
Chapter 3

Data types

Components of reactive systems often exchange messages containing data items among

themselves and with the environment. For example, recall the alarm clock with mul-

tiple alarms from chapter 2, of which the labelled transition system is reproduced in

figure 3.1. In this figure, the data parameter of action set is to be used by the environ-

ment to communicate the number of times the alarm should sound. We need a language

to describe data types and their elements to be used in specifying behaviour.

In this section we first describe a basic equational data type specification mecha-

nism. One may define data types (called sorts), by defining their elements (construc-

tors), their operations (maps) and the rules (equations) defining the operations. It is

also allowed to use function types in this setting.

As there are a number of data types that are commonly used in behavioural spec-

ifications, these have been predefined. These are, for example, common data types

such as natural numbers, booleans and real numbers. These data types are designed to

be as close as possible to their mathematical counterpart. So, there are an unbounded

number of natural and real numbers. The full specification of all built-in data types is

given in appendix A. There are also mechanisms to compactly define more elaborate

data types without giving a full equational data type specification. Typical examples

are structured data types (specified by enumerating their members), lists and sets. This

chapter is dedicated to the data type specification language and in the next chapter we

study how data types can be attached to actions and how data expressions can influence

the behaviour of processes.

3.1 Data type definition mechanism

In mCRL2, we have a straightforward data definition mechanism using which all data

sorts are built. One can declare arbitrary sorts using the keyword sort. Sorts are non-

empty, possibly infinite sets with data elements. For a sort one can define constructor

functions using the keyword cons. These are functions by which exactly all elements

in the sort can be denoted. For instance
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Figure 3.1: An alarm clock of which the number of alarms can be set

sort D;
cons c, d : D;

declares sort D in which all elements can be denoted by either c or d. So, D has either

two elements, or in case c and d are the same, it has one element.

Using constructor functions, it is possible to declare a sort Nat representing the

natural numbers. This is not the actual built-in sort N in mCRL2, which for efficiency

purposes has a different internal structure. The definition of the built-in data type can

be found in appendix A.

sort Nat ;
cons zero : Nat ;

successor : Nat → Nat ;

In this case we have a domain Nat of which all elements can be denoted by zero, or an

expression of the form:

successor(successor(. . . successor(zero) . . .)).

Without explicitly indicating so, these elements are not necessarily different. Below, it

is shown how it can be guaranteed that all elements of the sort Nat must differ.

Similarly to the definition of sort Nat, a sort B of booleans can be defined. The

standard definition for B is as follows:

sort B;
cons true, false : B;

The sort B plays a special role. In the first place the semantics of the language pre-

scribes that the constructors true and false must be different. This is the only exception

to the rule that constructors are not presumed to be different. Using this exception one

can build sorts with necessarily different elements. So, there are exactly two booleans.

In the second place, booleans are used to connect data specification with behaviour,

namely, conditions in processes and conditional equations must be of sort B. In ap-

pendix A additional operators for B are defined.
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The following example does not define a proper sort, because it can only be empty.

All data elements in D must be denoted as a term consisting of applications of the func-

tion f only. But as there is no constant, i.e., a function symbol with no argument, such

a term cannot be constructed, and hence the sort D must be empty. However, empty

sorts are not permitted and therefore there is no data type satisfying this specification.

We say that such a data type is inconsistent.

sort D;
cons f : D → D;

It is possible to declare sorts without constructor functions. In this case the sort can

contain an arbitrary number of elements. In particular, the sort can contain elements

that cannot be denoted by a term. As an example it is possible to declare a sort Message

without constructors. In this way, one can model for instance data transfer protocols

without assuming anything about messages being transferred.

sort Message ;

Auxiliary functions can be declared using the keyword map. For instance, the

equality, addition and multiplication operators on natural numbers are not necessary to

construct all the numbers, but they are just useful operations. They can be declared as

follows:

map eq : Nat ×Nat → B;
plus , times : Nat ×Nat → Nat ;

Here the notation eq : Nat×Nat → B says that eq is a function with two arguments of

sort Nat yielding an element of sort B. The symbol × is called the Cartesian product

operator.

But it is not sufficient to only declare the type of an operator. It must also be

defined how the operator calculates a value. This can be done by introducing equations

using the keyword eqn. Two terms are equal if they can be transformed into each

other using the equations. It does not matter if the equations are applied from left to

right, or from right to left. However, for efficiency reasons, most tools strictly apply the

equations from left to right, which is generally called term rewriting. This directed view

of equations is an informal convention, but it has a profound effect on the equations.

For addition and multiplication the equations are given below. Using the keyword

var the variables needed in the next equation section are declared.

var n,m : Nat ;
eqn eq(n, n) = true;

eq(zero, successor(n)) = false;
eq(successor(n), zero) = false;
eq(successor(n), successor(m)) = eq(n,m);
plus(n, zero) = n;
plus(n, successor(m)) = successor(plus(n,m));
times(n, zero) = zero;
times(n, successor(m)) = plus(n, times(n,m));
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By applying these equations, one can show which terms are equal to others. For in-

stance showing that 2·2 = 4 goes as follows (where the numbers 2 and 4 represent

successor(successor(zero)) and successor(successor(successor(successor(zero)))),
respectively):

times(successor(successor(zero)), successor(successor (zero))) =
plus(successor(successor(zero)),

times(successor (successor(zero)), successor(zero))) =
plus(successor(successor(zero)), plus(successor(successor(zero)),

times(successor (successor(zero)), zero))) =
plus(successor(successor(zero)), plus(successor(successor(zero)), zero)) =
plus(successor(successor(zero)), successor(successor (zero))) =
successor(plus(successor(successor(zero)), successor (zero))) =
successor(successor(plus(successor(successor (zero)), zero))) =
successor(successor(successor(successor(zero))))

There is much to say about whether these equations suffice or whether their sym-

metric variants (e.g., plus(zero, n)) should be included, too. These equations are es-

sentially sufficient to prove properties, but for the tools adding more equations can

make a huge difference in performance.

When defining functions, it is a good strategy to define them on terms consisting

of the constructors applied to variables. In the case above these constructors are zero

and successor(n) and the constructor patterns are only used in one argument. But

sometimes such patterns are required in more arguments, and it can even be neces-

sary that the patterns are more complex. As an example consider the definition of the

function even below which in this form requires patterns zero, successor(zero) and

successor(successor(n)).

map even : Nat → B;
var n : Nat ;
eqn even(zero) = true;

even(successor(zero)) = false ;
even(successor(successor(n))) = even(n);

It is very well possible to only partly define a function. Suppose the function even

should yield true for even numbers, and it is immaterial whether it should deliver true

or false for odd numbers. Then the second equation can be omitted. This does not

mean that even(successor(zero)) is undefined. It has a fixed value (either true or

false), except that we do not know what it is.

The equations can have conditions that must be valid before they can be applied.

The definition above can be rephrased as:

var n : Nat ;
eqn eq(n, zero)→ even(n) = true;

eq(n, successor(zero))→ even(n) = false ;
even(successor(successor(n))) = even(n);
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Besides equational reasoning there are two major proof principles to be used in the

context of equational data types, namely proof by contradiction and induction, which

are explained below.

The equations in an equation section can only be used to show that certain data

elements are equal. In order to show that zero and successor(zero) are not equal

another mechanism is required. We know that true and false are different. Within

this basic data definition mechanism, this is the only assumption about terms not being

equal. In order to show that other data elements are not equal, we assume that they are

equal and then derive true = false , from which we conclude that the assumption is

not true. This is called proof by contradiction or reductio ad absurdum. Note that such

a reduction always requires an auxiliary function from such a data sort to booleans. In

case of the sort Nat we can define the function less to do the job:

map less : Nat ×Nat → B;
var n,m : Nat ;
eqn less(n, zero) = false;

less(zero, successor(n)) = true;
less(successor(n), successor (m)) = less(n,m);

Now assume that zero and successor(zero) are equal, more precisely,

zero = successor(zero).

Then, we can derive:

true = less(zero, successor(zero))
assumption

= less(zero, zero) = false .

So, under this assumption, true and false coincide, leading to the conclusion that zero

and successor(zero) must be different. In a similar way it can be proven that any pair

of different natural numbers are indeed different when the function less is present.

When constructors are present, we know that all terms have a particular shape and

we can use that to prove properties about all terms. For instance, to prove a property

φ(b) for a boolean variable b, it suffices to prove that φ(false) and φ(true) hold. This

proof principle is called induction on the structure of booleans.

When there is a constructor f of a data type D that depends on D, we can assume

that a property φ(x) holds for a variable of sort D to prove φ(f(x)). Here φ(x) is

called the induction hypothesis. In this way, we have shown that if property φ holds for

smaller terms, it also holds for larger terms, and by simply repeating this, φ holds for

all terms. A precise formulation of induction on the basis of constructors can be found

in section 9.5.

Example 3.1.1. Consider the data type Nat as defined above. There are construc-

tors zero and successor . Therefore, in order to prove that a property φ(n) holds

for n a variable of sort Nat , it must be shown that φ(zero) holds, and φ(n) implies

φ(successor(n)). This form of induction is sometimes referred to as mathematical

induction.
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Concretely, we can prove that plus(zero, n) = n. So, we must show:

plus(zero, zero) = zero, and
plus(zero, n) = n implies plus(zero, successor(n)) = successor(n).

The first equation is easy to prove with the equations for plus . The second equations

follows by

plus(zero, successor(n)) =

successor(plus(zero, n))
induction hypothesis

=
successor(n).

So, we can conclude by induction on Nat that plus(zero, n) = n.

Exercise 3.1.2. Give equational specifications of ‘greater than or equal’ ≥, ‘smaller

than’ < and ‘greater than’ > on the natural numbers.

Exercise 3.1.3. Give specifications of max :Nat ×Nat → Nat , minus: Nat ×Nat →

Nat and power :Nat ×Nat → Nat where power (m,n) denotes mn.

Exercise 3.1.4. Explain why any of the following equations are not wrong, but un-

pleasant or problematic, when using term rewriting tools.

var n : Nat ;
eqn true = even(zero);

false = even(successor(zero));
even(n) = even(successor(successor(n)));

Exercise 3.1.5. Prove using the mapping eq that zero and successor(zero) represent

different data elements.

Exercise 3.1.6. Prove using induction that

plus(successor(n),m) = successor(plus(n,m)).

Use this result to prove, again with induction on Nat , that plus(n,m) = plus(m,n).

Exercise 3.1.7. Prove for variables n,m of sort Nat that if less(n,m) = true, then

n 6= m.

Exercise 3.1.8. Define a sort List on an arbitrary non-empty domain D, with as con-

structors the empty list []:List and in:D × List → List to insert an element of D
at the beginning of a list. Extend this with the following non-constructor functions:

append :D×List → List to insert an element of D at the end of a list; top:List → D
and toe:List → D to obtain the first and the last element of a list; tail :List → List and

untoe:List → List to remove the first and the last element from a list, respectively;

nonempty:List → B to check whether a list is empty, length:List → Nat to compute

the length of a list, and ++:List × List → List to concatenate two lists.
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Sort Notation

Booleans B

Positive numbers N
+

Natural numbers N

Integers Z

Real numbers R

Structured types struct . . . | . . . | . . . .
Functions D1 × · · ·×Dn → E
Lists List(D)
Sets Set(D)
Bags Bag(D)

Table 3.1: The predefined sorts (D, Di and E are sorts)

3.2 Standard data types

When modelling communicating systems, often the same data types are used, namely

booleans, numbers, structured types, lists, functions and sets. Therefore, these are

predefined. For these data types we use common mathematical notation. The sorts are

summarised in table 3.1.

Each sort (both user-defined and built-in) has automatically generated built-in func-

tions for if-then-else (if ( , , )), equality (≈), inequality ( 6≈) and ordering operators

(≤, <,>,≥). These functions are functions from their respective data domains to

booleans. Most predefined functions are denoted using infix notation, instead of the

somewhat cumbersome prefix notation used in the previous section.

The equality function should not be confused with equality among terms (=), which

indicates which terms are equal. It is the strength of the defining equations for data

equality, that allows us to use term equality and data equality interchangeably.

The defining equations for ≈, 6≈ and if ( , , ) are as follows (the equations for

missing operators can be found in appendix A). Note that for a specific sort D, the

user may specify more equations for calculating functions such as ≈ by exploiting the

structure of D.

map ≈, 6≈,≤, <,>,≥: D ×D → B;
if : B×D ×D → D;

var x, y : D;
b : B;

eqn x≈x = true; x<x = false ;
x6≈y = ¬(x≈y); x≤x = true;
if (true, x, y) = x; x>y = y<x;
if (false , x, y) = y; x≥y = y≤x;
if (b, x, x) = x;
if (x≈y, x, y) = y;

The last equation is called Bergstra’s1 axiom. As said above equality on terms is

1Jan Bergstra (1951-. . .) is the founding father of process algebra in the Amsterdam style (ACP). He

49



strongly related to data equality ≈. More precisely, the following lemma holds:

Lemma 3.2.1. For any data sort D for which the equations above are defined, it holds

that:

x≈y = true iff x = y.

Proof. For the direction from left to right, we derive:

x = if (true, x, y) = if (x≈y, x, y) = y.

For the direction from right to left, we derive:

x≈y = x≈x = true.

✷

Bergstra’s axiom is generally not used by tools since the shape of the axiom is not very

convenient for term rewriting.

Exercise 3.2.2. Consider the specification

sort D;
map d1, d2:D;

Which of the following expressions are equal to true or false: d1≈d1, d1≈d2, d1>d2,

d2 6≈d1 and d2≥d2.

3.2.1 Booleans

The sort for boolean has already been introduced as B. It consists of exactly two

different constructors true and false . For this sort, the operations are listed in table

3.2. The syntax used by the tools in the mCRL2 language can be found in appendix B.

The equations with which the operators on booleans are defined are found in appendix

A.

Most functions on B are standard and do not need an explanation. In boolean ex-

pressions, it is possible to use quantifiers ∀ and ∃. They add a substantial amount of

expressivity to the language. This is important because compact, insightful behavioural

specifications reduce the number of errors, increase the comprehensibility and in gen-

eral lead to better balanced behaviour of designs.

We illustrate the expressiveness of the specification language with quantifiers with

an example.

Example 3.2.3. Fermat’s Last Theorem was an open problem for more than 3 centuries.

It states that there is no positive number n > 2 such that an + bn = cn for natural

number a, b and c.

map fermat : B;
eqn fermat = ∀a, b, c, n:N+.(n≤2 ∨ an+bn 6≈cn);

contributed to many other topics, such as the theory of abstract data types and modules and program algebras.
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Operator Notation

true true

false false

negation ¬
conjunction ∧

disjunction ∨

implication ⇒

equality ≈

inequality 6≈

conditional if ( , , )
universal quantification ∀ : .
existential quantification ∃ : .

Table 3.2: Operators on booleans

As the conjecture holds, fermat is equal to true but any tool that wants to figure this

out, must be sufficiently strong to prove Fermat’s Last Theorem.

As demonstrated by the example given above the downside of the expressiveness

of quantifiers is that tools can have difficulties to handle them. This may mean that a

specification with quantifiers cannot even be simulated. It is the subject of continuous

research to make the tools more effective in dealing with these primitives. It requires

experience to know which expressions can and which cannot be handled effectively by

the tools in their current state.

3.2.2 Numbers

Positive numbers, natural numbers, integers and reals are represented by the sorts N+,

N, Z and R, respectively. Numbers are denoted in the common way, e.g., 1, 2, 45978,

0, −1. There is no special notation for reals, but these can be constructed using, for

instance, the division operator.

The common notation for numbers is there just for convenience. Each number is

immediately translated to a number as an element of an abstract data type as defined

in appendix A. All data types in this appendix have been designed such that each

constructor term uniquely defines a data element and has an efficient representation.

For instance there is only one constructor term representing 0 in the integers (and not

for instance −0 and +0) and the internal representation uses a binary encoding (and

not zero and successor).

For positive numbers there are two constructors, namely @c1 :N+ and @cDub :
B × N

+ → N
+. The constructor @c1 represents 1 and @cDub(b, p) equals 2p if b

is false, and 2p + 1 if b is true. So, 2 is represented by @cDub(false , p) and 3 is

represented by @cDub(true, p). A natural number is either 0 or a positive number.

An integer is either a natural number representing 0, 1, etc., or a positive number,

representing−1,−2, . . ..
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Generally, we will not refer to the representation of numbers in their internal format

and use their common denotation. The numbers satisfy all properties that we expect

from ordinary mathematical numbers. In particular, the numbers are unbounded, which

means that there is no largest natural number, and there are no smallest and largest

integers. Real numbers are exact, so there is no issue regarding precision.

But the internal representation and the equations in appendix A can become rele-

vant if a more detailed scrutiny of the data types is required. It can be that a certain

equality between data terms cannot be proven, and in order to understand why, the pre-

cise defining equations are required. Also, the induction on numbers that is defined by

the constructors, is not ordinary mathematical induction, which uses zero and succes-

sor. In order to understand that mathematical induction on natural numbers is sound the

precise definitions are also required. The relation between constructors and induction

is an issue that we address in chapter 9.

There is an implicit type conversion between numbers. Any positive number can

become a natural number, which in turn can become an integer, which can become a

real number. These automatic conversions apply to any object, not only to constants

but also to variables and terms.

The operators on numbers are given in table 3.3. They are all well-known. Most

operators are defined for all possible types of numbers. So, there are additional op-

erators for N+ × N
+, N × N, Z × Z and for R × R. The resulting type is the most

restrictive sort possible. Addition on N
+ × N

+ has as resulting sort N+, but subtrac-

tion on N
+×N

+ has as result sort Z, as the second number can be larger than the first.

Some operators have restricted sorts. For instance, for the modulo operator the sort of

the second operator must be N
+ as x|0 is generally not defined. In accordance with

common usage, we write multiplication as a dot, or leave it out completely, although

in the tools we write a ‘∗’.

In some cases the sort of the result must be upgraded. For numbers, we have the

explicit type conversion operations A2B (pronounce A to B) where A,B ∈ {Pos ,
Nat , Int , Real}. For instance, the expression n−1 has sort Z, because n can be

zero. However, if it is known that n is larger than 0, it can be retyped to N by writing

Int2Nat(n−1). These operators are generally only written in specifications intended

for tools. In textual specifications we typically leave them out.

The reals R are a complex data type, because the number of reals that exist is

uncountably infinite. Without going into detail, this means that we cannot describe

reals with constructors, and that means that we do not have an induction principle on

reals. The definition of reals that we give allow to denote the rational numbers only,

although it would be possible to extend this data type to include operators such as the

square root or the logarithm. Reals are important for timed behaviour as the moment

an action can take place is expressed by a real.

Exercise 3.2.4. What are the sorts of the successor function succ( ), and what are the

sorts of the predecessor function pred( ).

Exercise 3.2.5. Prove using the equations in appendix A that the numbers 0 and 1 are

different.

Exercise 3.2.6. Calculate using the axioms in appendix A that 2|1 = 0.
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Operator Rich

positive numbers N
+ (1, 2, 3, . . .)

natural numbers N (0, 1, 2, . . .)
integers Z (. . . ,−2,−1, 0, 1, 2, . . .)
reals R

equality ≈

inequality 6≈

conditional if ( , , )
conversion A2B( )
less than or equal ≤

less than <
greater than or equal ≥

greater than >
maximum max( , )
minimum min( , )
absolute value abs( )
negation −

successor succ( )
predecessor pred( )
addition +
subtraction −

multiplication ·
integer div div
integer mod |
exponentiation

real division /
rounding operators floor( ), ceil ( ), round( )

Table 3.3: Operations on numbers
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Operator Rich

function application ( , . . . , )
lambda abstraction λ :D0, . . . , :Dn.
equality ≈

inequality 6≈

less than or equal ≤

less than <
greater than or equal ≥

greater than >
conditional if ( , , )
function update [ → ]

Table 3.4: Lambda abstraction and function application

3.3 Function data types

Functions are objects in common mathematical use and they are very convenient for

abstract modelling of data in behaviour. Therefore, it is possible to use function sorts

in specifications. For example,

sort F = N→ N;
G = R× N→ R;
H = R→ F → G;

declares that F is the sort of functions from natural numbers to natural numbers and

G is the sort of functions from R and N to R. Functions of the complex sort H map

reals to functions from F to G. Function types associate to the right. Hence, the sort H
equals R→ (F → G). If the sort (R→ F )→ G were required, explicit bracketing is

needed.

Functions can be made using lambda abstraction and application (see table 3.4).

Lambda abstraction is used to denote functions. E.g.,

λn:N.n2

represents a function of sort N to N that yields for each argument n its square. The

variable n is said to be bound by lambda abstraction. A variable that is bound does not

occur freely in a term. E.g., the variable n is free in n2, bound in λn:N.n2 and both

free and bound in n2 + λn:N.n2. In this last case the bound and free variables n are

different.

The function defined above can be applied to an argument by putting it directly

behind the function. For instance

(λn:N.n2)(4)

equals 16. It is common to drop the brackets around the argument of such a function

as follows

(λn:N.n2)4.
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However, the syntax of mCRL2 requires these brackets. When functions require more

arguments, brackets associate to the left. E.g., consider a function f and terms t and u,

then the application f(t)(u) is parsed as (f(t))(u), and not as f(t(u)).

Lambda terms can have more variables. For example the function f defined as

λx, y:N, b:B. if (b, x,x+y) is a function of sort N × N × B → N. The function

f must always be applied to three arguments simultaneously. It is not allowed to

feed it with only a partial number of arguments, as in f(3, 4). When it should be

possible to provide the arguments one at a time, three lambda’s are necessary, as in

g = λx:N.λy:N.λb:B.if (b, x, x+y). The type of this function is N→N→B→N. In

this case g(3) is a function from N→B→N, and g(3)(4)(true) is an expression of sort

N.

There are two conversion rules for lambda expressions. A lambda term λx:N.t
binds the variable x in t and the variable y has exactly the same role in λy:N.t[x:=y],
if y does not appear freely in t. Here, t[x:=y] is the substitution operator that replaces

each free occurrence of x in t by y. Renaming a bound variable is called α-conversion,

and it is generally denoted as

λx:N.t =α λy:N.t[x:=y].

If a lambda expression has more bound variables, then renaming any subset of these is

also called α-conversion.

When applying substitutions to lambda terms care must be taken that substituted

variables do not accidentally get bound. Consider the term λx:D.y to which the sub-

stitution [y:=x] is applied. We see (λx:D.y)[y:=x] = (λx:D.x). The unbound y is

replaced by x and becomes bound. This is wrong. Therefore, it is necessary when

applying a substitution to a lambda term to first α-convert the term such that there is no

conflict between the bound variables and the variables in the substitution. In the case

above the correct sequence should be (λx:D.y)[y:=x] =α (λz:D.y)[y:=x] = λz:D.x.

The second conversion is called β-conversion. It corresponds to function appli-

cation. A term λx:D.t applied to a term u is equal to t[x:=u], namely t where u is

substituted for all occurrences of x. It is generally denoted by

(λx:D.t)(u) =β t[x:=u].

If there are more bound variables in a lambda expression, then β-conversion has the

following shape requiring multiple substitutions of variables.

(λx1:D1, . . . , xn:Dn.t)(u1, . . . , un) =β t[x1:=u1, . . . , xn:=un].

Example 3.3.1. ⋆ Lambda abstraction and application are far more powerful than is

apparent on first sight. They can be used to specify fundamental mathematical and

computational concepts. Alonzo Church2 represented numbers by lambda terms. The

number n is represented by a lambda term that applies a function n times to an argu-

2Alonzo Church (1903-1995) developed the lambda calculus as a basic mechanism for calculations and

showed the existence of undecidable problems.
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ment.

0 λf :D→D.λx:D.x
1 λf :D→D.λx:D.f(x)
2 λf :D→D.λx:D.f(f(x))
3 λf :D→D.λx:D.f(f(f(x)))

. . .
n λf :D→D.λx:D.fn(x)

Adding two Church numerals can be done by the lambda term

λg1, g2:D→D.λf :D→D.λx:D.g1(f)(g2(f)(x)).

Evaluation is represented by β-conversion. So, adding one and two looks like:

λg1, g2:D→D.λf :D→D.λx:D.

g1(f)(g2(f)(x))(λf :D→D.λx:D.f(x), λf :D→D.λx:D.f(f(x))) =β

λf :D→D.λx:D.

g1(f)(g2(f)(x))[g1:=λf :D→D.λx:D.f(x), g2:=λf :D→D.λx:D.f(f(x))] =
λf ′:D→D.λx′:D.

g1(f
′)(g2(f

′)(x′))[g1:=λf :D→D.λx:D.f(x), g2:=λf :D→D.λx:D.f(f(x))] =
λf ′:D→D.λx′:D.(λf :D→D.λx:D.f(x))(f ′)((λf :D→D.λx:D.f(f(x)))(f ′)(x′)) =β

λf ′:D→D.λx′:D.(λx:D.f(x)[f :=f ′])((λx:D.f(f(x))[f :=f ′])(x′)) =
λf ′:D→D.λx′:D.(λx:D.f ′(x))((λx:D.f ′(f ′(x)))(x′)) =β

λf ′:D→D.λx′:D.f ′(x)[x:=(λx:D.f ′(f ′(x)))(x′)] =
λf ′:D→D.λx′:D.f ′((λx:D.f ′(f ′(x)))(x′)) =β

λf ′:D→D.λx′:D.(f ′(f ′(f ′(x)))[x:=x′]) =
λf ′:D→D.λx′:D.f ′(f ′(f ′(x′))).

Function sorts are sorts like any other. This means that equality, its negation, com-

parison operators and an if-then-else function are also available for function sorts.

There is one specific operator for unary function sorts, namely the function update

operator. For a function f : D → E it is written as f [d→e]. It represents the function

f except if applied to value d it must yield e. Using lambda notation the update operator

can be defined by

f [d→e] = λx:D.if (x≈d, e, f(x)).

The advantage of using a function update over explicit lambda notation is that the

equations for function updates allow to effectively determine whether two functions

after a number of updates represent the same function. This is not always possible

when using the explicit lambda notation. Besides that the function update notation is

easier to read.

Example 3.3.2. Suppose we want to specify a possibly infinite buffer containing ele-

ments of some sort D where the elements are stored at specific positions. This can be

done by declaring the buffer to be a function N → D. The definitions of the empty

buffer, an insert and get function are straightforward.
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sort Buffer = N→ D;
map default buffer : Buffer ;

insert : N×D × Buffer → Buffer ;
get : N× Buffer → D;

var n:N; d:D;B:Buffer ;
eqn default buffer(n) = d0;

insert(n, d,B) = B[n→d];
get(n,B) = B(n);

Exercise 3.3.3. Consider arrays containing booleans as a function fromN to B. Specify

a function get to get the boolean at index i and another function assign that assigns a

boolean value to a certain position i in the array.

Exercise 3.3.4.⋆ The booleans true and false can be represented by the lambda ex-

pressions λx, y:D.x and λx, y:D.y. Give a lambda term for an if-then-else function on

Church numerals. Also provide a function is zero that tests whether a Church numeral

is equal to zero. Show that is zero applied to zero is true, and is zero applied to one

is false.

3.4 Structured data types

Structured types, also called functional or recursive types, find their origin in functional

programming. The idea is that the elements of a data type are explicitly characterised.

For instance, an enumerated type Direction with elements up, down , left and right

can be characterised as follows:

sort Direction = struct up?isUp | down?isDown | left?isLeft | right?isRight ;

This says the sort Direction has four constructors characterising different elements.

The optional recognisers such as isUp are functions from Direction to B and yield true

iff they are applied to the constructor to which they belong. E.g., isUp(up) = true

and isUp(down) = false .

It is possible to let the constructors in a structured sort depend on other sorts.

Hence, pairs of elements of fixed sorts A and B can be declared as follows:

sort Pair = struct pair (fst :A, snd :B);

This says that any term of sort Pair can be denoted as pair (a, b) where a and b are

data elements of sort A and B. The functions fst and snd are so called projection

functions. They allow to extract the first and second element out of a pair. They satisfy

the equations:

fst(pair (a, b)) = a;
snd(pair (a, b)) = b;

Projection functions are optional, and can be omitted.

In structured sorts it is even possible to let sorts depend on itself. Using this, well-

known recursive data types such as lists and trees can be constructed. A sort Tree for

binary trees has the following minimal definition:
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Operator Rich

constructor i ci( , . . . , )
recogniser for ci is ci( )
projection (i, j), if declared pr i,j ( )
equality ≈

inequality 6≈

less than or equal ≤

less than <
greater than or equal ≥

greater than >
conditional if ( , , )

Table 3.5: Operators for structured types

sort Tree = struct leaf (A) | node(Tree,Tree);

By adding projection and recogniser functions it looks like:

sort Tree = struct leaf (val :A)?isLeaf | node(left :Tree, right :Tree)?isNode ;

As an example we define a function HE , short for ‘holds everywhere’, that gets a

function of sort A→ B and checks whether the function yields true in every leaf of the

tree.

map HE : (A→ B) × Tree → B;
var f : A→ B;

t, u : Tree;
a : A;

eqn HE (f, leaf (a)) = f(a);
HE (f, node(t, u)) = HE (f, t) ∧ HE (f, u);

The following definition of sort Tree allows the definition of operation HE without

pattern matching.

var f : A→ B;
t : Tree;

eqn HE (f, t) = if (isLeaf (t), f(val(t)),HE (f, left(t)) ∧ HE (f, right(t)));

This last definition has as disadvantage that the equation is not a terminating rewrite

rule. Under certain circumstances, tools will have difficulties dealing with such an

equation.

The general form of a structured type is the following, where n ∈ N
+ and ki ∈ N

with 1 ≤ i ≤ n:

struct c1(pr 1,1 : A1,1, . . . , pr1,k1
: A1,k1

)?isC1

| c2(pr 2,1 : A2,1, . . . , pr2,k2
: A2,k2

)?isC2

...

| cn(prn,1 : An,1, . . . , prn,kn

: An,kn
)?isCn ;
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Operator Rich

construction [ , . . . , ]
element test ∈

length #
cons ⊲

snoc ⊳

concatenation ++
element at position .
the first element of a list head( )
list without its first element tail( )
the last element of a list rhead( )
list without its last element rtail( )
equality ≈

inequality 6≈

less than or equal ≤

less than <
greater than or equal ≥

greater than >
conditional if ( , , )

Table 3.6: Operations on lists

This declares n constructors ci, projection functions pr i,j and recognisers isCi . All

names have to be chosen such that no ambiguity can arise. The operations in table

3.5 are available after declaring the sort above. For the comparison operators the first

function in a struct is the smallest and the arguments are compared from left to right.

The precise definition of structured sorts is given in section A.10.

Exercise 3.4.1. Define the sort Message that contains message frames with a header

containing the type of the message (ack , ctrl , mes), a checksum field, and optionally

a data field. Leave the data and checksums unspecified.

3.5 Lists

Lists, where all elements are of sort A, are declared by the sort expression List(A).
The operations in table 3.6 are predefined for this sort. Lists consist of constructors [ ],
the empty list, and ⊲ , putting an element in front of a list. All other functions on lists

are internally declared as mappings.

Lists can also be denoted explicitly, by putting the elements between square brack-

ets. For instance for lists of natural numbers [1, 5, 0, 234, 2] is a valid list. Using the .
operator, an element at a certain position can be obtained where the first element has

index 0 (e.g., [2, 4, 1].1 equals 4). The concatenation operator ++ can be used to ap-

pend one list to the end of another. The ⊳ operator can be used to add an element to

the end of a list. So, the lists [a, b], a ⊲ [b], [a] ⊳ b and [a]++[] ⊳ b are all equivalent.
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Operator Rich Plain

set enumeration { , . . . , } { _,...,_ }

bag enumeration { : , . . . , : } { _:_,...,_:_}

comprehension { : | } { _:_ | _ }

element test ∈ _ in _

bag multiplicity count( , ) count(_,_)

subset/subbag ⊆ _ <= _

proper subset/subbag ⊂ _ < _

union ∪ _ + _

difference − _ - _

intersection ∩ _ * _

set complement !_

convert set to bag Set2Bag( ) Set2Bag(_)

convert bag to set Bag2Set( ) Bag2Set(_)

equality ≈ _ == _

inequality 6≈ _ != _

less than or equal ≤ _ <= _

less than < _ < _

greater than or equal ≥ _ >= _

greater than > _ > _

conditional if ( , , ) if(_,_,_)

Table 3.7: Operations on sets and bags

The precise equations for lists are given in appendix A.

Exercise 3.5.1. Specify a function map that gets a function and applies it to all ele-

ments of a given list.

Exercise 3.5.2. Specify a function stretch that given a list of lists of some sort D,

concatenates all these lists to one single list.

Exercise 3.5.3. Define an insert operator on lists of some sort D such that the elements

in the list occur at most once. Give a proof that the insert operation is indeed correct.

3.6 Sets and bags

Mathematical specifications often use sets or bags. These are declared as follows (for

an arbitrary sort A):

sort D = Set(A);
B = Bag(A);

An important difference between lists and sets (or bags) is that lists are inherently finite

structures. It is impossible to build a list of all natural numbers, whereas the set of all
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natural numbers can easily be denoted as {n:N | true}. Similarly, the infinite set of all

even numbers is easily denoted as {n:N | n|2≈0}. The difference between bags and

sets is that elements can occur at most once in a set whereas they can occur with any

multiplicity in a bag.

The empty set is represented by an empty set enumeration {}. A set enumeration

declares a set where each element can at most occur once. So, {a, b, c} declares the

same set as {a, b, c, c, a, c}. In a bag enumeration the number of times an element

occurs has to be declared explicitly. So e.g., {a:2, b:1} declares a bag consisting of two

a’s and one b. Also {a:1, b:1, a:1} declares the same bag. The empty bag is represented

by the empty bag enumeration {:}.

A set comprehension { x:A | P(x) } declares the set consisting of all elements x
of sort A for which predicate P(x) holds, i.e., P(x) is an expression of sort B. A bag

comprehension { x:A | f (x) } declares the bag in which each element x occurs f(x)
times, i.e., f(x) is an expression of sort N.

Exercise 3.6.1. Specify the set of all prime numbers.

Exercise 3.6.2. Specify the set of all lists of natural numbers that only contain the

number 0. This is the set {[], [0], [0, 0], . . .}. Also specify the set of all lists with length

2.

3.7 Where expressions and priorities

Where expressions are an abbreviation mechanism in data expressions. They have the

form e whr a1=e1, . . . , an=en end, with n ∈ N. Here, e is a data expression and,

for all 1 ≤ i ≤ n, ai is an identifier and ei is a data expression. Expression e is called

the body and each equation ai = ei is called a definition. Each identifier ai is used as

an abbreviation for ei in e, even if ai is already defined in the context. An identifier ai
is not used in any of the expressions ej , 1 ≤ j ≤ n. As a consequence, the order in

which the definitions in a where expression occur is irrelevant.

Example 3.7.1. The expression (nwhr n=m,m=3 end)whrm=255 end is equal

to 255. The expression (f(n, n)whr n=g(m,m) end)whrm=h(p, p) end is equal

to f(g(h(p, p), h(p, p)), g(h(p, p), h(p, p))).

For the construction of data terms the following priority rules apply. The prefix

operators have the highest priority, followed by the infix operators, followed by the

lambda operator together with universal and existential quantification, followed by the

where clause. The precise priority rules can be found in appendix C where the syntax

of constructs in mcrl2 are given, including data expressions, together with priority and

associativity rules.

3.8 Historical notes

Our approach to data type specification has its root in the field of universal algebra, to

which [40] gives a good introduction. Universal algebra has been adopted extensively
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for formalisation of abstract data types. A standard textbook for abstract data types is

[118]. The data type specification language developed for mCRL2 is rather complex

and contains ingredients (e.g., multi-sorted signature with sub-sorting and higher-order

functions) that do not occur simultaneously in other formalisms for abstract data types.

Earlier data type specification languages in the context of process calculi, such as

those of PSF [127], µCRL [33], and LOTOS [106], lacked the practicality of built-in

standard data types as in mCRL2. A modern data type specification language that has

some of these features is CASL [140], which is incorporated in the process-algebraic

language CSP-CASL [158]. Other examples are the data type languages of E-LOTOS

[52] and LOTOS-NT [165]. We defer the discussion on the historical developments in

the semantics of abstract data types to chapter 15, where the semantics of all formalisms

used in this book, including the data specification language, are defined precisely.
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