CT4471 Drinking Water 1

Coagulation & flocculation

Dr.ir. J.Q.J.C. Verberk Room 2.98 25 September, 2007

1

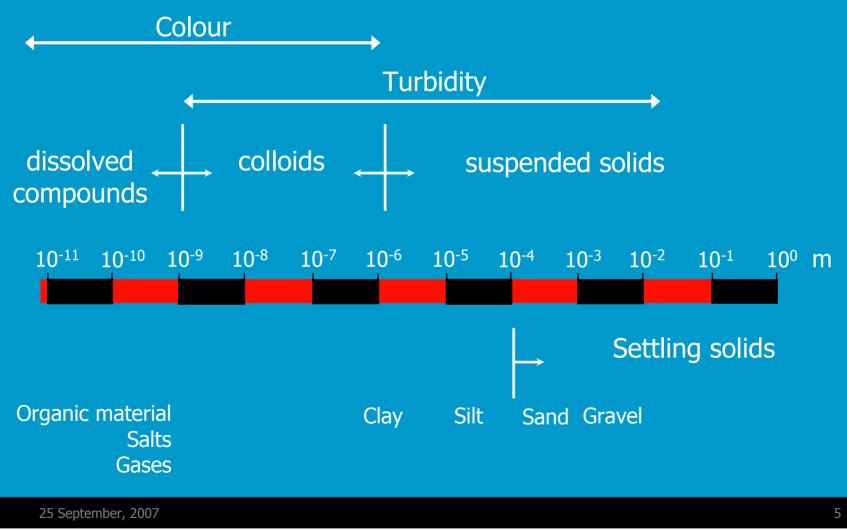
Delft University of Technology

Contents

- 1. Introduction
- 2. Coagulation: theory
- 3. Coagulation: practice
- 4. Flocculation: theory
- 5. Flocculation: practice
- 6. Special constructions

Introduction

Why coagulation and flocculation?


Removal of turbidity (clay) and colour (humic acids) → public health and aesthetics

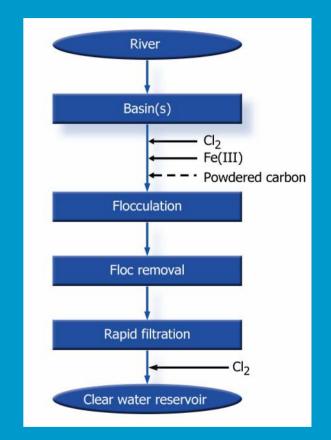
Public health: Removal of heavy metals and organic compounds

Aesthethics: Attractiveness of water

Classification

Settling velocity of particles

particle diameter (mm)	particle $\rho = 2,650 \text{ kg/m}^3$	Sedimentation time (over 30 cm)
10 1 0.1 0.01 0.001 0.0001 0.0001 0.000001 0.00001 0.00001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001	gravel coarse sand fine sand silt bacteria clay colloids	0.3 seconds 3 seconds 38 seconds 33 minutes 35 hours 230 days 63 years


Principle of coagulation & flocculation

Colloids and humic acids are negatively charged \rightarrow stability

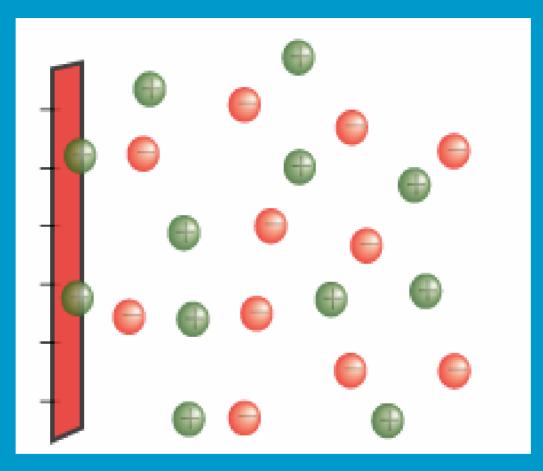
Adding coagulant (coagulation) \rightarrow destabilisation

Flocculation \rightarrow Growth of aggregates

After coagulation and flocculation removal of floc aggregates by sedimentation and/or filtration

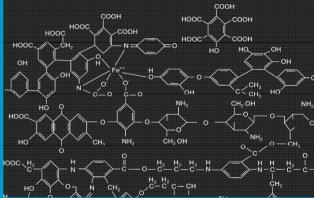
Quality of surface water

	Suspended matter [mg/l]	Turbidity [FTU]	Colour [mg Pt/l]	DOC [mg/l]
Rhine Meuse Biesbosch reservoirs Lake IJssel Drentse Aa	9.0 - 53 4.0 - 31 1.4 - 9.0 4.0 - 115 2.2 - 20	5.5 - 22.5 2.2 - 17 0.9 - 5.6 2.5 - 40 3.4 - 39	9 - 17 10 - 22 6 - 12 10 - 30 20 - 100	3.1 - 6 3.4 - 5.4 3.2 - 4.0 5 - 13.3 4.8 - 14.9
Tropical river	10,000	5,000	1,000	500
Standards for drinking water	< 0.05	< 0.1	< 20 (<10)	(3)



Quality of surface water, worldwide

Coagulation: theory


10

Turbidity and humic acids

Turbidity

 \oslash

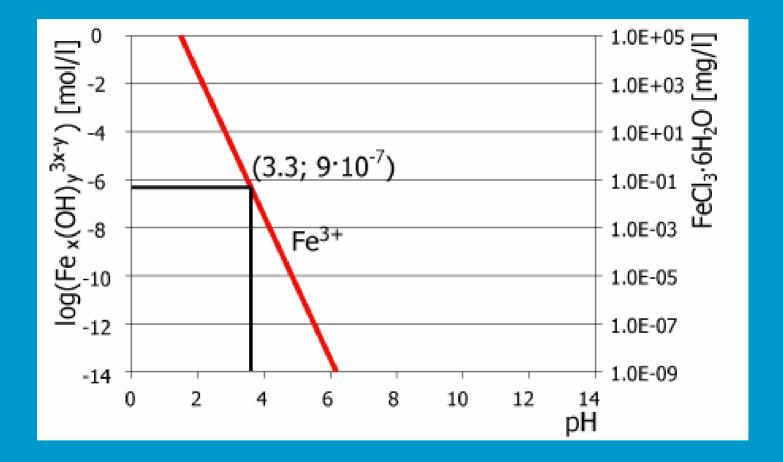
→ clay particles/colloids → size 0.1 - 10 μ m → charge = negative

Color

- \rightarrow Humic compounds
- \rightarrow size 0.01 μ m
- \rightarrow charge of humic acids depends on the pH $C_nH_{2n}OH + H_2O \iff C_nH_{2n}O^- + H_3O^+$

The appearance of iron salts in water depends on pH.

Calculation of Fe³⁺ concentrationFe(OH)_3 \rightarrow Fe³⁺ + 3·OH⁻K = 1·10⁻³⁸2·H_2O \rightarrow H_3O⁺ + OH⁻K = 1·10⁻¹⁴


$$K_{w} = [H_{3}O^{+}] \cdot [OH^{-}] \Rightarrow [OH^{-}] = \frac{1 \cdot 10^{-14}}{[H_{3}O^{+}]}$$
$$[Fe^{3+}] \cdot [OH^{-}]^{3} = 10^{-38} \Rightarrow [Fe^{3+}] = \frac{10^{-38}}{(10^{-14})^{3}} \cdot [H_{3}O^{+}]^{3} = 1 \cdot 10^{4} \cdot [H_{3}O^{+}]^{3}$$
$$\log[Fe^{3+}] = \log(1 \cdot 10^{4}) + 3 \cdot \log(H_{3}O^{+}) = 4 - 3 \cdot pH$$

A concentration of Fe^{3+} ions of 0.05 mg/l is desired Only at pH of the water is 3.3

 $\begin{array}{l} [Fe^{3+}] = 0.05 \text{ mg/l} = 9.0 \cdot 10^{-4} \text{ mmol/l} \\ log[Fe^{3+}] = log[9.0 \cdot 10^{-7}] = 4 - 3 \cdot pH \qquad \rightarrow pH = 3.3 \\ pH < 3.3 \text{ then more Fe}^{3+} \\ pH > 3.3 \text{ then less Fe}^{3+} \end{array}$

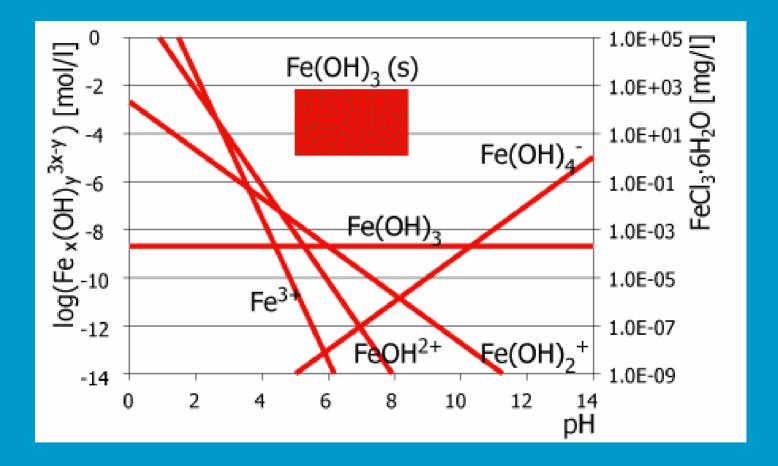
Surface water has a pH of approximately 7. The consequence is that $1 \cdot 10^{-17}$ mol/l Fe³⁺ can maximally be dissolved. If there are more Fe³⁺ ions in the water, they will precipitate with OH- ions and form Fe(OH)₃.

dosing in practice 10^{-4} mol/l Fe = 5.6 mg/l Fe = 27 mg/l FeCl₃·6H₂O

dosing of iron is done with FeCl₃

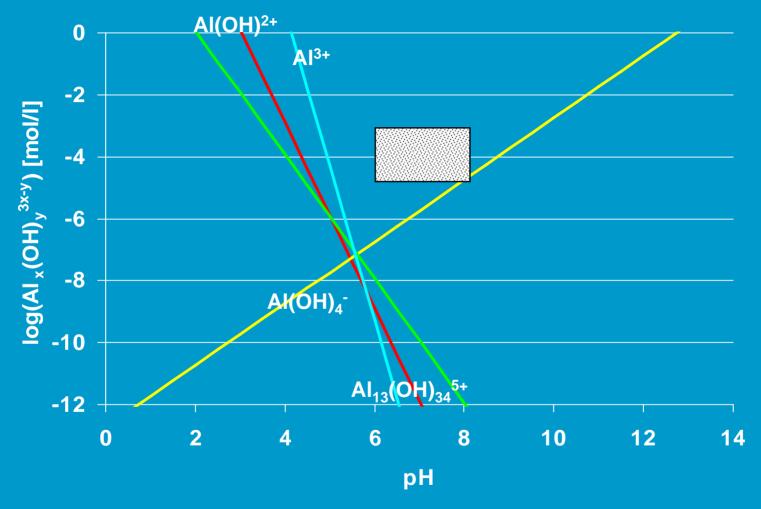
 $\begin{array}{ccc} \overline{\mathsf{FeCI}_3} \cdot 6\mathsf{H}_2\mathsf{O} & \to & \overline{\mathsf{Fe}^{3+}} + 3 \ \mathsf{CI}^{-} + 6 \ \mathsf{H}_2\mathsf{O} \\ \overline{\mathsf{Fe}^{3+}} + 3 \ \mathsf{OH}^{-} & \to & \overline{\mathsf{Fe}}(\mathsf{OH})_3 \downarrow \end{array}$

Result of dosing coagulants = pH decrease, thus conditioning


Reaction coefficients

Solubility products of	iron salts
$Fe^{3+} + 2H_2O$	\rightarrow
$Fe(OH)^{2+} + 2H_2O$	\rightarrow
$Fe(OH)_{2}^{+} + 2H_{2}O$	\rightarrow
$Fe(OH)_3 + 2H_2O$	\rightarrow

Fe(OH)²⁺ + H₃O⁺ Fe(OH)₂⁺ + H₃O⁺ Fe(OH)₃ ↓ + H₃O⁺ Fe(OH)₄⁻ + H₃O⁺

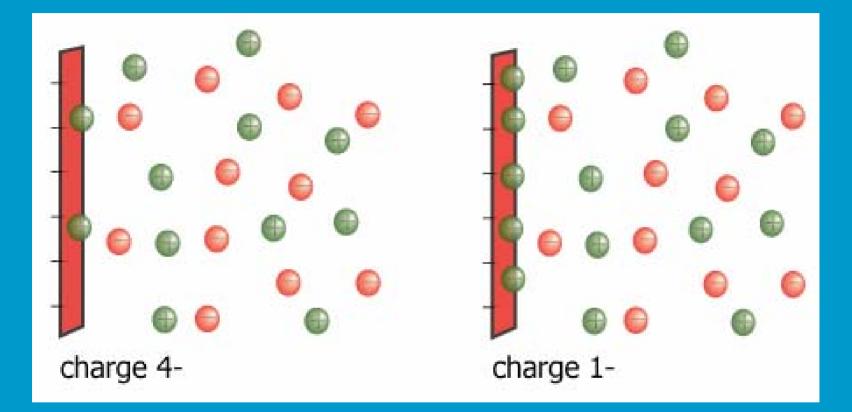

 $K = 6.8 \cdot 10^{-3}$ $K = 2.6 \cdot 10^{-5}$ $K = 1 \cdot 10^{-6}$ $K = 1 \cdot 10^{-10}$

17

Coagulants: Pre-polymerized Aluminium Chloride (PAC)

- Part of the coagulation reaction already finished
- Very good results at low temperatures

OH CI⁻ OH OH CI⁻ | + | | + CI⁻ +AI-OH-AI-OH-AI-O-AI-O-AI-OH | | + | OH OH OH CI⁻ OH

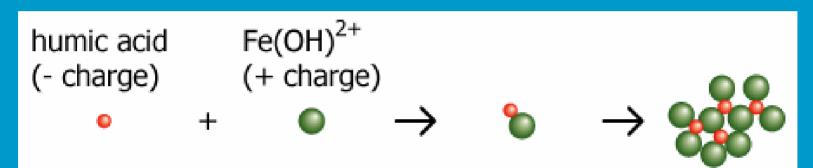

Destabilisation

Three mechanisms

- electrostatic coagulation
- adsorptive coagulation
- precipitation coagulation

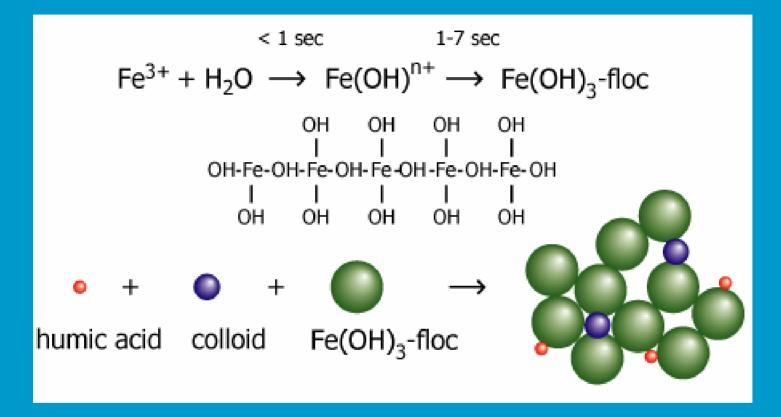
Electrostatic coagulation

Dosage 0.025 mmol/l Fe³⁺ \rightarrow pH \approx 3


25 September, 2007

21

Adsorptive coagulation

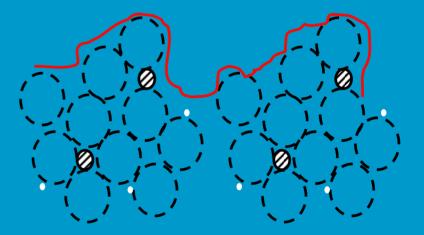

Adsorptive coagulation occurs at a low pH, because positive hydrolysis products are needed.

restabilisation:

- under-dosage of coagulants
- over-dosage of coagulants

Precipitation (sweep) coagulation

At low turbidites $Fe(OH)_3$ floc is neutral, flocs can collide



Polyelectrolytes (flocculant aid): long organic polymers

Stronger flocks

larger flocks

Used at low temperatures

Conclusions coagulation

electrostatic coagulation:

 \rightarrow not of importance in drinking water treatment adsorptive coagulation

- → colour at low pH, dosing proportional with removal of organic compounds
- \rightarrow low dosing
- \rightarrow high dosing results in re-stabilisation
- \rightarrow optimum with low pH
- \rightarrow mostly for colour (organic compounds)

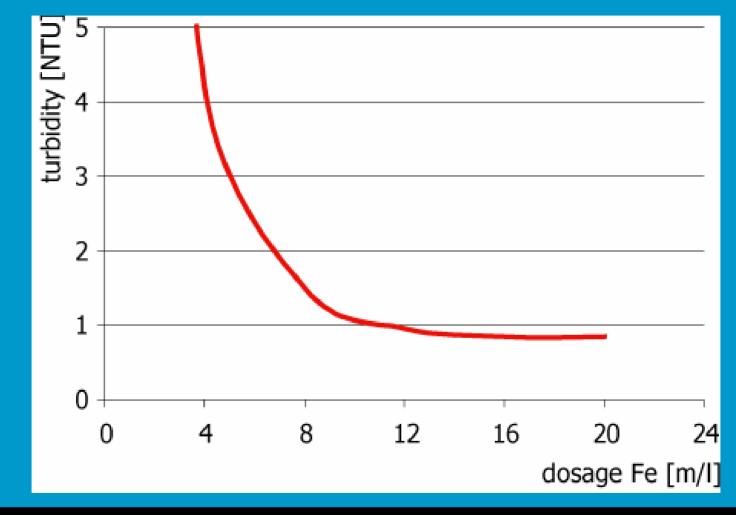
precipitation coagulation

- \rightarrow no re-stabilisation
- \rightarrow high dosing
- \rightarrow for turbidity removal
- \rightarrow evident optimum pH 8 with iron

pH 6 with aluminum

Coagulation: practice

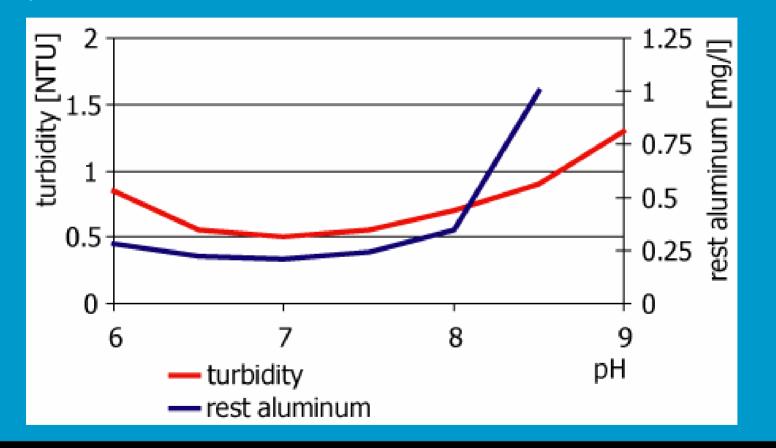
Jar test apparatus


Variation in: pH, dosage, flocculation time, sedimentation time, stirring energy

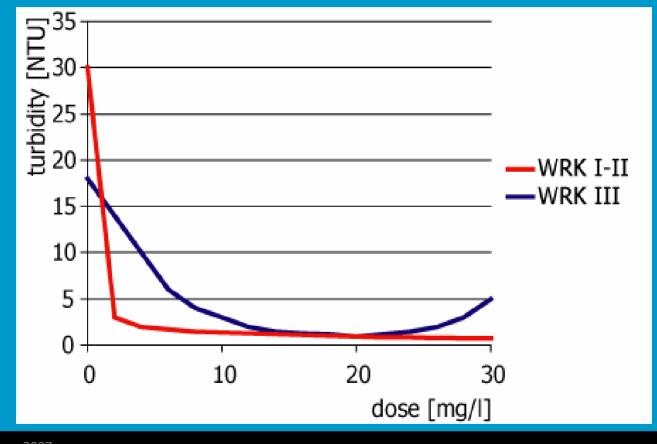
25 September, 2007

27

Optmising dosage


Optimising pH

Coagulation Braakman

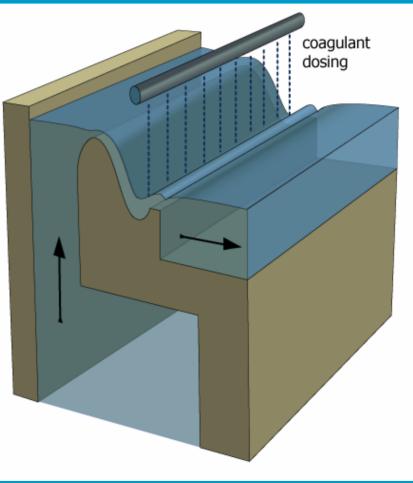

polder water = humic acids

WRK I-II \leftrightarrow WRK III

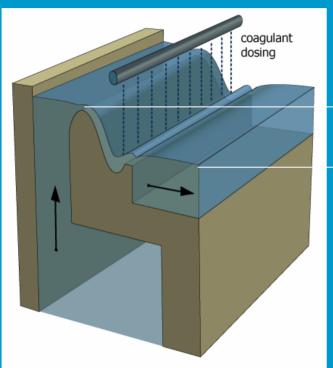
Rhine water <-> Lake IJssel water

Rapid mixing

- mechanical mixers
- static mixers


parameters:

- residence time (T)
- velocity gradient (G_c)

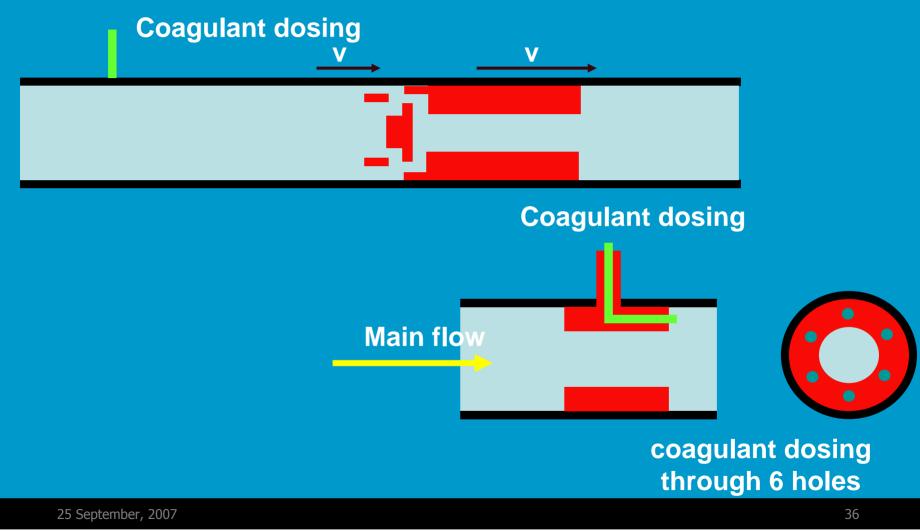

Weir mixer

Example weir mixing

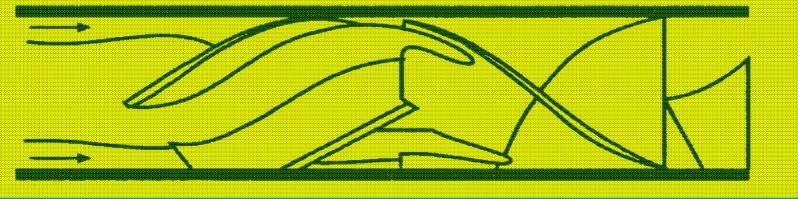
static mixer

$$\mathbf{G}_{\mathbf{c}} = \sqrt{\frac{\mathbf{\rho}_{\mathbf{w}} \cdot \mathbf{g} \cdot \Delta \mathbf{H}}{\mathbf{\tau}_{\mathbf{c}} \cdot \mathbf{\mu}}}$$

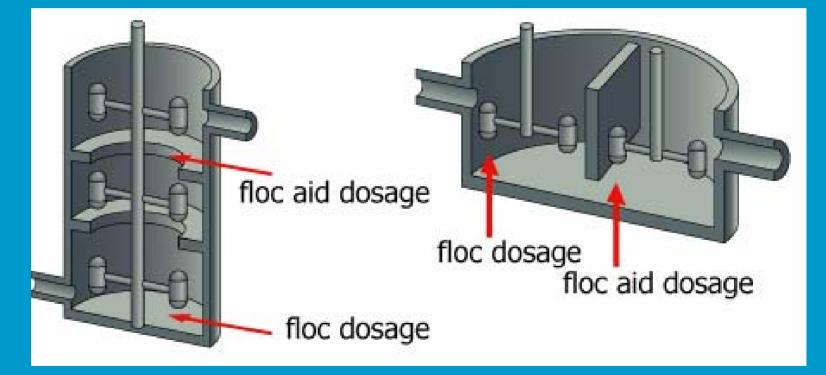
Example: $\Delta H = 0.75 \text{ m}; \text{ Q} = 4500 \text{ m}^3/\text{h}; \text{ V} = 2 \text{ m}^3$ $T = 20^{\circ}\text{C} \rightarrow \mu = 1.01 \cdot 10^{-3} \text{ N} \cdot \text{s/m}^2$ $Q = 4500 \text{ m}^3/\text{h} = 1.25 \text{ m}^3/\text{s}$ $\tau_c = 2/1.25 = 1.60 \text{ sec}$ $G_c = \sqrt{\frac{1000 \cdot 9.81 \cdot 0.75}{1.01 \cdot 10^{-3} \cdot 1.6}} = 2134 \text{s}^{-1}$



Variation in velocity gradient G_c


Construction forms of static mixers

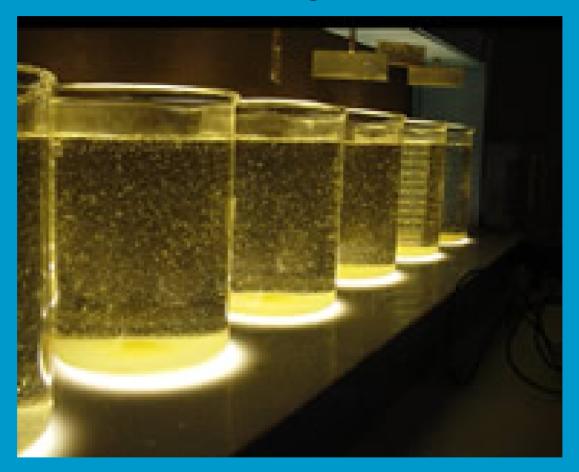
Construction forms of static mixers


25 September, 2007

Coagulation: practice

mechanical mixer

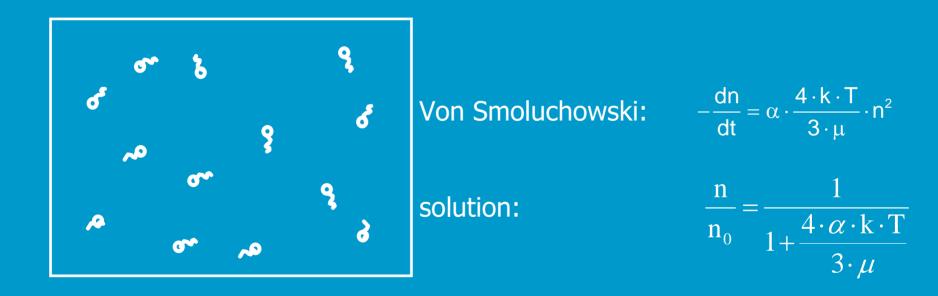
$$\mathbf{B}_{\mathbf{c}} = \sqrt{\frac{\mathbf{P}}{\mu \cdot \mathbf{V}}}$$



Mixing: Dutch practice

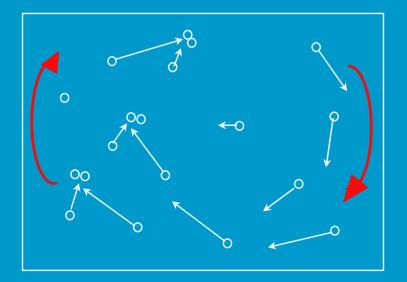
	WRK I-II	WRK III	Braakman
Type mixer	constriction	hydraulic jump	cascade
Energy loss over mixer [m]	0.02	0.30	0.50
Mixing time [s]	4.50	1.25	1.15
G _c value at 20°C [s ⁻¹]	300	1530	2050
Type of coagulant	FeCl ₃	Fe SO ₄	$Al_2(SO_4)_2$
Dosing [mg/l]	2 – 10	20	5-6

Flocculation: theory



25 September, 2007

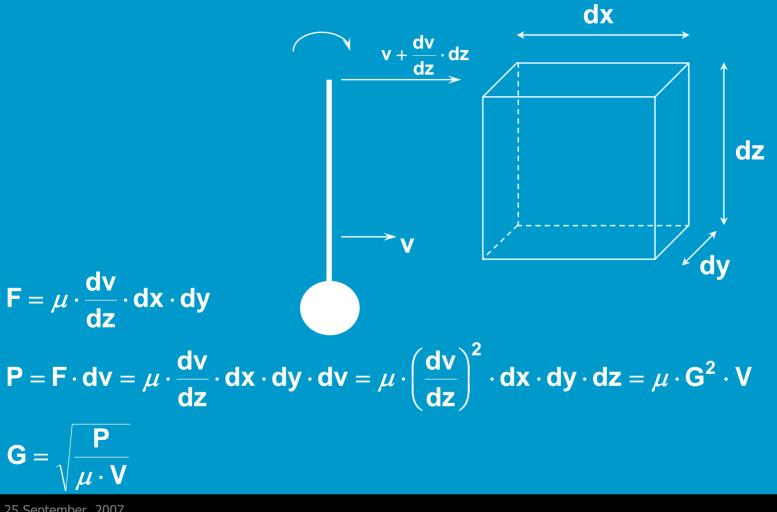
Perikinetic flocculation


driving force = Brownian movement

Orthokinetic flocculation

driving force = turbulence

$$-\frac{dn}{dt} = \frac{4}{3} \cdot n_1 \cdot n_2 \cdot R^3 \cdot G_v$$


$$Plug flow \quad \frac{n}{n_o} = e^{-k_a \cdot c_v \cdot G_v \cdot t}$$

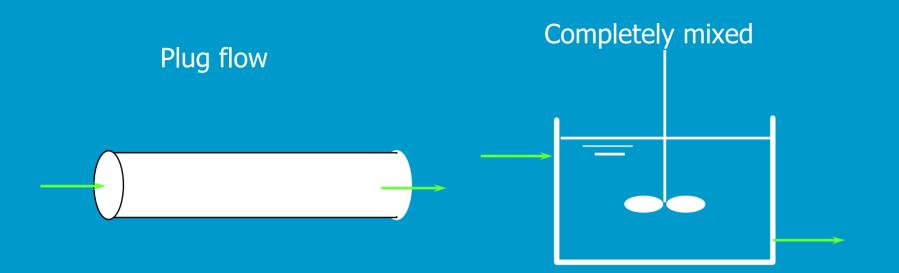
$$Complete mixing \quad \frac{n}{n_o} = \frac{1}{1 + k_a \cdot c_v \cdot G_v \cdot t}$$

$$42$$

Velocity gradient

43

Flocculation: practice


Construction forms of flocculation tanks

parameters:	
- residence time	Т
- residence time distribution	n
- velocity gradient	G
- floc volume concentration	C

residence time: 500 - 3600 seconds

Residence time (distribution)

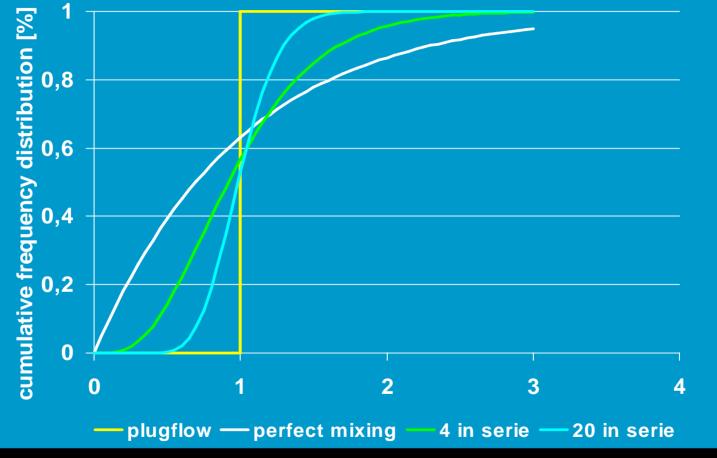
no mixing, thus particle concentration differences

no residence time distribution particles

perfectly mixed, thus no particle concentration differences

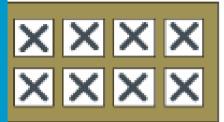
residence time distribution particles

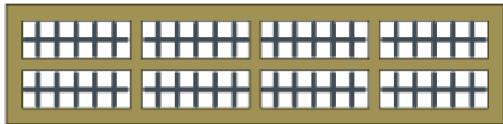
Residence time distribution


complete mixing:	$J(\Theta) = 1 - \exp(-\Theta)$		
plug flow:	$\begin{array}{ll} t < T & J(\Theta) = 0; \\ t \geq T & J(\Theta) = 1 \end{array}$		
mixers in series:	$J(\Theta) = 1 - \exp(-n \cdot \Theta) \cdot \sum_{i=1}^{n} \frac{(n \cdot \Theta)^{i-1}}{(i-1)!}$		

 $\Theta = t/T$

t = time T = calculated residence time

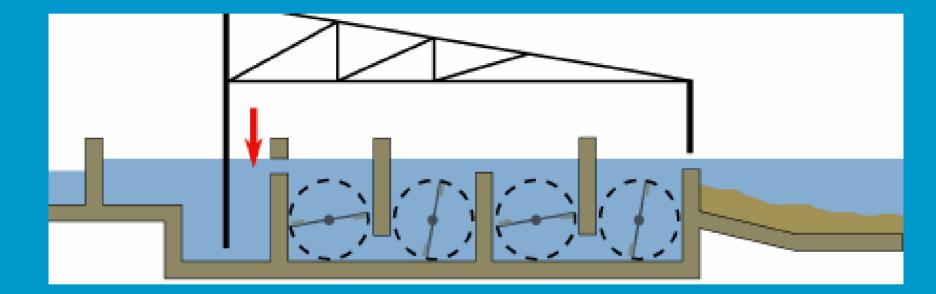

Residence time distribution


Optimal design flocculators

top view

side view

top view

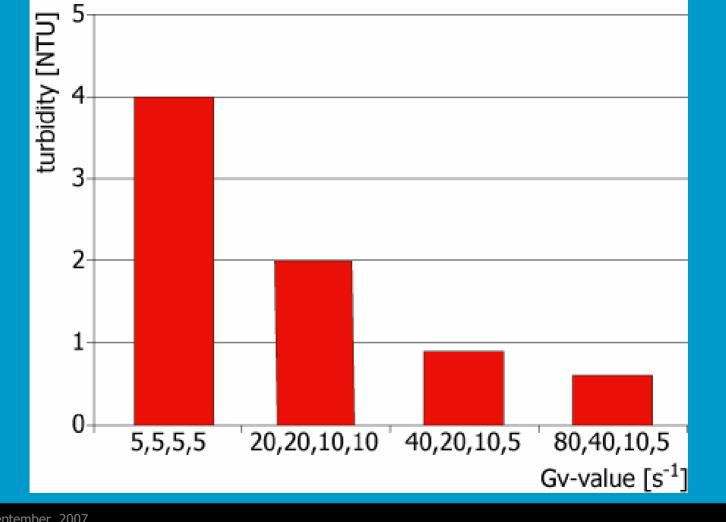

side view

L/B ratio (L/B >= 3) Vertical, deep and narrow or horizontal, long and narrow

Non optimal design

Velocity gradient

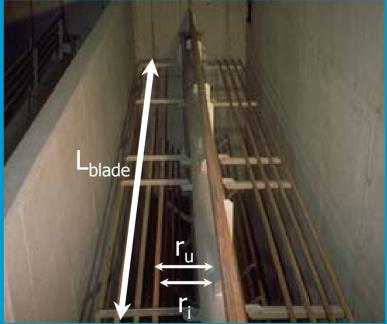
Energy input \rightarrow turbulence \rightarrow collision of particles \rightarrow flocs


Degree of energy supply = velocity gradient

$$\mathbf{G}_{\mathbf{v}} = \sqrt{\frac{\mathbf{P}}{\mathbf{V} \bullet \eta}}$$

Velocity gradient in practice: 10-500s⁻¹ Considering floc break up: tapered flocculation

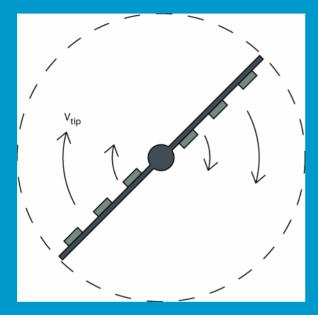
Variation in velocity gradient G_v


52

Flocculators

$$\mathbf{G}_{\mathbf{v}} = \sqrt{\frac{\mathbf{P}}{\mathbf{V} \cdot \boldsymbol{\eta}}}$$
$$\mathbf{P} = \rho_{\mathbf{W}} \cdot \pi^{3} \cdot (1 - k_{2})^{3} \cdot \mathbf{N}^{3} \cdot \sum \mathbf{C}_{d} \cdot \mathbf{L}_{blad} \cdot \left(\mathbf{r_{u}}^{4} - \mathbf{r_{i}}^{2}\right)^{3}$$
$$\mathbf{G} = \text{constant} \cdot \sqrt{\mathbf{N}^{3}}$$

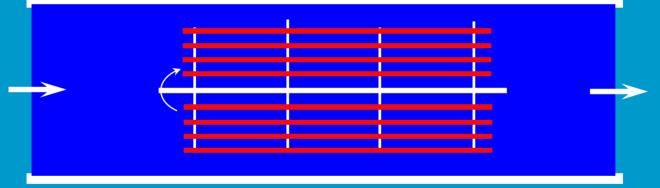
Design parameters: L_{blade}, C_d, r_u, r_i, k₂


Operating parameters: N

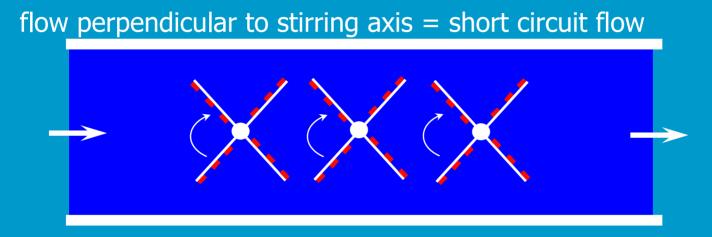
25 September, 2007

Tip velocity

 $\mathbf{v} = \mathbf{2} \cdot \pi \cdot \mathbf{r} \cdot \mathbf{N}$


N = 4 rotations/min $v_{max} = 1$ m/s

$$\Rightarrow \mathsf{r} < \frac{\mathsf{v}}{2 \cdot \pi \cdot \mathsf{N}} < \frac{1}{2 \cdot \pi \cdot \frac{4}{60}} < 2.4\mathsf{m}$$


Short circuit flow due to flocculators

flow parallel to stirring axis = no short circuit flow

Short circuit flow due to flocculators

flow velocity = 0.03 m/s, tip velocity = 1 m/s \rightarrow water velocity -0.97 tot 1.03 m/s

Floc break-up

avoiding floc break-up:

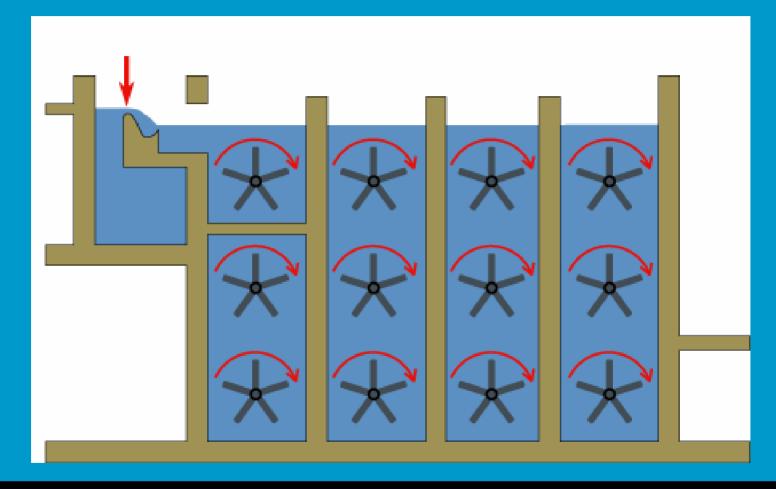
- more compartments with different G_v value

- tip velocity less than 1 m/s results in maximum width of 5 m

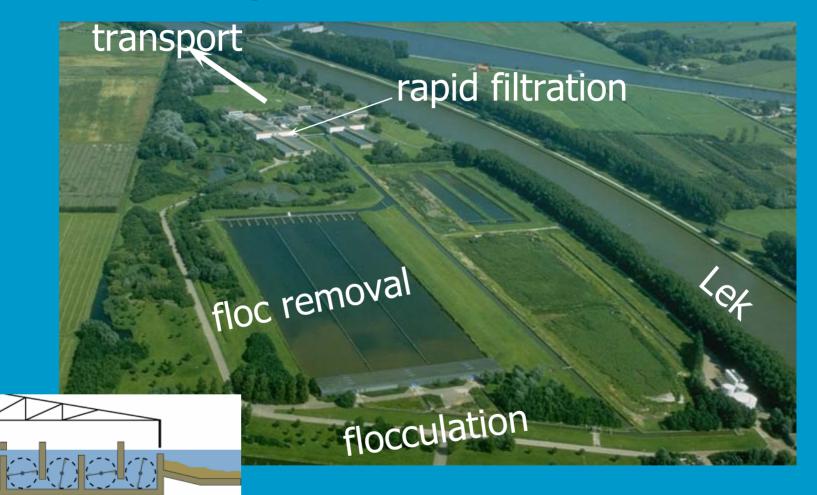
approaching plug flow:

- compartments with large L/B ratio (L/B \geq 3)

- water flow parallel to axis of stirring device


Well designed flocculator

25 September, 2007



Well designed flocculator

Flocculation: practice

25 September, 2007

Flocculation: practice Dutch practice

	WRK I-II	WRK III	Braakman
Flocculation time minimum [min]	17		19
Flocculation time maximum [min]	30		24
Number of compartments	4	5	3
Width [m]	4	11.6	2.5
Depth [m]	4	6.3	6.8
Length [m]	18	3	2.5
Direction of flow	vertical	horizontal	vertical
Rotations of stirring device [rpm]	0 - 4	0 - 12	1 - 8
G _v value [s ⁻¹] per comp.	0 – 20		10 - 110
Direction axis to flow	perpendicular	parallel	parallel

Optimal design parameters flocculation installations

Coagulation mixing time 1-10 sec velocity gradient mixing > 1,500 sec⁻¹

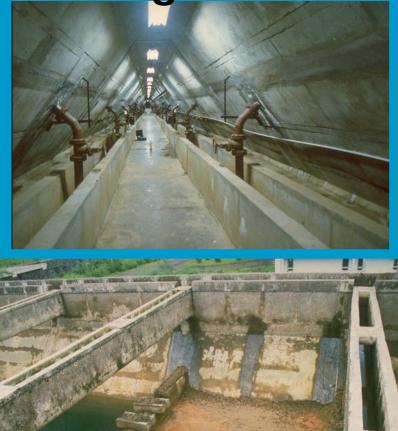
Flocculation flocculation time = 30 minutes 3 - 4 compartments Length/width ratio = 3 to 6 axis stirring device parallel to water flow velocity gradient flocculation $100 \rightarrow 10$ sec⁻¹ rotations: 1 - 8 rpm maximum tip velocity 0.9 m/s

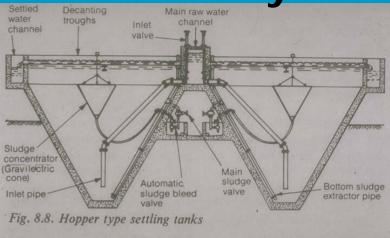
Special constructions

25 September, 2007

Sludge blanket installation Berenplaat

25 September, 2007




Sludge blanket installation Bombay

Sludge blanket installation Bombay

25 September, 2007

Hydraulic flocculation

