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Introduction
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Why coagulation and flocculation?

Removal of turbidity (clay) and colour (humic acids) 
public health and aesthetics

Public health:
Removal of heavy metals and organic compounds

Aesthethics:
Attractiveness of water
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colloids suspended solidsdissolved
compounds

Settling solids

10-910-11 10-110-310-7 10-5 10010-410-810-10 10-6 10-2 m

Classification

Organic material
Salts

Gases

GravelSandSiltClay

Colour

Turbidity
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10
1
0.1
0.01
0.001
0.0001
0.00001

gravel
coarse sand
fine sand
silt
bacteria
clay
colloids

0.3 seconds
3 seconds
38 seconds
33 minutes
35 hours
230 days
63 years

particle
diameter
(mm)

Sedimentation time
(over 30 cm)

particle
ρ = 2,650 kg/m3

Settling velocity of particles
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Principle of coagulation & flocculation

Colloids and humic acids are negatively charged
stability

Adding coagulant (coagulation) destabilisation

Flocculation Growth of aggregates

After coagulation and flocculation removal of floc
aggregates by sedimentation and/or filtration
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Rhine
Meuse
Biesbosch reservoirs
Lake IJssel
Drentse Aa

Tropical river

Standards for 
drinking water

Suspended
matter
[mg/l]

9.0 - 53
4.0 - 31
1.4 – 9.0
4.0 - 115
2.2 - 20

10,000

< 0.05

5.5 – 22.5
2.2 - 17
0.9 – 5.6
2.5 - 40
3.4 - 39

5,000

< 0.1

9 - 17
10 - 22
6 - 12
10 - 30
20 - 100

1,000

< 20
(<10)

3.1 - 6
3.4 – 5.4
3.2 – 4.0
5 – 13.3

4.8 – 14.9

500

-
(3)

Turbidity        Colour DOC
[FTU]        [mg Pt/l] [mg/l]

Quality of surface water
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Quality of surface water, worldwide
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Coagulation: theory
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Turbidity and humic acids

Turbidity  → clay particles/colloids
→ size 0.1 - 10 μm
→ charge = negative

Color → Humic compounds
→ size 0.01μm
→ charge of humic acids depends on the pH

CnH2nOH + H2O   ↔ CnH2nO- + H3O+
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The appearance of iron salts in water depends on pH.
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Calculation of Fe3+ concentration
Fe(OH)3 → Fe3+ + 3·OH- K = 1·10-38

2·H2O → H3O+ + OH- K = 1·10-14

Coagulants
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A concentration of Fe3+ ions of 0.05 mg/l is desired
Only at pH of the water is 3.3

[Fe3+] = 0.05 mg/l = 9.0·10-4 mmol/l
log[Fe3+] = log[9.0·10-7] = 4 - 3·pH pH = 3.3
pH < 3.3 then more Fe3+

pH > 3.3 then less Fe3+

Surface water has a pH of approximately 7. The consequence is 
that 1·10-17 mol/l Fe3+ can maximally be dissolved.
If there are more Fe3+ ions in the water, they will precipitate
with OH- ions and form Fe(OH)3.

Coagulants
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Coagulants
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dosing in practice
10-4 mol/l Fe = 5.6 mg/l Fe

= 27 mg/l FeCl3·6H2O

dosing of iron is done with FeCl3

FeCl3·6H2O → Fe3+ + 3 Cl- + 6 H2O
Fe3+ + 3 OH- → Fe(OH)3 ↓

Result of dosing coagulants = pH decrease,
thus conditioning

Coagulants
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Reaction coefficients

Solubility products of iron salts
Fe3+ + 2H2O → Fe(OH)2+ + H3O+ K = 6.8·10-3

Fe(OH)2+ + 2H2O → Fe(OH)2
+ + H3O+ K = 2.6·10-5

Fe(OH)2
+ + 2H2O → Fe(OH)3 ↓ + H3O+ K = 1·10-6

Fe(OH)3 + 2H2O → Fe(OH)4
- + H3O+ K = 1·10-10

Coagulants



25 September, 2007 17

Coagulants
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Coagulants:
Pre-polymerized Aluminium Chloride (PAC)

• Part of the coagulation reaction already finished
• Very good results at low temperatures

OH       Cl- OH  OH Cl-
|           +         |        |       +

Cl- +Al-OH-Al-OH-Al-O-Al-O-Al-OH
|           |         |        +        |
OH      OH OH    Cl- OH
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Three mechanisms
• electrostatic coagulation
• adsorptive coagulation
• precipitation coagulation

Destabilisation
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Electrostatic coagulation

Dosage 0.025 mmol/l Fe3+ pH ≈ 3 



25 September, 2007 22

Adsorptive coagulation occurs at a low pH, because
positive hydrolysis products are needed.

restabilisation:
- under-dosage of coagulants
- over-dosage of coagulants

< 1 sec
Fe3+ + H2O → Fe(OH)2+

Adsorptive coagulation
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At low turbidites
Fe(OH)3 floc is neutral, flocs can collide

Precipitation (sweep) coagulation
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Polyelectrolytes (flocculant aid):
long organic polymers

• Stronger flocks larger flocks

Used at low temperatures
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electrostatic coagulation:
not of importance in drinking water treatment

adsorptive coagulation
colour at low pH, dosing proportional with 
removal of organic compounds
low dosing
high dosing results in re-stabilisation
optimum with low pH
mostly for colour (organic compounds)

precipitation coagulation
no re-stabilisation
high dosing
for turbidity removal
evident optimum pH 8 with iron

pH 6 with aluminum

Conclusions coagulation
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Coagulation: practice
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Jar test apparatus

Variation in: pH, dosage, flocculation time, sedimentation time, 
stirring energy
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Optmising dosage



25 September, 2007 29

Optimising pH
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polder water = humic acids

Coagulation Braakman
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Rhine water <-> Lake IJssel water

WRK I-II ↔ WRK III
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- mechanical mixers

- static mixers

parameters:
- residence time (T)
- velocity gradient (Gc)

Rapid mixing
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Weir mixer
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Example weir mixing

μτ
ρ

⋅
Δ⋅⋅

=
c

w
c

HgGstatic mixer

Example:
ΔH = 0.75 m; Q = 4500 m3/h; V = 2 m3

T = 20°C → μ = 1.01·10-3 N·s/m2

Q = 4500 m3/h = 1.25 m3/s
τc = 2/1.25 = 1.60 sec

1
3c s2134

1.6101.01
0.759.811000G −

− =
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Variation in velocity gradient Gc
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Coagulant dosing

Coagulant dosing

coagulant dosing
through 6 holes

Main flow

v v

Construction forms of static mixers
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Construction forms of static mixers
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V
PGc ⋅

=
μ

mechanical mixer

Coagulation: practice
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Mixing: Dutch practice

WRK I-II WRK III Braakman

Type mixer constriction hydraulic jump cascade

Energy loss over mixer [m] 0.02 0.30 0.50

Mixing time [s] 4.50 1.25 1.15

Gc value at 20°C [s-1] 300 1530 2050

Type of coagulant FeCl3 Fe SO4 Al2(SO4)2

Dosing [mg/l] 2 – 10 20 5-6
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Flocculation: theory
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driving force = Brownian movement

μ
α

⋅
⋅⋅⋅

+
=

3
Tk41

1
n
n

0

Von Smoluchowski:

solution:

Perikinetic flocculation

2dn 4 k T n
dt 3

⋅ ⋅
− = α ⋅ ⋅

⋅ μ



25 September, 2007 42

Orthokinetic flocculation

driving force = turbulence

3
1 2 v

dn 4 n n R G
dt 3

− = ⋅ ⋅ ⋅ ⋅

a v vk c G t

o

n e
n

− ⋅ ⋅ ⋅=

o a v v

n 1
n 1 k c G t

=
+ ⋅ ⋅ ⋅

Complete mixing

Plug flow
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Flocculation: practice
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parameters:
- residence time T
- residence time distribution n
- velocity gradient Gv
- floc volume concentration cv

residence time: 500 - 3600 seconds

Construction forms of flocculation tanks
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Plug flow
Completely mixed

no mixing, thus particle
concentration differences 

no residence time distribution
particles

perfectly mixed, thus no
particle concentration differences 

residence time distribution 
particles

Residence time (distribution)
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plug flow: t < T J(Θ) = 0; 
t ≥ T J(Θ) = 1

complete mixing: ( )Θ−−=Θ exp1)J(

mixers in series: ∑
=

−

−
Θ⋅

⋅Θ⋅−=Θ
n

1i

1i

1)!(i
)(n)exp(-n1)J(

Θ = t/T t = time
T = calculated residence time

Residence time distribution
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Residence time distribution
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Optimal design flocculators

L/B ratio (L/B >= 3)
Vertical, deep and narrow or horizontal, long and narrow
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Non optimal design
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Energy input →
turbulence →

collision of particles → flocs

Degree of energy supply = velocity gradient

Velocity gradient in practice:  10-500s-1

Considering floc break up: tapered flocculation

η•
=

V
PGv

Velocity gradient
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Variation in velocity gradient Gv



25 September, 2007 53

η⋅
=

V
PGv

( )ρ π= ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ −∑

= ⋅

4 43 3 3
w 2 d blad u i

3

P (1 k ) N C L r r

G constant N

ri

ru

Lblade

Design parameters:
Lblade, Cd, ru, ri, k2

Operating parameters: N

Flocculators



25 September, 2007 54

Nr2v ⋅⋅⋅= π

N = 4 rotations/min
vmax = 1 m/s

2.4m

60
42

1
N2

vr <
⋅⋅

<
⋅⋅

<⇒
ππ

Tip velocity
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flow parallel to stirring axis = no short circuit flow

Short circuit flow due to flocculators
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Short circuit flow due to flocculators

flow perpendicular to stirring axis = short circuit flow

flow velocity  = 0.03 m/s, tip velocity = 1 m/s
water velocity –0.97 tot 1.03 m/s
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avoiding floc break-up:
- more compartments with different Gv value
- tip velocity less than 1 m/s results in maximum width of 5 m

approaching plug flow:
- compartments with large L/B ratio (L/B >= 3)
- water flow parallel to axis of stirring device

Floc break-up
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Well designed flocculator
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Well designed flocculator
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Flocculation: practice

Lek

flocculation

floc removal

rapid filtration
transport



25 September, 2007 61

Dutch practice
Flocculation: practice

WRK I-II WRK III Braakman

Flocculation time minimum [min] 17 19

Flocculation time maximum [min] 30 24

Number of compartments 4 5 3

Width [m] 4 11.6 2.5

Depth [m] 4 6.3 6.8

Length [m] 18 3 2.5

Direction of flow vertical horizontal vertical

Rotations of stirring device [rpm] 0 - 4 0 - 12 1 - 8

Gv value [s-1] per comp. 0 – 20 10 – 110

Direction axis to flow perpendicular parallel parallel
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Coagulation
mixing time 1-10 sec
velocity gradient mixing > 1,500 sec-1

Flocculation
flocculation time = 30 minutes
3 - 4 compartments
Length/width ratio = 3 to 6
axis stirring device parallel to water flow
velocity gradient flocculation 100 10 sec-1

rotations: 1 - 8 rpm
maximum tip velocity 0.9 m/s

Optimal design parameters flocculation 
installations
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Special constructions
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Sludge blanket installation Berenplaat
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Sludge blanket installation Bombay
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Sludge blanket installation Bombay
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Hydraulic flocculation
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