follow.

This can be intentionally underspecified, allowing an implementer to build an alarm

clock which can sound the alarm a fixed (yet arbitrary) number of times. But figure 2.4

can also represent that the alarm sounds exactly 714 times before stopping. When the

19



s1 s2
set

alarm

alarm

reset

Figure 2.4: Nondeterministic behaviour of an alarm clock

fact that the alarm sounds exactly 714 times does not outweigh the increased complex-

ity of the model, this abstract nondeterministic transition system is a good model.

Robin Milner1 was one of the early defenders of the use of nondeterminism [131,

133]. He called it the weather condition. The weather determines the temperature.

The temperature influences the speed of processors and clocks in a computer. This

may mean that a timeout may come just too late, or just too early for some behaviour

to happen. It generally is not effective to include a weather model to predict which

behaviour will happen. It is much more convenient to describe behaviour in a nonde-

terministic way.

The formal definition of a labelled transition system is the following.

Definition 2.2.1 (Labelled Transition System). A labelled transition system (LTS) is

a five tuple A = (S,Act ,−→, s, T ) where

• S is a set of states.

• Act is a set of actions, possibly multi-actions.

• −→⊆ S ×Act × S is a transition relation.

• s ∈ S is the initial state.

• T ⊆ S is the set of terminating states.

It is common to write t
a
−→ t′ for (t, a, t′) ∈−→.

Often, when not relevant or clear from the context, the set T of terminating states and/or

the initial state are omitted from the definition of an LTS.

Exercise 2.2.2. Make the following extensions to the alarm clock.

1. Draw the behaviour of an alarm clock where it is always possible to do a set or a

reset action.

2. Draw the behaviour of an alarm clock with unreliable buttons. When pressing

the set button the alarm clock can be set, but this does not need to be the case.

Similarly for the reset button. Pressing it can reset the alarm clock, but the clock

can also stay in a state where an alarm is still possible.

1Robin Milner (1934-2010) was the developer of the theorem prover LCF and the programming language

ML. He is also the founding father of process calculi. In 1991 he received the Turing Award.

20



3. Draw the behaviour of an alarm clock where the alarm sounds at most three times

when no other action interferes.

Exercise 2.2.3. Describe the transition system in figure 2.4 in the form of a labelled

transition system conforming to definition 2.2.1.

2.3 Equivalence of behaviours

When do two systems have the same behaviour? Or stated differently, when are two

labelled transition systems behaviourally equivalent? The initial answer to this question

is simple. Whenever the difference in behaviour cannot be observed, we say that the

behaviour is the same. The obvious next question is how behaviour is observed. The

answer to this latter question is that there are many ways to observe behaviour and

consequently many different behavioural equivalences exist. We only present the most

important ones here.

2.3.1 Trace equivalence

One of the coarsest (most unifying) notions of behavioural equivalence is trace equiv-

alence. The essential idea is that two transition systems are equivalent if the same

sequences of actions can be performed from their respective initial states. This cor-

responds to observing that actions can happen without interacting with them. It is not

even possible to tell whether a system is deadlocked or whether more actions will come.

Traces are sequences of actions, typically denoted as a1a2a3 . . . an. We typically

use letters σ and ρ to represent traces. The termination symbol X can also be part of a

trace (usually appearing at its end). The symbol ǫ represents the empty trace.

Definition 2.3.1 (Trace equivalence). Let A = (S,Act ,−→, s, T ) be a labelled tran-

sition system. The set of traces (runs, sequences) Traces(t) for a state t ∈ S is the

minimal set satisfying:

1. ǫ ∈ Traces(t), i.e., the empty trace is a member of Traces(t),

2. X ∈ Traces(t) iff t ∈ T , and

3. if there is a state t′ ∈ S such that t
a
−→ t′ and σ ∈ Traces(t′) then aσ ∈

Traces(t).

The set of traces of the labelled transition system is Traces(s0). Two states t, u ∈ S
are trace equivalent if and only if (iff) Traces(t) = Traces(u). Two transition systems

are trace equivalent iff their initial states are trace equivalent.

The sets of traces of the two transition systems in figure 2.1 are respectively {ǫ, a, ab,
abc, abcd} and {ǫ, a, ab, abc, abcd, abcdX}. The two transition systems are not trace

equivalent.

Consider the labelled transition systems for the two alarm clocks depicted in figure

2.5. These two systems are trace equivalent: the set of traces for both labelled transition

21



set

set

reset

alarm

set

alarm

reset

Figure 2.5: Two trace-equivalent alarm clocks

systems is: {set , set alarm⋆, (set alarm⋆ reset)⋆}, where ⋆ is the so-called Kleene

star and denotes zero- or more times repetition (zero-time repetition results in the empty

trace).

The alarm clock at the left-hand side has a nondeterministic choice between the two

transitions labelled with set : if it moves with the set transition to the left, it deadlocks.

At the right there is no deadlock after the set action. As one can generally observe a

deadlock, the observational behaviour of the two transition systems is different. This is

the reason why trace equivalence is not used very often and finer notions of equivalence

are used that take deadlocks into account.

However, there are cases where trace equivalence is useful, especially when study-

ing properties that only regard the traces of processes. A property can for instance be

that before every reset an set action must be done. This property is preserved by trace

equivalence. In order to determine this for the transition system at the left in figure 2.5,

it is perfectly valid to first transform it into the transition system on the right of this

figure, and then determine the property for this last transition system.

Exercise 2.3.2. Which of the following labelled transition systems are trace equivalent.

a a

b b c

a

b c
aa

a

22



a a

a a a

a a a

b c c

a

a a

a a a

b c c

2.3.2 ⋆Language and completed trace equivalence

In language theory labelled transition systems are commonly used to help in parsing

languages. Generally, the word automaton is used for labelled transition systems in

that context. Process theory, as described here, and language theory have a lot in com-

mon. For instance, grammars to describe languages are essentially the same as process

expressions, described in the chapter 4.

There is however one difference. In the process world there are many different

behavioural equivalences, whereas in the language world language equivalence is es-

sentially the only one. Every trace that ends in a successful state is a sentence. Such a

sentence is said to be accepted by the language. Two processes are language equivalent

if their sets of sentences are the same. More formally:

Definition 2.3.3 (Language equivalence). Let A = (S,Act ,−→, s, T ) be a labelled

transition system. We define the language Lang(t) of a state t ∈ S as the minimal set

satisfying:

• ǫ ∈ Lang(t) if t ∈ T , and

• if t
a
−→ t′ and σ ∈ Lang(t′) then aσ ∈ Lang(t).

Two states t, u ∈ S are language equivalent iff Lang(t) = Lang(u). Two labelled

transition systems are language equivalent iff their initial states are language equiva-

lent.

The language of the first automaton in figure 2.1 is the empty set. That of the second

transition system is {abcd}.

The closest pendant in the process world is completed trace equivalence. A com-

pleted trace is a sequence of actions that ends in a deadlocked or a terminating state

(and the difference between these states can be observed).

Definition 2.3.4 (Completed trace equivalence). Let A = (S,Act ,−→, s, T ) be a

labelled transition system. We define the completed traces CompletedTraces(t) of a

state t ∈ S as the minimal set satisfying:

• ǫ ∈ CompletedTraces(t) if t /∈ T and there are no t′ ∈ S and a ∈ Act such that

t
a
−→ t′,

23



• X ∈ CompletedTraces(t) if t ∈ T , and

• if t
a
−→ t′ and σ ∈ CompletedTraces(t′) then aσ ∈ CompletedTraces(t).

Two states t, u ∈ S are completed trace equivalent iff Traces(t) = Traces(u) and

CompletedTraces(t) = CompletedTraces(u). Two labelled transition systems are

complete trace equivalent iff their initial states are completed trace equivalent.

Note that our notion of completed trace equivalence has as an additional constraint

that the set of traces should also be equivalent. This is essential for distinguishing

systems with infinite, non terminating behaviour. Take as example an a-loop and a

b-loop. The observable behaviour of these two transition systems is very different, but

their sets of completed traces are both empty. By including the sets of traces in the

definition of completed trace equivalence they are distinguished again.

Consider the labelled transition systems depicted in figure 2.6. They are trace

equivalent. They are also completed trace equivalent since their completed trace sets

are both empty. However, when it would be possible to block the reset action, they

are not completed trace equivalent any more. Blocking the reset transition boils down

to removing reset transitions. Then the transition system at the left has set as a com-

pleted trace, which the transition system at the right does not have. Completed trace

equivalence is not compositional, i.e., it can be jeopardised when equivalent systems

are placed in a context that can influence their behaviour. Compositionality, also called

congruence, is a much desired property and is the cornerstone of the algebraic ap-

proach to system description (see chapter 4). Fortunately, we have good alternatives

for language and completed trace equivalence that are compositional, which will be

introduced in the next sections.

setset

resetalarm

set

alarm

reset

Figure 2.6: Two completed trace equivalent alarm clocks

2.3.3 ⋆Failures equivalence

The equivalence that is closest to completed trace equivalence and that is a congruence

when blocking of actions allowed, is failures equivalence. The typical property of

failure equivalence is that it relates as many behaviours as possible, while preserving

traces and deadlocks, even if the behaviours are placed in an environment constructed

of common process operators (see chapters 4 and 5).

24



The definition of failures equivalence has two steps. First a refusal set of a state t
is defined to contain those actions that cannot be performed in t. Then a failure pair is

defined to be a trace ending in some refusal set.

Definition 2.3.5 (Failures equivalence). Let A = (S,Act ,−→, s, T ) be a labelled

transition system. A set F ⊆ Act ∪ {X} is called a refusal set of a state t ∈ S,

• if for all actions a ∈ F there is no t′ ∈ S such that t
a
−→ t′, and

• if X ∈ F , then t /∈ T , i.e., t cannot terminate.

The set of failure pairs, FailurePairs(t), of a state t ∈ S is inductively defined as

follows

• (ǫ, F ) ∈ FailurePairs(t) if F is a refusal set of t.

• (X, F ) ∈ FailurePairs(t) iff t ∈ T and F is a refusal set of t, and

• If t
a
−→ t′ and (σ, F ) ∈ FailurePairs(t′) then (aσ, F ) ∈ FailurePairs(t).

Two states t, u ∈ S are failures equivalent iff FailurePairs(t) = FailurePairs(u).
Two transition systems are failures equivalent iff their initial states are failures equiva-

lent.

The labelled transition systems depicted in figure 2.7 are failures equivalent. Ini-

tial states of both labelled transition systems refuse the set {alarm, reset}; hence (ǫ,
{alarm, reset}) is a failure pair for both initial states. The lower state in the figure

at the right has, for instance, failure pairs (set , {set}) and (set , ∅). But these are also

failure pairs of the left and right states of both figures. These transitions systems show

that behaviour demonstrating a lack of choice at the left is equal to behaviour at the

right with the possibility to choose between a reset , or an alarm action. We say that

failures equivalence does not preserve the branching structure of behaviour.

setset setset

resetalarm
resetalarm

set resetalarm

Figure 2.7: Two failure-equivalent alarm clocks

25



Exercise 2.3.6. State whether the following pairs of transition systems are language

and/or failures equivalent.

X

X

a a

b

X

a

b

X X X

a a

b b c

X X

a

b c

X X

X X

a a

b c c f

d e
X X

X X

a a

b c c f

e d

2.3.4 Strong bisimulation equivalence

Bisimulation equivalence, also referred to as strong bisimulation equivalence, or strong

bisimilarity is the most important process equivalence although its definition is far more

complex than trace equivalence.

One reason for its importance is that if two processes are bisimulation equivalent,

they cannot be distinguished by any realistic form of behavioural observation. This in-

cludes for instance observations where performed actions can be undone, where copies

of the system under observation are made which are tested separately, where it can

be observed that actions are not possible and where it can be observed that arbitrarily

long sequences of actions are possible in a certain state. Hence, if two processes are

bisimilar they can certainly be considered indistinguishable under observation.

Another reason is that the algorithms for checking bisimulation equivalence are

efficient, contrary to the algorithms for checking any equivalence based on a form of

traces, which are generally PSPACE-complete or worse.

The idea behind bisimulation is that two states are related if the actions that can be

done in one state, can be done in the other, too. We say that the second state simulates

the first. Moreover, if one action is simulated by another, the resulting states must be

related also.

Definition 2.3.7 (Bisimulation). Let A=(S,Act ,−→, s, T ) be a labelled transition

system. A binary relation R ⊆ S × S is called a strong bisimulation relation iff for all

s, t ∈ S such that sRt holds, it also holds for all actions a ∈ Act that:

1. if s
a
−→ s′, then there is a t′ ∈ S such that t

a
−→ t′ with s′Rt′,

2. if t
a
−→ t′, then there is a s′ ∈ S such that s

a
−→ s′ with s′Rt′, and

3. s ∈ T if and only if t ∈ T .

26



Two states s and t are strongly bisimilar, denoted by s ↔–– t, iff there is a strong

bisimulation relation R such that sRt. Two labelled transition systems are strongly

bisimilar iff their initial states are bisimilar.

Often the adjective strong is dropped, speaking about bisimulation rather than strong

bisimulation. However, we will see several other variants of bisimulation and in those

cases the use of ‘strong’ helps us stress the difference.

s1

s2 s3

s4 s5

a a

b b

t1

t2

t3 t4

a

b b

R s1

s2 s3

s4 s5

a a

b b

t1

t2

t3 t4

a

b b

R

R

s1

s2 s3

s4 s5

a a

b b

t1

t2

t3 t4

a

b b

R

R

R

s1

s2 s3

s4 s5

a a

b b

t1

t2

t3 t4

a

b b

R

R

R

R R

Figure 2.8: Showing two LTSs bisimilar

There are several techniques to show that two labelled transition system are bisim-

ilar. Computer algorithms generally use partition refinement for the Relation Coarsest

Partitioning problem [111, 146]. For small transition systems a more straightforward

technique is generally adequate. Consider the transition systems in figure 2.8. In order

to show that the initial states s1 and t1 are bisimilar, a bisimulation relation R must

be constructed to relate these two states. We assume that this can be done. Hence, we

draw an arc between s1 and t1 and label it with R. If R is a bisimulation, then every

transition from s1 must be mimicked by a similarly labelled transition from t1. More

concretely, the a-transition from s1 to s2 can only be mimicked by an a-transition from

t1 to t2. So, s2 and t2 must be related, too. We also draw an arc to indicate this (see the

second picture in figure 2.8). Now we can proceed by showing that the transition from

s1 to s3 must also be mimicked by the a-transition from t1 to t2. Hence, s3 is related

to t2 (see the third picture). As a rule of thumb, it generally pays of to first choose a

transition from the side with more choices in order to force the other side to perform a

certain transition. Otherwise, there might be a choice, and several possibilities need to

be considered. E.g., the a-transition t1 to t2 can be simulated by either the transition

from s1 to s2, or the one from s1 to s3.

The relation R needs to be extended to all reachable nodes. Therefore, we consider

the relation between s2 and t2. We continue the process sketched before, but now let

the transitions from the right transition system be simulated by the left one, because

27



the states s2 and s3 are deterministic. The relation R is extended as indicated in the

fourth picture of figure 2.8. It needs to be checked that all related states satisfy all the

requirements in definition 2.3.7. As this is the case, R is a bisimulation relation, the

initial states are bisimilar and therefore the systems are bisimilar.

s1

s2 s3

s4 s5

a a

b c

t1

t2

t3 t4

a

b c

R
s1

s2 s3

s4 s5

a a

b c

t1

t2

t3 s4

a

b c

R

Figure 2.9: Two non-bisimilar labelled transition systems

Now consider the transition systems in figure 2.9. There are three actions a, b and

c. These two transition systems are not bisimilar.

Before showing this formally, we first give an intuitive argument why these two

processes are different. Let actions a, b and c stand for pressing one of three buttons.

If a transition is possible, the corresponding button can be pressed. If a transition is not

possible, the button is blocked.

Now suppose a customer ordered the transition system at the right (with initial

state t1) and a ‘malicious’ supplier delivered a box with the behaviour of the transition

system at the left. If the customer cannot experience the difference, the supplier did an

adequate job. However, the customer can first press an a button such that the box ends

up being in state s3. Now the customer, thinking that she is in state t2 expects that both

b and c can be pressed. She, however, finds out that b is blocked, from which she can

conclude that she has been deceived and has an argument to sue the supplier.

Now note that in both behaviours in figure 2.9 the same sequence of actions can be

performed, namely a b and a c; in other words, they are (completed) trace equivalent.

Yet, the behaviour of both systems can be experienced to be different!

If one tries to show both transition systems bisimilar using the method outlined

above, then in the same way as before, state s2 must be related to state t2. However, a

c transition is possible from state t2 that cannot be mimicked by state s2 which has no

outgoing c transition. Hence, s2 cannot be related to t2 and consequently, s1 cannot be

bisimilar to t1.

A pleasant property of bisimulation is that for any labelled transition system, there

is a unique minimal transition system (up to graph isomorphism) which is bisimilar to

it.

Exercise 2.3.8. State for each pair of transition systems from exercise 2.3.2 whether

they are bisimilar.

Exercise 2.3.9. Show that the following transition systems are not bisimilar, where the

transition system to the left consists of sequences of a-transitions with length n for each

n ∈ N. The transition system to the right is the same except that it can additionally do

an infinite sequence of a-transitions.

28



a a a a
a

a a

a

a

a a a a a

a a

a

a

a

a

Exercise 2.3.10. Give the unique minimal labelled transition system that is bisimilar

to the following one:

a

a

a

a

a
a

a

a

a

b

b

b

b

b

b

2.3.5 The Van Glabbeek linear time – branching time spectrum

As stated before, there is a myriad of process equivalences. A nice classification of

some of these has been given by Van Glabbeek2 [71]. He produced the so-called linear

time-branching time spectrum of which a part is depicted in figure 2.10. At the top the

finest equivalence, relating the fewest states, is depicted and at the bottom the coarsest

equivalence, relating the most states, is found. The arrows indicate that an equivalence

is strictly coarser. For example, if processes are bisimulation equivalent, then they

are also 2-nested simulation equivalent. Bisimulation equivalence is the finest equiv-

alence and trace equivalence the coarsest. If two processes are bisimilar then they are

equivalent with respect to all equivalences depicted in the spectrum. If processes are

not bisimilar, then it makes sense to investigate whether they are equal with respect to

another equivalence.

Each equivalence has its own properties, and it goes too far to treat them all. As an

illustration we relate a few types of observations to some equivalences. Suppose that

we can interact with a machine that is equipped with an undo button. So, after doing

some actions, we can go back to where we came from. Then one can devise tests that

precisely distinguish between processes that are not ready simulation equivalent. So,

ready simulation is tightly connected to the capability of undoing actions. In a similar

way, possible futures equivalence is strongly connected to the capability of predicting

which actions are possible in the future and 2-nested simulation equivalence combines

them both.

The Van Glabbeek spectrum owes its existence to nondeterminism. If transition

systems are deterministic then the whole spectrum collapses. In that case two states are

2Rob van Glabbeek (1960-. . .) classified thousands of process equivalences. He contributed to various

areas in mathematics and theoretical computer science, including concurrency theory, linear logic and pro-

tocols for wireless networks. He ran for the Dutch parliament in 2012 for the Libertarian Party.

29



bisimulation

2-nested simulation

ready simulation

possible worlds possible futures

ready trace

failure trace readiness

simulation failures

completed trace

trace

Figure 2.10: The Van Glabbeek linear time – branching time spectrum

30



bisimulation equivalent if and only if they are trace equivalent. We state this theorem

precisely here and provide the proof as an example of how properties of bisimulation

are proven.

Definition 2.3.11. We call a labelled transition system A = (S,Act ,−→, s, T ) de-

terministic iff for all reachable states t, t′, t′′ ∈ S and action a ∈ Act it holds that if

t
a
−→ t′ and t

a
−→ t′′ then t′ = t′′.

Theorem 2.3.12. Let A = (S,Act ,−→, s, T ) be a deterministic transition system. For

all states t, t′ ∈ S it holds that

Traces(t) = Traces(t′) iff t↔–– t′.

Proof. We only prove the case from left to right. The proof from right to left is much

easier.

In order to show that t ↔–– t′, we need to show the existence of a bisimulation

relation R such that tRt′. We coin the following relation for all states u, u′ ∈ S:

uRu′ iff Traces(u) = Traces(u′).

Finding the right relation R is generally the crux in such proofs. Note that R is indeed

suitable, as R relates t and t′.
So, we are only left with showing thatR is indeed a bisimulation relation. This boils

down to checking the properties in definition 2.3.7 (strong bisimulation). Assume that

for states u and v we have uRv. Then

1. Suppose u
a
−→ u′. According to definition 2.3.1 (trace equivalence) aσ ∈

Traces(u) for all traces σ∈Traces(u′). Furthermore, as Traces(u)=Traces(v),

it holds that aσ ∈ Traces(v) or in other words, v
a
−→ v′ for some state v′ ∈ S.

We are left to show that u′Rv′, or in other words:

Traces(u′) = Traces(v′).

We prove this by mutual set inclusion, restricting ourselves to only one case, as

both are almost identical. So, we prove Traces(u′) ⊆ Traces(v′). Consider a

trace σ ∈ Traces(u′). It holds that aσ ∈ Traces(u), and consequently aσ ∈

Traces(v). Hence, there is a v′′ such that v
a
−→ v′′ and σ ∈ Traces(v′′). As the

transition system A is deterministic, v
a
−→ v′ and v

a
−→ v′′, we can conclude

v′ = v′′. Ergo, σ ∈ Traces(v′).

2. This case is symmetric to the first case and is therefore omitted.

3. If u ∈ T , then X ∈ Traces(u). As u and v are related, it follows by definition

of R that X ∈ Traces(v). So, v ∈ T . Similarly, it can be shown that if v ∈ T
then u ∈ T must hold.

✷

Exercise 2.3.13. Prove that bisimilarity on a given labelled transition system is an

equivalence relation, i.e., it is reflexive (s ↔–– s for any s ∈ S), symmetric (if s ↔–– t
then t↔–– s for all states s and t) and transitive (if s↔–– t and t↔–– u, then s↔–– u for all

states s, t, u).

31



X
a τ b

X
a b

Figure 2.11: The internal action τ is not visible

X

X

a τ

b
X X

a b

Figure 2.12: The internal action τ is indirectly visible

2.4 Behavioural abstraction

Although the examples given hitherto may give a different impression, the behaviour

of systems can be utterly complex. The only way to obtain insight in such behaviour

is to use abstraction. The most common abstraction mechanism is to declare an action

as internal and hence, unobservable and adapt the notions of equivalence such that the

unobservable nature of such internal actions is taken into account.

2.4.1 The internal action τ

We say that an action is internal, if we have no way of observing it directly. We use

the special symbol τ to denote internal actions collectively. We generally assume that

internal action is available in every labelled transition system, i.e., τ ∈ Act . Typical

for an internal action is that if it follows another action, it is impossible to say whether

it is there. So, the transition systems in figure 2.11 cannot be distinguished, because

the τ after the a cannot be observed. Such internal actions are called inert.

However, in certain cases the presence of an internal action can be indirectly ob-

served, although the action by itself cannot be seen. Suppose one expects the be-

haviour of the transition system at the right of figure 2.12. It is always possible to do

an a-action, as long as neither an a nor a b have been done. Now suppose the actual

behaviour is that of the transition system at the left and one insists on doing an action a.

If the internal action silently happens, a deadlock is observed, because it is impossible

to do action a anymore. Hence, when actions can be chosen and deadlocks observed,

it can be determined by observations only that the behaviour at the left is not the same

as that of the transition system at the right.

With the internal action present, equivalences for processes must take into account

that we cannot observe the internal action directly. Next, the most important of such

equivalences are given.

32



2.4.2 Weak trace equivalence

Weak traces are obtained by absorbing the internal action in a trace. This is the natural

notion if we can observe all but the internal action, and we cannot interact with the

system or observe that it is in a deadlock. Formally, two processes are weak trace

equivalent, if their sets of weak traces, i.e., traces in which τ -transitions are ignored,

are the same.

Definition 2.4.1 (Weak trace equivalence). Let A = (S,Act ,−→, s, T ) be a labelled

transition system. The set of weak traces WTraces(t) for a state t ∈ S is the minimal

set satisfying:

1. ǫ ∈WTraces(t).

2. X ∈WTraces(t) iff t ∈ T , and

3. if there is a state t′ ∈ S such that t
a
−→ t′ (a 6= τ ) and σ ∈ WTraces(t′) then

aσ ∈WTraces(t).

4. if there is a state t′ ∈ S such that t
τ

−→ t′ and σ ∈ WTraces(t′) then σ ∈
WTraces(t).

Two states t, u ∈ S are called weak trace equivalent iff WTraces(t) = WTraces(u).
Two transition systems are weak trace equivalent iff their initial states are weak trace

equivalent.

Weak trace equivalence is the weakest of all behavioural equivalences. It does not

preserve deadlocks, nor any other branching behaviour. Weak trace equivalence is hard

to calculate for a given transition system and it is much harder to obtain a smallest

transition system preserving weak trace equivalence. There is in general no unique

smallest transition system modulo weak trace equivalence.

But in practice transition systems modulo weak trace equivalence can be much

smaller than those obtained with any other equivalence. And although one should al-

ways be aware of the properties not preserved by weak trace equivalence, those small

transition systems expose behaviour more clearly which is of great value for our un-

derstanding.

2.4.3 (Rooted) Branching bisimulation

The definition of branching bisimulation is very similar to that of strong bisimulation.

But now, instead of letting a single action be simulated by a single action, an action can

be simulated by a sequence of internal transitions, followed by that single action. See

the diagram at the left of figure 2.13. It can be shown that all states that are visited via

the τ -actions in this diagram are branching bisimilar.

If the action to be simulated is a τ , then it can be simulated by any number of

internal transitions, or even by no transition at all, as the diagram in the middle of

figure 2.13 shows.

If a state can terminate, it does not need to be related to a terminating state. It

suffices if a terminating state can be reached after a number of internal transitions, as

shown at the right of figure 2.13.

33



a

τ

τ

a

R

R

R

τ
R
R X

X

τ

τ

R

R

Figure 2.13: Branching bisimulation

Definition 2.4.2 (Branching bisimulation). Consider the labelled transition system

A = (S,Act ,−→, s, T ). We call a relation R ⊆ S × S a branching bisimulation

relation iff for all s, t ∈ S such that sRt, the following conditions hold for all actions

a ∈ Act :

1. If s
a
−→ s′, then

- either a = τ and s′Rt, or

- there is a sequence t
τ

−→ · · ·
τ

−→ t′ of (zero or more) τ -transitions such

that sRt′ and t′
a
−→ t′′ with s′Rt′′.

2. Symmetrically, if t
a
−→ t′, then

- either a = τ and sRt′, or

- there is a sequence s
τ

−→ · · ·
τ

−→ s′ of (zero or more) τ -transitions such

that s′Rt and s′
a
−→ s′′ with s′′Rt′.

3. If s ∈ T , then there is a sequence of (zero or more) τ -transitions t
τ

−→ · · ·
τ

−→ t′

such that sRt′ and t′ ∈ T .

4. Again, symmetrically, if t ∈ T , then there is a sequence of (zero or more) τ -

transitions s
τ

−→ · · ·
τ

−→ s′ such that s′Rt and s′ ∈ T .

Two states s and t are branching bisimilar, denoted by s ↔––b t, if there is a branching

bisimulation relation R such that sRt. Two labelled transition systems are branching

bisimilar if their initial states are branching bisimilar.

Example 2.4.3. In figure 2.14 two transition systems are depicted. We can determine

that they are branching bisimilar in the same way as for strong bisimulation. So, first

assume that the initial states must be related, via some relation R. For R to be a

branching bisimulation, the transition s1
a
−→ s3 must be mimicked. This can only be

done by two transitions t1
τ

−→ t3
a
−→ t4. So, as depicted in the second diagram, s1

must be related to the intermediate state t3 and s3 must be related to t4. Now, by letting

the transition t1
b
−→ t2 be simulated by s1

τ

−→ s2
b
−→ s5 the relation is extended as

indicated in the third diagram. Ultimately, the relation R must be extended as indicated

34



s1

s2 s3

s4 s5

τ a

a b

t1

t2 t3

t4 t5

b τ

a b

R

(1)

s1

s2 s3

s4 s5

τ a

a b

t1

t2 t3

t4 t5

b τ

a b

R

R

R

(2)

s1

s2 s3

s4 s5

τ a

a b

t1

t2 t3

t4 t5

b τ

a b

R

(3)

s1

s2 s3

s4 s5

τ a

a b

t1

t2 t3

t4 t5

b τ

a b

R

(4)

Figure 2.14: Two branching bisimilar transition systems

X X

a

τ

a

Figure 2.15: Branching bisimulation does not preserve τ -loops

in the fourth diagram. It requires a careful check that this relation is indeed a branching

bisimulation relation.

Branching bisimulation equivalence has a built-in notion of fairness. That is, if a

τ -loop exists, then no infinite execution sequence will remain in this τ -loop forever if

there is a possibility to leave it. The intuition is that there is zero chance that any exit

from the τ -loop will ever be chosen. It is straightforward to show that the initial states

in the two labelled transition systems in figure 2.15 are branching bisimilar.

A state with a τ -loop is also called a divergent state. There are times when it

is desired to distinguish divergent states from non-divergent states. This distinction

can be achieved by requiring that a branching bisimulation relation has the following

additional property.

• If sRt then there is an infinite sequence s
τ

−→
τ

−→ · · · iff there is an infinite

sequence t
τ

−→
τ

−→ · · · .

We call such a branching bisimulation relation a divergence preserving branching bisim-

ulation relation. Two states s and t are divergence preserving branching bisimilar,

35



notation s ↔––db t, iff there is a divergence preserving branching bisimulation R relat-

ing them. The initial states of the transition systems in figure 2.15 are not divergence

preserving branching bisimilar.

Branching bisimulation (with or without divergence) has an unpleasant property,

namely, it is not compositional. If an alternative is added to the initial state then the

resulting processes may cease to be bisimilar. This is illustrated in the following exam-

ple. In chapter 4, we will see that adding an alternative to the initial state is a common

operation.

Example 2.4.4. Consider the following two pairs of labelled transition systems.

τ

a

a τ

b

b

These labelled transition systems are branching bisimilar. However, their pairwise

compositions with a choice at their initial states, depicted in figure 2.16, are not branch-

ing bisimilar. For assume that they were branching bisimilar, then there should be a

branching bisimulation relation relating their initial states. Since the labelled transition

system at the right affords an a-transition from the initial state, the labelled transi-

tion system at the left should mimic it by performing a τ -transition followed by an

a-transition. This means that the intermediate state after performing the τ -transition

and before performing the a-transition should be related by the same relation to the

initial state of the right-hand-side labelled transition system, as depicted in the lower

part of figure 2.16. But this is impossible since the initial state of labelled transition

system at the right allows a b-transition, while the related state at the left cannot mimic

this b transition.

The problem explained in example 2.4.4 (and depicted in figure 2.16) is known as

“the rootedness problem”. It is caused because doing a τ means that the option to do

an observable action (e.g., a) disappears. Milner [135] showed that this problem can

be overcome by adding a rootedness condition: two processes are considered equiva-

lent if they can simulate each other’s initial transitions (including τ -transitions), such

that the resulting processes are branching bisimilar. This leads to the notion of rooted

branching bisimulation, which is presented below.

Definition 2.4.5 (Rooted branching bisimulation). Let A = (S,Act ,−→, s, T ) be

a labelled transition system. A relation R ⊆ S × S is called a rooted branching

bisimulation relation iff it is a branching bisimulation relation and it satisfies for all

s ∈ S and t ∈ S such that sRt:

1. if s
a
−→ s′, then there is a t′ ∈ S such that t

a
−→ t′ and s′ ↔––b t

′,

2. symmetrically, if t
a
−→ t′, then there is an s′ ∈ S such that s

a
−→ s′ and

s′ ↔––b t
′.

36



bτ

a

a τ

b

bτ

a

a
τ

b

R

R

R

Figure 2.16: Root problem in branching bisimulation

Two states s ∈ S and t ∈ S are rooted branching bisimilar, denoted by s ↔––rb t, iff

there is a rooted branching bisimulation relation R such that sRt. Two transition sys-

tems are rooted branching bisimilar iff their initial states are rooted branching bisimilar.

Rooted divergence sensitive branching bisimulation can be defined in exactly the same

way. We write s ↔––rdb t to express that states s and t are rooted divergence sensitive

bisimilar.

Branching bisimulation equivalence strictly includes rooted branching bisimulation

equivalence, which in turn strictly includes bisimulation equivalence. A similar set of

strict inclusions can be given for divergence preserving bisimulation.

↔–– ⊂↔––rb⊂↔––b, ↔–– ⊂↔––rdb⊂↔––db⊂↔––b .

Note that in the absence of τ , strong bisimulation and all variants of branching bisim-

ulation coincide.

When behaviours such as those in figure 2.11 are equivalent, which is generally

accepted as a reasonable minimal requirement for internal actions, and when processes

can be put in parallel, rooted branching bisimulation is the natural finest equivalence.

The argument for this goes beyond the scope of this chapter, but it stresses that branch-

ing bisimulation is a very natural notion.

Exercise 2.4.6. Show using the definition of rooted branching bisimulation that the

two labelled transition systems in figure 2.11 are rooted branching bisimilar. Show also

that the two transition systems in figure 2.12 are neither rooted branching bisimilar nor

branching bisimilar.

Exercise 2.4.7. Which of the following pairs of transition systems are branching and/or

rooted branching bisimilar.

37



τ b

b c

τ

b c

a

τ b

b c

a

b c

a a

τ c b

b

a

τ c

b

Exercise 2.4.8. With regard to the examples in exercise 2.4.7 which τ -transitions are

inert with respect to branching bisimulation, i.e., for which τ -transitions s
τ

−→ s′ are

the states s and s′ branching bisimilar?

2.4.4 ⋆(Rooted) Weak bisimulation

A slight variation of branching bisimulation is weak bisimulation. We give its defini-

tion here, because weak bisimulation was defined well before branching bisimulation

was invented and therefore weak bisimulation is much more commonly used in the

literature.

The primary difference between branching and weak bisimulation is that branching

bisimulation preserves ‘the branching structure’ of processes. For instance the last pair

of transition systems in exercise 2.4.7 are weakly bisimilar, although the initial a in the

transition system at the left can make a choice that cannot be mimicked in the transition

system at the right. The branching structure is not respected.

It is useful to know that (rooted) branching bisimilar processes are also (rooted)

weakly bisimilar. Furthermore, from a practical perspective, it hardly ever matters

whether branching or weak bisimulation is used, except that the algorithms to calculate

branching bisimulation on large graphs are more efficient than those for weak bisimu-

lation.

Definition 2.4.9 (Weak bisimulation). Consider the labelled transition system A =
(S,Act ,−→, s, T ). We call a relation R ⊆ S × S a weak bisimulation relation iff for

all s, t ∈ S such that sRt, the following conditions hold:

1. If s
a
−→ s′, then

- either a = τ and s′Rt, or

- there is a sequence t
τ

−→ · · ·
τ

−→
a
−→

τ

−→ · · ·
τ

−→ t′ such that s′Rt′.

2. Symmetrically, if t
a
−→ t′, then

38



a

τ

τ

a

τ

τ

R

R

τ
R
R X

X

τ

τ

R

Figure 2.17: Weak bisimulation

- either a = τ and sRt′, or

- there is a sequence s
τ

−→ · · ·
τ

−→
a
−→

τ

−→ · · ·
τ

−→ s′ such that s′Rt′.

3. If s ∈ T , then there is a sequence t
τ

−→ · · ·
τ

−→ t′ such that t′ ∈ T .

4. Again, symmetrically, if t ∈ T , then there is a sequence s
τ

−→ · · ·
τ

−→ s′ such

that s′ ∈ T .

Two states s and t are weakly bisimilar, denoted by s ↔––w t, iff there is a weak bisim-

ulation relation R such that sRt. Two labelled transition systems are weakly bisimilar

iff their initial states are weakly bisimilar.

In figure 2.17 weak bisimulation is illustrated. Compare this figure with figure 2.13 for

branching bisimulation. Note that weak bisimulation is more relaxed in the sense that

the weak bisimulation relation R does not have to relate that many states.

The notion of rooted weak bisimulation is defined along the same lines as rooted

branching bisimulation. The underlying motivation is exactly the same.

Definition 2.4.10 (Rooted weak bisimulation). Let A = (S,Act ,−→, s, T ) be a

labelled transition system. A relation R ⊆ S × S is called a rooted weak bisimulation

relation iff R is a weak bisimulation relation and it satisfies for all s, t ∈ S such that

sRt:

1. if s
τ

−→ s′, then there is a sequence t
τ

−→
τ

−→ · · ·
τ

−→ t′ of at least length 1 and

s′ ↔––w t′, and

2. symmetrically, if t
τ

−→ t′, then there is sequence of at least length 1 of τ -steps

s
τ

−→
τ

−→ · · ·
τ

−→ s′ and s′ ↔––w t′.

Two states s ∈ S and t ∈ S are rooted weakly bisimilar, denoted by s ↔––rw t, iff

there is a rooted weak bisimulation relation R such that sRt. Two transition systems

are rooted weakly bisimilar iff their initial states are rooted weakly bisimilar.

We finish this section by showing the relationships between weak and branching bisim-

ulation, where⊂ denotes strict set inclusion.

↔–– ⊂↔––rb⊂↔––b⊂↔––w, ↔–– ⊂ ↔––rb⊂↔––rw ⊂↔––w .

39



Note that rooted weak bisimulation and branching bisimulation are incomparable. Note

also that we can define divergence preserving weak bisimulation, but as this notion is

hardly used and its definition is exactly the same as that for divergence preserving

branching bisimulation, we do not do this explicitly here.

Exercise 2.4.11. Which of the pairs of transition systems of figures 2.11 and 2.12 are

(rooted) weakly bisimilar.

Exercise 2.4.12. Which of the pairs of transition systems of exercise 2.4.7 are (rooted)

weakly bisimilar. Which τ -transitions are inert with respect to weak bisimulation (cf.,

exercise 2.4.8).

Exercise 2.4.13. Prove that branching bisimulation is a weak bisimulation relation.

2.5 Historical notes

State machines have been used historically to describe programs. They already occur

in Turing Machines to formalise the concept of computation. Subsequently, they were

heavily used in language theory, especially for compiler construction [5].

The idea of capturing the abstract behaviour of computer programs by automata has

been the corner-stone of the operational approach to semantics (meaning of programs)

advocated by McCarthy [129] and Plotkin [151].

However, adding the notion of interaction with the environment was required to de-

velop an abstract theory of system behaviour, which was proposed by pioneers such as

Petri [150], Bekič [24] and Milner [135]. This led to various theories of process calculi,

exemplified by CCS [135], CSP [101], ACP [18] and an early formal and standardised

behavioural specification language LOTOS [106]. We refer to [11, 54] for more de-

tailed historical accounts and to [3, 12, 159] for excellent textbook introductions to the

field.

Regarding fundamental models of behaviour, there are various alternatives to la-

belled transition systems. Instead of labelled transition systems, one can use sets of

traces, if necessary decorated to represent parallel behaviour (Mazurkiewicz traces)

[49] and even sets representing behavioural trees. A fundamental problem with such

traces and trees is that sets cannot contain themselves (axiom of foundation). So, a

loop cannot be represented in such sets as this would require a set that contains itself.

This led to the use of projective limit models and metric spaces where the existence of

an object representing a loop could be proven to exist [20]. It was also the motivation

to start the work on ACP [26] and led to research into non-well-founded sets [4].

Rather independently and originally invented to describe chemical processes, Petri

nets were developed which can be viewed as a higher level description of automata,

especially suitable to describe data processing [107], and as such becoming a basis for

the description of business information systems [1].

Partly in reaction to the atomic nature of actions as proposed by Milner, a field bap-

tised ‘true concurrency semantics’ arose stating that events are not atomic and should

therefore not be treated as such. The history of the term goes back to 1988 (and possi-

bly before) were a group of prominent researchers on concurrency theory got together

40



for a workshop in Königswinter, Germany. We cite the following interesting anecdote

from a report of this meeting [154]:

Partial order semantics were popular at the conference (Köningswinter

1988). Some of its adherents have taken to calling p.o. [(partial order)]

semantics true concurrency, prompting Robin Milner to start his talk by

speaking up for “false concurrency”.

Event structures [178] are a typical instance of models with a true concurrency

semantics. Some regard Petri nets to fall into this category as well [139]. In response

Milner referred to process calculi as ‘false concurrency’.

The idea that two objects are the same if they have exactly the same properties is

rather old, and is sometimes referred to as Leibniz equality. In the context of behaviour

this is translated to the statement that two systems are equal if the difference cannot be

observed. Although self evident in retrospect, it came as a surprise that there are very

many different ways to observe processes. This led to a myriad of behavioural equiva-

lences, of which [70, 71] provide compact overviews, in the settings with and without

internal actions, respectively. The notion of strong bisimulation was first proposed by

Park [148] and Milner [133], which was inspired by earlier automata-theoretic notions,

which were in turn explored by Milner and adopted in this context. The same notion

has been developed in various other contexts, including in the context of modal log-

ics and non-well-founded sets, of which [162] gives a detailed historical account and

[161] provides an excellent textbook introduction. The notion of internal action and

weak bisimulation was proposed by Milner [133]. Branching bisimulation was defined

by Van Glabbeek and Weijland [69, 72].

41



42


