
Chapter 4

Sequential processes

In chapter 2 we described behaviour by labelled transition systems. If behaviour be-

comes more complex this technique falls short and we need a higher level syntax to

concisely describe larger labelled transition systems. In this chapter we describe pro-

cesses using an extended process algebra. The building blocks of our process algebra

are (multi-)actions with data. We provide operators to combine behaviour in both a

sequential and nondeterministic way and allow it to be controlled by data parameters.

Axioms are used to characterise the meaning of the various constructs.

The language that we get allows to describe all reactive behaviour. In the next

chapter we define operators to combine behaviour in a more complex way, especially

using the parallel operator. But these operators do not add to the expressivity of the

language.

The sort of all processes defined in this and the next chapter is P.

4.1 Actions

As in chapter 2, actions are the basic ingredients of processes. More precisely, every

action is an elementary process. Actions can carry data. E.g., a receive action can carry

a message, and an error action can carry a natural number, for instance indicating its

severity. Actions can have any number of parameters. They are declared as follows:

act timeout ;
error : N;
receive : B× N

+;

This declares parameterless action name timeout, action name error with a data pa-

rameter of sort N (natural numbers), and action name receive with two parameters of

sort B (booleans) and N
+ (positive numbers) respectively. For the above action name

declaration, timeout, error(0) and receive(false , 6) are valid actions. Processes cannot

appear as parameters of actions.

Actions are events that happen atomically in time. They have no duration. In

case duration of activity is important, it is most convenient to think of an action as

63

MA1 α|β = β|α
MA2 (α|β)|γ = α|(β|γ)
MA3 α|τ = α

MD1 τ \ α = τ

MD2 α \ τ = α

MD3 α \ (β|γ) = (α \ β) \ γ
MD4 (a(d)|α) \ a(d) = α

MD5 (a(d)|α) \ b(e) = a(d)|(α \ b(e)) if a 6≡ b or d 6≈ e

MS1 τ ⊑ α = true

MS2 a(d) ⊑ τ = false

MS3 a(d)|α ⊑ a(d)|β = α ⊑ β

MS4 a(d)|α ⊑ b(e)|β = a(d)|(α \ b(e)) ⊑ β if a 6≡ b or d 6≈ e

MAN1 τ = τ

MAN2 a(d) = a

MAN3 α|β = α|β

Table 4.1: Axioms for multi-actions

the beginning of the activity. If that does not suffice, activity can be modelled by

two actions that mark its beginning and end. A declaration of actions describing the

beginning and end of an activity a could look like:

act abegin , aend ;

From now on, we write a, b, . . . to denote both actions and action names. In con-

crete models we attach the required number of data arguments to an action name in

accordance with the declaration, e.g., a(1, true). In more abstract treatments we let

actions have only a single parameter, and we typically write a(d) or a(e). If we want

to stress that there can be zero or more parameters, we sometimes write a(~d), a(~e),

4.2 Multi-actions

Multi-actions represent a collection of actions that occur at the same time instant.

Multi-actions are constructed according to the following BNF grammar. BNF stands

for Backus-Naur1 Form which is a popular notation to denote context-free grammars.

α ::= τ | a(~d) | α|β,

1John Backus (1924-2007) developed the first higher level programming language Fortran. Peter Naur

(1928-. . .) worked on the development of the very influential programming language Algol 60 for which he

received the Turing award.

64

where, as indicated above, a(~d) is used to stress that the action name can have zero

or more data parameters, but in general we leave the small arrow denoting the vector

symbol out. See for instance the axioms in table 4.1.

The term τ represents the empty multi-action, which contains no actions and as

such cannot be observed. It is exactly the internal action introduced in chapter 2. The

multi-action α|β consists of the actions from both the multi-actions α and β, which all

must happen simultaneously.

Typical examples of multi-actions are the following: τ , error |error |send(true),
send(true)|receive(false, 6) and τ |error . We generally write α,β, . . . as variables

for multi-actions. Multi-actions are particularly interesting for parallel behaviour. If

sequential behaviour is described, multi-actions generally do not occur.

In table 4.1 the basic properties about multi-actions are listed by defining which

multi-actions are equal to each other using the equality symbol (=). In particular the

first three are interesting, as they express that multi-actions are associative, commuta-

tive and have τ as unit element. This structure is called a monoid.

Because multi-actions are given by the BNF above, we know the shape of all multi-

actions and can use induction on the structure of multi-actions to prove properties of

all multi-actions. This form of induction is in general called structural induction, illus-

trated in example 4.2.1 below. This is not always the most convenient form of induction

to prove properties on multi-actions. An alternative is induction on the number of ac-

tions in a multi-action, which is illustrated in example 4.2.2.

Example 4.2.1. The following lemma (α|β) \ β = α holds for all multi-actions α and

β. We prove for any multi-action α that (α|β) \ β = α with induction on the structure

of β. So, there are two base cases:

(α|τ) \ τ = α,

(α|a(d)) \ a(d) = α.

These follow directly by MA3 and MD3, and MA1 and MD4 respectively. For the

induction case we can assume that the lemma holds for smaller multi-actions and prove

it for larger ones. Concretely, if we know that the induction hypotheses (α′|β1)\β1 =
α′ and (α′|β2)\β2 = α′ for any multi-action α′ hold, (α|β1|β2)\(β1|β2) = α must be

proven. This can be shown as follows:

(α|β1|β2) \ (β1|β2)
MA1, MA2, MD3

= ((α|β2|β1) \ β1) \ β2
i.h.
= (α|β2) \ β2

i.h.
= α.

As we have proven all induction steps, we can conclude that in general (α|β)\β = α.

Example 4.2.2. It is obvious that α\α = τ . This can be most conveniently be proven

by induction on the number of actions in α. If α has no actions, it must be equal to

τ : τ\τ
MD2
= τ (cf., exercise 4.2.4 (2)). If α has at least one action α can be written

as a(d)|β where β has less actions. So, the induction hypothesis allows us to use

β\β = τ . Now the proof of the inductive case becomes

α \ α = (a(d)|β) \ (a(d)|β)
MD3
= ((a(d)|β) \ a(d)) \ β

MD4
= β \ β

i.h.
= τ.

As α\α = τ has been proven for α’s containing any number of actions, we can con-

clude it holds for all α.

65

There are a few operators on multi-actions that turn out to be useful. There is an

operator α that associates with a multi-action α the multi-set of action names that is

obtained by omitting all data parameters that occur in α. We also define operators \
and ⊑ on multi-actions that represents removal and inclusion of multi-actions. Here ≡

denotes syntactic equality on action names and ≈ denotes equality on data.

Exercise 4.2.3. Simplify the following expressions using the equations in table 4.1.

1. (a(1)|b(2))\(b(2)|a(1)).

2. (a(1)|b(2))\(b(3)|c(2)).

3. a(1)|b(2) ⊑ b(2).

Exercise 4.2.4. Prove 1. and 2. below using induction on the structure of multi-actions

and 3. using induction on the number of actions in α for all multi-actions α, β and γ:

1. (α|β|γ)\β = α|γ.

2. Every multi-action α can be written as either τ or a(d)|β.

3. α ⊑ α = true.

4.3 Sequential and alternative composition

There are two main operators to combine multi-actions into behaviour. These are the

sequential and alternative composition operators. For processes p and q we write p·q
to indicate the process that first performs the behaviour of p and after p terminates,

continues to behave as q. Note that the dot is often omitted when denoting concrete

processes.

If a, b and c are actions, the action a is the process that can do an a-action and then

terminate. The process a·b can do an a followed by a b and then terminate. The process

a·b·c can do three actions in a row before terminating. The three processes are depicted

in figure 4.1.

X

X

X

a a

b

a

b

c

Figure 4.1: Three sequential processes

66

A1 x+ y = y + x

A2 x+ (y + z) = (x+ y) + z

A3 x+ x = x

A4 (x + y)·z = x·z + y·z
A5 (x·y)·z = x·(y·z)
A6‡ x+ δ = x

A7 δ·x = δ

Cond1 true→x ⋄ y = x

Cond2 false→x ⋄ y = y

THEN‡ c→x = c→x ⋄ δ

SUM1
∑

d:D x = x

SUM3
∑

d:D X(d) = X(e) +
∑

d:D X(d)
SUM4

∑
d:D(X(d) + Y (d)) =

∑
d:D X(d) +

∑
d:D Y (d)

SUM5 (
∑

d:D X(d))·y =
∑

d:D X(d)·y

Table 4.2: Axioms for the basic operators

The process p+q is the alternative composition of processes p and q. This expresses

that either the behaviour of p or that of q can be chosen. The actual choice is made by

the first action in either p or q. So, the process a+ b is the process that can either do an

a or a b and the process a·b + c·d can either do a followed by b, or c followed by d as

shown in figure 4.2. The alternative composition operator + is also called the choice

operator. In table 4.2 some axioms are given, that indicate which processes are equal

X X

X X

a b a

b

c

d

Figure 4.2: Two processes with a choice

to other processes. In the axioms symbols x and y are variables that can be substituted

by processes. For the alternative and sequential composition, the axioms A1 to A5 are

particularly important. A1 and A2 say that alternative composition is commutative and

associative. Practically, this means that is does not matter whether behaviour stands at

the left or right of the choice, and that brackets to group more than one choice operator

67

can be omitted. An interesting axiom is A3, which says that the choice is idempotent.

If a choice can be made between two identical processes, there is no choice to make at

all.

The axiom A4 says that sequential composition right distributes over the choice.

The left distribution, namely x·(y+ z) = x·y+ x·z is not valid, as it would imply that

a·(b+c) would be equal to a·b+a·c which are in general not behaviourally equivalent,

as argued in the previous chapter (see figure 2.9). The axiom A5 says that sequential

composition is associative. So, we can as well write a·b·c instead of (a·b)·c, as the

position of the brackets is immaterial.

The axioms listed in table 4.2 and elsewhere are valid for strong bisimulation. If we

provide axioms that hold for other process equivalences, this will explicitly be stated.

Using the axioms we can show the process a·b + a·b equal to a·(b + b). This goes as

follows:

a·(b + b)
A3
= a·b

A3
= a·b+ a·b.

In the first step we take the subexpression b + b. It is reduced to b using axiom A3 by

substituting b for x. Henceforth b is used to replace b + b. In the second step, axiom

A3 is used again, but now by taking a·b for x. Compare this to the proof in figure 2.8.

As a more elaborate example, we show that ((a + b)·c + a·c)·d and (b + a)·(c·d)
are equal.

((a+ b)·c+ a·c)·d
A4
= (a·c+ b·c+ a·c)·d

A1,A3
=

(a·c+ b·c)·d
A4
= ((a+ b)·c)·d

A5
= (b+ a)·(c·d).

Exercise 4.3.1. Derive the following equations from the axioms A1-A5:

1. ((a+ a)·(b+ b))·(c+ c) = a·(b·c),

2. (a+ a)·(b·c) + (a·b)·(c+ c) = (a·(b+ b))·(c+ c).

We use the shorthand x ⊆ y for x+ y = y, and write x ⊇ y for y ⊆ x. This notation is

called summand inclusion. It is possible to divide the proof of an equation into proving

two inclusions, as the following exercise shows.

Exercise 4.3.2. Prove that if x ⊆ y and y ⊆ x, then x = y.

4.4 Deadlock

A remarkable but very essential process is deadlock, also called inaction. It is denoted

as δ and cannot do any action. In particular, it cannot terminate. The properties of

deadlock are best illustrated by the axioms A6‡ and A7 in table 4.2. Axiom A7 says

that it is impossible to go beyond a deadlock. So, the x in δ·x can be omitted because

it cannot be reached.

The axiom A6‡ says that if we can choose between a process x and δ, we must

choose x because δ has no first action that would cause the δ to be chosen. The axiom

A6‡ is designated with ‡ to indicate that it is only sound in an untimed setting, i.e.,

in case x represents a process in which no explicit reference to time is made. If one

68

restricts this axiom to multi-actions, i.e., α+ δ = α with α a multi-action, one obtains

a weaker axiom, called A6. A6 holds also in the timed settings as presented in chapter

8.

The deadlock can be used to prevent processes from terminating. So, the process

a + b can terminate, whereas the process a·δ + b·δ cannot, and a + b·δ has both a

terminating branch and one that cannot terminate. The tree graphs belonging to these

processes are depicted below.

X X

a b a b

X

a b

Deadlock is not very often used as a specification primitive, as specifying that a

system has a deadlock is strange because this is undesired behaviour. The deadlock is

generally the result of some communicating parallel processes. It shows that there is

some incompatibility in these processes such that at a certain moment no actions can

be done anymore.

The most common use of deadlock in a specification is to prevent a process from

terminating. For instance an action error can be added to a specification to indicate a

state that should never be reached. By generating the state space and by inspecting that

the error action does not occur in it, it can be shown that the undesired state can not be

reached indeed. But often, the behaviour after the error action is of no concern. This

behaviour is made unreachable by putting a deadlock after the error: error ·δ.

Later when we introduce time, it will turn out that a stronger deadlock than δ exists.

One feature of δ is that it lets time pass. The stronger variant can even let time come to

a halt.

Exercise 4.4.1. Prove the following implication, assuming that x represents an untimed

process.

x+ y = δ implies x = δ.

This implication is known as Fer-Jan’s2 lemma. It was the first process-algebraic iden-

tity verified using proof checkers.

4.5 The conditional operator

Data influences the run of processes using the conditional operator. For a condition c

of sort B (boolean) and processes p and q we write c→ p ⋄ q to express if c then p else

q. The condition c must consist of data, and it is not allowed to use processes in c. The

axioms Cond1 and Cond2 in table 4.2 are obvious. If c is true, then the behaviour is p,

and otherwise it is q.

The else part of the condition can be omitted, meaning that nothing can be done in

the else part. This is expressed by the axiom THEN‡, also only valid when x does not

refer to time. When x contains time, the else part must be a timed deadlock.

2Fer-Jan de Vries (1956–. . .) is a researcher in logic and semantics with a strong interest in infinitary

systems.

69

To say that if the water level is too high, an alarm is sounded, and otherwise an ok

message is sent, is described as follows:

(waterLevel>limit)→ soundAlarm ⋄ sendOK .

Here, waterLevel is a local variable representing the water level.

Case distinction can also neatly be described. Suppose there is a data variable

desiredColour which indicates which colour a signal should get. Using actions such

as setSignalToRed the desire is transformed in actions to set the signal to the required

colour:

(desiredColour≈Red)→ setSignalToRed

+ (desiredColour≈Yellow)→ setSignalToYellow

+ (desiredColour≈Green)→ setSignalToGreen .

The axioms Cond1 and Cond2 are very handy, when used in combination with case

distinction or induction on booleans. There are exactly two booleans, true and false ,

which means that to prove a property for all booleans, it suffices to prove it only for

true and false . More concretely, in order to show c → x ⋄ x = x we must show

true → x ⋄ x = x, which follows directly from Cond1, and false → x ⋄ x = x which

follows directly from Cond2.

Exercise 4.5.1. Describe a process that if a given natural number n is larger than 0, can

do a down action, if n is larger than 100 can perform a too large warning and that

can always do an up action.

Exercise 4.5.2. Derive the following equations:

• c→ x ⋄ y = ¬c→ y ⋄ x;

• c ∨ c′ → x ⋄ y = c→ x ⋄ (c′ → x ⋄ y);

• x+y ⊇ c→x⋄y;

• if assuming that c holds, we can prove that x = y then c→ x ⋄ z = c→ y ⋄ z.

4.6 The sum operator

The sum operator
∑

d:D p(d) is a generalisation of the choice operator. The notation

p(d) is used to stress that d can occur in the process p. Where p + q allows a choice

among processes p and q,
∑

d:D p(d) allows to choose p(d) for any value d from D. If

D is finite, e.g., equal to B, then the sum operator can be expressed using the choice.

In this case the following is valid:
∑

c:B

p(c) = p(true) + p(false).

For sums over infinite domains, e.g.,
∑

n:N p(n), it is not possible anymore to expand

the sum operator using the choice operator.

The sum operator can be used for many purposes, but the most important one is

to model reading data values. Modelling a (one time usable) buffer that can read a

message to be forwarded at a later moment, yields the following:

70

∑
m:Message read(m)·forward (m).

A commonly made mistake is to not place the sum operator directly around the action

in which the reading takes place. Compare the following two processes, where reading

takes place with actions read1 and read2.
∑

m1:Message read1(m1)·
∑

m2:Message read2(m2)·forward (m1,m2).∑
m1,m2:Message read1(m1)·read2(m2)·forward(m1,m2).

In the first (correct) process, the message m2 is chosen when the action read2 takes

place. In the second process, the message m2 to be read is chosen when action read1

takes place. When doing read2, the value to be read is already fixed. If this fixed value

is not equal to the value to be read, a deadlock occurs.

The axioms for the sum operator given in table 4.2 are quite subtle. The axiom

SUM2 did exist, but turned out to be a reformulation of general logic principles and

has therefore been omitted. We defer full treatment of these axioms to chapter 9. In

order to use them it is necessary that data variables that occur in the sum operator must

not bind variables in terms that are substituted for process variables as x, y and z. For

variables written as X(d) it is allowed to substitute a term with a data variable d even

if d becomes bound by a surrounding sum.

So, for the axiom SUM1 no process containing the variable d can be substituted

for x. This is another way of saying that d does not occur in x (or more precisely,

any process substituted for x). Therefore, the sum operator can be omitted, as no real

choice needs to be made. This is essentially the same as what axiom A3 expresses.

Exercise 4.6.1. Specify a (one time usable) buffer that reads a natural number, and

forwards it if the number is smaller than 100. Otherwise it should flag an overflow.

Exercise 4.6.2. The axiom SUM1 resembles the axiom A1. With which axioms do

SUM3, SUM4 and SUM5 correspond?

4.7 Recursive processes

With the description of one time usable buffers in the previous section it already became

apparent that continuing behaviour must also be described. This is done by introducing

process variables and defining their behaviour by equations. Consider the following

specification, which describes the alarm clock at the left in figure 2.2:

act set , alarm , reset ;
proc P = set ·Q ;

Q = reset ·P + alarm ·Q;

This declares process variables P and Q (often just called processes, which ex-

plains the use of the keyword proc). The process variable P corresponds to the situa-

tion where the alarm clock is switched off, and the process variable Q corresponds to

the state where the alarm clock is set.

If in a set of equations defining a process there are only single variables at the left

we speak of a recursive specification. The variables at the left are called the defined

71

process variables. If every occurrence of a defined process variable at the right is

preceded by an action, we speak about a guarded recursive specification. A guarded

recursive specification defines the behaviour of the process variables that occur in it. In

the example given above, the behaviour of P and Q is neatly defined.

The keyword init can be used to indicated the initial behaviour. In accordance with

figure 2.2 this ought to be variable P .

init P ;

While interacting with their environment, processes store information that can later

influence their behaviour. For this purpose process variables can contain parameters

in which this information can be stored. Data and processes are strictly distinguished.

This means that there cannot be any reference to processes in data parameters.

We can transform the alarm clock such that it sounds its alarm after a specified

number of tick actions have happened.

act set:N; alarm , reset , tick ;
proc P =

∑
n:N set(n)·Q(n) + tick ·P ;

Q(n:N) = reset ·P + (n≈0)→ alarm ·Q(0) ⋄ tick ·Q(n−1);
init P ;

Note that the value of n is used in process Q to determine whether an alarm must sound

or whether a tick action is still possible.

A guarded recursive specification with data also uniquely defines a process. More

precisely, it defines a function from the data parameters to processes. E.g., the ‘process’

Q above is actually a function from natural numbers to processes. The equation must

be understood to hold for any concrete value for the parameters. So, given the equation

for Q above, the following are also valid by taking for n respectively 0, m, n+ 1 and

23k + 7 and simplifying the result.

Q(0) = reset ·P + alarm ·Q(0);
Q(m) = reset ·P + (m≈0)→ alarm ·Q(0) ⋄ tick ·Q(m−1);
Q(n+1) = reset ·P + tick ·Q(n);
Q(23k + 7) = reset ·P + tick ·Q(23k + 6).

Below, we describe a process that maintains an unbounded array in which natural

numbers can be stored. There are actions set , get and show . The action set(n,m)
sets the nth entry of the array to value m using the function update operator. After an

action get(n) an action show (m) shows the value m stored at position n in the array.

act set : N× N;
get , show : N;

proc P (a:N→N)
=

∑
n,m:N

set(n,m)·P (a[n→m])

+
∑

n:N get(n)·show(a(n))·P (a);

Another example is the specification of a sorting machine. This machine reads arrays

of natural numbers, and delivers sorted arrays with exactly the same numbers. The

predicate sorted expresses that the numbers in an array are increasing and the predicate

72

equalcontents expresses that each of the arrays a and a′ contain the same elements.

But note that equalcontents does not necessarily preserve the number of occurrences

of numbers.

act read , deliver : N→ N;
map sorted , equalcontents, includes : (N→ N)→ B;
var a, a′ : N→ N;
eqn sorted(a) = ∀i:N.a(i) ≤ a(i+1);

equalcontents(a, a′) = includes(a, a′) ∧ includes(a′, a);
includes(a, a′) = ∀i:N.∃j:N.a(i)≈a′(j);

proc P =
∑

a:N→N
read(a)·∑

a′:N→N
(sorted(a′)∧equalcontents(a, a′))→ deliver (a′)·P ;

Sometimes processes have a large number of parameters. In that case it is con-

venient to only write changing parameters in the right-hand side of processes by an

explicit assignment. The following example shows how that can be done.

proc P (n1, n2, n3:N)
=

∑
m:N

change par1 (m)·P (n1=m)
+
∑

m:N
change par2 (m)·P (n2=m)

+
∑

m:N
change par3 (m)·P (n3=m)

+change no par ·P ();

The parameters that are not mentioned at the right side remain unchanged. Note in

particular P () at the end, which describes that no value of any parameters is changed.

We only allow the process assignment notation in recursive invocations at the right-

hand side if the process variable of this invocation is equal to the one at the right-hand

side. So, P (n:N) = a.Q() is not allowed. The reason is that the parameters of Q and

P can differ making it unclear how the assignments must be interpreted.

There is a ugly snag in the use of use of assignments. Consider the process

P (x:N) =
∑

x:N

a·P (x=x)

To which x’s do the x’s in x=x refer? The answer is that the first x in x=x is a

placeholder for a variable in the left-hand side of the equation. The second x in x=x

is an ordinary variable which is bound by its closest binder, i.e., the x in the sum. So,

the equation above must be read as

P (x:N) =
∑

y:N

a·P (x=y)

Note that this also indicates that an assignment x=x cannot always be removed from

a right-hand side. This is only possible if the x at the right-hand side refers to the

parameter x of the equation.

This finishes the treatment of sequential processes. We have now seen all the opera-

tors to specify sequential behaviour. Using recursion we can specify iterative behaviour

and by using data parameters in these equations they are suitable to describe even the

most complex real life systems.

73

Exercise 4.7.1. Describe the behaviour of a buffer with capacity 1 that iteratively reads

and forwards a message. Add the option to empty the buffer when it is full, by a specific

empty action.

Exercise 4.7.2. Describe a simple coffee machine that accepts 5 and 10 cent coins.

After receiving at least 10 cents, it asks whether cream and sugar needs to be added

and then serves the desired coffee, after which it repeats itself.

Exercise 4.7.3. Adapt the predicate equalcontents(a, a′, n) such that it also preserves

the number of occurrences of data elements, assuming that the arrays contain n ele-

ments.

⋆Exercise 4.7.4. Describe a coffee and tea machine that accepts coins (1 cent, 5 cent,

10 cent, 20 cent, 50 cent, 1 euro and 2 euro). Coffee costs 45 cent, tea costs 25 cent.

The machine can pay back, but there is only a limited amount of coins (it knows exactly

how many). It is necessary to develop a way how to accept coins, return change and

deliver beverages when the machine is low on cash.

4.8 Axioms for the internal action

The axioms provided up till now in this chapter are valid for strong bisimulation. If

we want to remove internal actions while transforming and simplifying processes, we

need axioms to get rid of the internal action. These are provided in this section.

In the context of rooted branching bisimulation, the axioms in table 4.3 can be used,

provided no time is used in x, y and z, which as elsewhere is indicated by the use of ‡.
The axiom W‡ is pretty obvious. It says that a trailing τ after a process can be omitted.

The axiom BRANCH‡ is more intriguing and generally seen as the typical axiom for

branching bisimulation. It says that behaviour does not have to be apparent at once,

but may gradually become visible. Concretely, instead of seeing y + z at once, it is

possible to see first the behaviour of y, and after some internal rumble (read τ), the

total behaviour of y + z becomes visible.

W‡ x·τ = x

BRANCH‡ x·(τ ·(y + z) + y) = x·(y + z)

Table 4.3: Axioms for τ valid in rooted branching bisimulation for untimed processes

The characterising axioms for rooted weak bisimulation are found in table 4.4.

These are also only valid in an untimed setting.

All equivalences in the Van Glabbeek spectrum have their equational characteri-

sation. In table 4.5 axiomatic characterisations are provided for failures equivalence,

trace equivalence, language equivalence and weak trace equivalence. Note that the

axioms for trace and weak trace equivalence also hold for timed processes.

74

W‡ x·τ = x

W2‡ τ ·x = τ ·x+ x

W3‡ x·(τ ·y + z) = x·(τ ·y + z) + x·y

Table 4.4: Axioms for τ valid in rooted weak bisimulation for untimed processes

Failures eq. F1‡ a·(b·x+u) + a·(b·y+v) =
a·(b·x+b·y+u) + a·(b·x+b·y+v)

F2‡ a·x+ a·(y+z) = a·x+ a·(x+y) + a·(y+z)
Trace eq. RDIS x·(y + z) = x·y + x·z
Language eq. Lang1‡ x·δ = δ

RDIS x·(y + z) = x·y + x·z
Weak trace eq. RDIS x·(y + z) = x·y + x·z

WT‡ τ ·x = x

W‡ x·τ = x

Table 4.5: Axioms for some other equivalences for untimed processes

Exercise 4.8.1. Derive the following equations using the axioms valid in rooted branch-

ing bisimulation.

• a·(τ ·b+ b) = a·b;

• a·(τ ·(b+ c) + b) = a·(τ ·(b+ c) + c);

• If y ⊆ x, then τ ·(τ ·x+ y) = τ ·x.

See exercise 4.3.2 for the definition of ⊆.

Exercise 4.8.2. Derive the axioms for rooted branching bisimulation from those for

rooted weak bisimulation. Similarly, derive the axioms for rooted weak and branching

bisimulation from those of weak trace equivalence.

4.9 Historical notes

Our notation for sequential processes stems from the Algebra of Communicating Pro-

cesses [25] (for an overview see [18, 58]). We essentially presented here basic process

algebra, (BPA), also called context-free process algebra, consisting of actions and the

alternative- and sequential composition operator. Basic process algebra is interesting

because it strongly resembles context-free grammars. Remarkably, all bisimulations

75

are (efficiently) decidable for such processes whereas all other equivalences are unde-

cidable [77] (cf., section 10.4). Note that the use of a general sequential composition

is not common. Most process algebras use an action prefix operator a:p which is theo-

retically much simpler.

To this basic language the constant δ was added (denoted as NIL, STOP or 0

elsewhere [12, 101, 133, 135]). As the axioms A6 and A7 suggest, the constant δ in

process algebra has similar properties as the number 0 in number theory, and hence,

investigations started to add a constant behaving like 1. This constant is denoted as ǫ

or 1 and satisfies equations ǫ·x=x and x·ǫ=x [174]. It has even been tried to merge

the properties of δ and ǫ but that has never been very successful [136]. We have not

added ǫ because it combines badly with time. With a constant ǫ it would be easy to

write c→p ⋄ ǫ, saying that if c holds p must be executed, and otherwise the process

must terminate to continue with subsequent behaviour. This is not that easily possible

without this constant.

Combining data and processes was generally done in an ad hoc way in the early

days of process algebras. Exceptions were process-algebraic specification languages,

such as LOTOS [106, 68] and PSF [127]. The use of some form of conditional or if-

then-else operator has been very common. The notation that we use looks quite like

the one used in the guarded command language [110]. In µCRL, and several languages

related to CSP, the conditional was denoted as p ⊳ c ⊲ q [84].

The use of a sum operator over possibly infinite domains is relatively rare. More

often the sum is restricted to finite domains only [68, 127]. The generality of our op-

erator allows it to be used for several purposes, in particular for reading inputs from

unbounded domains. A popular alternative for this is the use of input and output ac-

tions, often written as a!3 and a?x:N meaning that the value 3 is sent via channel a,

and a value received via channel a is put into variable x [91]. In [119] it was proven

that the expressivity of input/output actions is strictly less than that of the sum opera-

tor, which coincides with our experience that the unbounded sum operator is far more

versatile. In combination with only the conditional operator it is straightforward to

describe input and output with constraints, select minimal or maximal values from the

input or describe detailed timed behaviour. The axioms that we provide here were first

proposed in [83] and strongly influenced by the encoding of µCRL in Coq [29].

There are completely different approaches to incorporate data in processes. As one

particular curiosity we mention process algebras with signals and state operators [14].

In mCRL2 there is a strict distinction between data and processes. Processes can-

not be used in data, especially not in conditions and processes cannot be sent around

through channels. This restriction can be relaxed leading to a whole new family of

higher order process calculi such as CHOCS [168] and the higher order π-calculus

[160]. In such process calculi, not only processes can be sent around but also, they can

be run by receiving processes.

The axioms for weak bisimulation were provided in [133], those for branching

bisimulation stem from [72]. An abundance of axioms for weaker equivalences can

be found in [71, 70]. The use of guarded recursive equations with unique solutions is

typical for ACP [25, 18].

76

