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General mformation

This text is the second version of the "collegediktaat” which accompanies the two-
semester course on Mesoscopic Physics offered by the Department of Apphed Physics
of the Delft University of Technology. The course, coded NS3521TU (formerly
TN3853), is configured to be an introduction into an area of solid state physics which
has seen a very rapid developmeni during the last decade, a development which is still
continuing and forming new branches. This text contams the material that was felt to
be most appropriate for understanding and appreciating the developments in the field.
It intends to serve as a survey of the field, allowing advanced undergraduates and
starting graduates to obtain a global overview.

The course requires an introductory level knowledge of quantum mechanics,
thermodynamics and solid state physics. Some knowledge of superconductivity 1s
beneficial but not essential. The main goal of the course is to introduce the physical
concepts underlying the phenomena in this field. This is persuaded by the use of
transparent physical models to describe the various phenomena. These models are
extensively complemented by recent experimental results, highlighting the main aspects
introduced in the model but at the same time stressing the limitations by identifying
deviations found experimentally. While thoroughly discussing the formalisms essential
for understanding the subject it avoids lengthy and highly technical theoretical
derivations. Where possible suggestions for further reading are given providing
convenient paths for an in-depth study.

In preparing this second version the author has greatly benefitted from mput received
from (undergraduate) students, A/OIO’s (graduate students) as well as staff members.
He still would be highly indebted if any further suggestions for improvement would be
made known to him.

Delft, November 1997 (September 2003)



1. Introduction to the field of Mesoscopic Physics

Introduction

The physics of solid state materials or condensed matter is of central importance within
science as a whole. Being “born” during the thirties of the 20™ century, one may assume it
to be fully mature by now, without significantly new discoveries being made any more. In
‘contrast, condensed matter physics shows all signatures of genuine prosperity, including a
marked growth. This growth is-driven by inputs from fundamental as-well as applied
oriented origin. _
Condensed matter physics concentrates on phenomena occurring in solids, studying
thermal, mechanical, optical, electrical, magnetic, ... properties. In general it assumes the
system of interest to be large, i.e. to contain a large number of “unit building blocks”,
mostly atoms. This case, indicated as the thermodynamic limit, can be addressed by either
assuming the building blocks to be arranged in perfect order as to form regular lattices, or
to be organised in a complete random manner. In these two limits the system can be
modelled in such a way that mathematical techniques are available to evaluate the
physical quantities of interest. In this way only the properties of bulk material is obtained.
Note that a bulk system not necessarily implies that only systems that extend into three
dimensions are allowed: surfaces or interfaces are also included (forming 2-dimensional
bulk systems) provided these are extended over many “units cells” in two dimensions.

Mesoscopic physics forms the bridge between the macroscopic world of bulk materials
and the microscopic world of atoms and molecules, the behaviour of which usually
requires more involved methods to reveal their secrets. Mesoscopic physics is interested
in questions such as: how will electrons start to behave if only very few of them are
available; from what size of a piece of material the wave-nature, governed by quantum
mechanics, becomes "averaged away" thus recovering the more common classical
behaviour; under what conditions will the "granularity” of the charge become apparent;
and many more.

The text nearly exclusively concentrates on phenomena of an electrical nature, i.e. driven
from the free electrons in the system.

In this first chapter an introduction to the field is given. The first section (1.1) provides a
few examples to position the field within physics in general and in solid state physics in
particular. It provides a first opportunity to “taste the flavour” of the field. Most of these
examples will return in forthcomiing chapters where they will be discussed in greater .
depth. Next, section 1.2 introduces a number of basic properties of conducting systems, in
particular concentrating on various length scales and energy scales that govern the
transport of free electrons in a solid. In addition the role of the dimensionality of such
systems is introduced and explained. Section 1.3 finally defines the various regimes for
electron transport, and how a solid material can be manipulated in such a way that the
required type of transport (or transport regime) can be realised.



1.1 A global positioning: some simple examples

In this section a number of examples of mesoscopic systems will be presented. These
examples are chosen such that the key aspects of the phenomenon can be explained in a
simple and intuitive manner. In this way these cases act as a global introduction to the
type of phenomena that are of interest in this field. Most of the examples will be
reinvestigated in one of the following chapters, where these will become discussed in
considerably more detail and depth.

1.1.a. Electron bound states in gold clusters

Our first example concerns so called clusters of atoms. In single, isolated atoms and
molecules electrons are bound to the nuclei in well-defined and stabie orbits. These
stationary orbits are an immediate consequence of the quantum rules operating at this
level of size. Typically the size of these objects range from some 50 pm (1 pm =10-12 m)
for the smallest atoms to 0.3 nm for the larger ones and up to 10 nm (1 nm =10-% m) for
large organic molecules. The staticnary nature of the electron orbits implies that a bound
electron resides in a well defined electronic state with a well determined energy
associated with it. Such an eigenstates is completely characterised by a unique set of
quantum numbers. In a system containing more than one electron, the electrons fill up the
available eigenstates of the system in increasing energy, with one electron being allowed
for each state. This "one electron per state" is an immediate consequence of the well
known Pauli exclusion principle, a basic rule of play for all half-spin particles (thus
including electrons) in nature. So, in a system like an atom containing a given number of
electrons which is in the ground state, there is an energy beyond which the available
states are unoccupied and contain no electrons.

Atoms and molecules can be forced out of the ground state and become excited. In that
case one electron in a certain state/orbit increases its energy by going to an orbit
associated with a state of larger energy; this process can be driven by the absorption of a
quantum of electron magnetic radiation, i.e. a photon. Evidently absorption only will
occur if the energy of the photon matches the energy difference between the initial (or
equilibrium) and the final {or excited) state. For the case of electrons attached to an atom
the energy level differences for the high-lying states (i.e. the outermost electrons) have
values of typically 1 eV (1eV=1.602*10-19 ]},

In a piece of solid material individual atoms are arranged (ideally) such as to form a
regular lattice. This happens by the atoms forming mutual bonds, actually by sharing
some of their outermost electrons. From solid state physics we know that, if the material
formed is a metal, then these outermost electron(s) leaves "its" core (= nucleus + the
remaining bound electrons) all the way and is allowed to move freely throughout the
whole piece of material. These free electrons actually make the material to be metallic,
showing electrical conduction.

Now we pose the question as to what will happen if we shrink the piece more and more.
- At some moment the lump of material (or grain) may start to look similar to a big
molecule. This means that the free electrons feel the boundaries of the grain and become
ordered in well determined orbits, forming eigenstates with associated eigenenergies and
a set of quantum numbers. Note that the stationary orbits of these states extend
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Figure 1.1: Discrete electrons states in a ~ I nm gold cluster; a. diagram of the set-up for
field emission; b. energy diagram of the cluster at the tip; c. energy distribution of
emitted electrons from the cluster; d. distribution from the tip

throughout the whole grain! The precise shape of an individual orbit depends on the
shape of the grain, and consequently the same holds for the eigenenergy of the state thus
formed. This is an important general notion: the nature of the eigenstates of a system is
determined by its shape. We will return to this in more detail in chapter 9.

Grains of this size are known in the literature as (quantum) clusters.

Recently this phenomena has indeed been found experimentally (Lin et.al., Phys Rev.
Lett. 67,477 (1991))*. Figure 1.1 shows the most relevant pictures related to this
experiment on a gold cluster of ~1 nm diameter.

* Wherever a reference is given to some paper it is worthwhile to lock into it in the library!



Question: estimate the number of Au atoms contained in this cluster; how many free
electrons will there be in the cluster?

In fig 1.1a the set-up is shown schematically. The cluster, attached to a very sharp needle,
is held at zero potential. A nearby screen, with a small hole in its centre, is put at a large
positive voltage. The sharpness (or more precisely the curvature) of the tip leads to a very
targe electric field in the vicinity of the tip, resuiting in field-emission of electrons from
the tip. If a small object is positioned at the end of the tip, the field will be largest there
and so electrons will be field-emitted from this object. This is shown in fig 1.1a. In fig
1.1b an energy diagram for the tip is displayed. The cluster is modelled as a potential well
at position z=0, with the bound electron states shown inside the well. Electrons can be
extracted from these bound states and these may leave the cluster via tunnelling through
the triangular barrier at the right. Quantum mechanics tells us that the probability for this
tunnelling depends on the height of the barrier (and so the binding of the electron) and its
width. This width is controlled by the slope of the right side of the barrier, and so by the
strength of the electric field (i.e. the accelerator voltage between screen and needle).

If an electron tunnels out its total energy is given by the sum of the accelerator voltage
and the bound state eigenenergy; note that this total energy will be less than the
accelerator voltage! The emitted electrons are accelerated towards the screen. By
manipulating the position of the hole relative to the tip the high-energy electrons may fly
through, entering an energy analyser located behind the screen. In this analyser each
electron is counted and its energy is determined, leading to a spectrum of (number-of-
electrons) <=> energy. As the electrons from the different bound states have different
total energies they will show up in the spectrum as different peaks. This is exactly what is
shown in fig. 1.1c and &.

In particular d. shows what is found for a clean tip, where no particular structure in the
spectrum is seen. In contrast fig. 1.1c shows the spectral distribution for the Au cluster: a
clear split-peak-shaped distribution (at a lower fotal energy, as anticipated) is evident.
This result nicely demonstrates the bound state eigenenergies of a metallic cluster.

1.1.b. Shell structure and magic numbers in clusters

The second example to be discussed, somehow complements the first one and concerns
the occurrence of a shell structure and associated magic numbers in metallic clusters.
This can be understood rather simply starting from purely classical arguments.

If we build clusters from identical particles we readily find that at certain numbers of
particles the cluster will be highly regular and symmetric. Fig 1.2 shows this in a nice
way. In such cases all positions available within one particular "shell" are filled; the
particle numbers associated with these cases are denoted as magic numbers.

Now we switch to quantum mechanics. Basically. also for the quantum analogue of such
high-symmetry cases the system is said to have completely filled shells, characterised by -
the principle quantum number n. From quantum mechanics we know that adding a
particle to the next higher shell usually takes more energy than adding it to the same shell.
This implies that clusters with only filled shells (and thus with a total number of particels
given by a magic number) will have a lower total energy as compared to non-magic
counterparts. This makes is not unlikely that, if clusters are allowed to condense from
(e.g.) a vapour of free atoms, that there will be a preference to form clusters with filled
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Figure 1.3: Mass spectrum versus cluster size

shells. This would lead to a distribution of the masses of the clusters with preference for
the magic numbers. This is what is found experimentally.

Figure 1.3 shows the results of an experiment where clusters are allowed to form in

free space, after which'their masses are measured in a mass-spectrometer (Nature 333,
734 (1991)). Clearly the spectrum shows peaks of increased intensity, demonstrating the
preference for certain masses.

1.1.c. Electron interference in solid state rings

The next example concerns the transport of electrons in a small structure. In particular
we will see that in a ring-shaped conductor (with two leads attached) the electrons may
show wave-interference phenomena, which can be controlied by an external magnetic
field. This is visible in the resistance (or conductance) of the ring+leads.

Interference effects require wave properties, and thus we have to define which
wavelength will be relevant for free electrons in a solid. From introductory solid state
physics we know that in an ideal crystalline system the translation invariance of the lattice
leads to the formation of energy bands, with a finite number of states available per band



(more precisely: a finite density of states per band). In case of a metal these bands are
only partially filled by electrons, up to a maximum energy, denoted as the Fermi energy.
Electrical conduction can take place because of this partial filling of the topmost band.
Associated with the Fermi energy there is a maximum wavevector kg and so a minimum
wavelength Ag=2m/kp, the Fermi wavelength. As in a conductor only electrons with
energies close to the Fermi energy contribute to the conduction also only the Fermi
wavelength will be of importance for the discussion that follows.

In the majority of macroscopic cases the fact that electrons do have a wavelength (and so
an associated phase) is not immediately evident. Figure 1.4a however shows a
configuration where this effect may become apparent. The sample is ring shaped,
allowing the current to take both arms intraversing it from the top left to the lower right
large contact); the added other two leads need not concern us now (see Appendix B for
some details on 2- and 4-terminal configurations). Now we have to realise that electrons
. behave as waves. This implies that an electron(-wave) entering the ring at one side will
split and the resulting (partial) waves will travel the two arms of the ring and reunite at
the other end. The way this reunion occurs is defined by adding the two partial wave
amplitudes vectorially and not as scalars. This implies that not only the partial amplifudes
will determine the amplitude of the sum wave, but just as much the (relative) phase of the
two comporents. This phase-dependent summation effectively leads to electron
interference. :

From electrodynamics and quantum mechanics we know that the evolution of the phase
of a charged particle (like an electron) depends on its velocity but, in addition, itis

a e b
Figure 1.4.: metallic ring structure for. the Aharonov-Bohm experiments a.: schematic
diagram of the ring; b.: SEM photograph of Au ring of approximately 800 nm diameter,
evaporated onto a non-conducting substrate.



affected by a magnetic field B. More specifically the particle travelling along a path
acquires an additional phase shift which can be obtained from the vectorpotential A
(associated with the field as B=V A A) given by:

e
A¢—EJA.dZ (1.1)

Note that A.dl represents a vectorproduct. Getting back to our fig 1.4a it is now evident
that electron waves travelling the two different branches of the ring will also acquire
different additional phases due to the magnetic field via the different values of A.dI for the
- two half-rings. As will be derived in chapter 5 this phase difference is simply determined
by the total magnetic flux @ enclosed by the area S of the ring:

e N N
APp=—BS =21 — 1.2
0 5 S (1.2

0
Dy 1s called the flux quantum, given by h/e. The additional phase A¢ commonly is called
the Aharonov-Bohm (AB) phase, after the two persons who first realised that effects due
to this phase should be experimentally accessible.
Now what will happen to the phase if we vary the magnetic field? Assume for the sake of
simplicity that at B=0 the electron waves interfere constructively, i.e. the two vectors
arriving at the point of reunion have to be added "in line” and so will lead to a maximum
in the total sum wave. Stated differently, this implies a maximum probability for the
electron wave to travel through the ring or equivalently a minimum in the resistance of
the ring. Now let us increase the field such as to add half a flux quantum to it. Eq. (1.2)
then indicates that the AB phase changes by 7, and so the former constructive interference
will change to a destructive one. Evidently this implies that the two vectors are in anti-
parallel and so will yield a small sum. So, the the resistance will now be at a maximum.
Increasing the tield further to get one flux quantum in the ring wiil lead to an AB phase of
21, a value which is evidently indistinguishable from a phase difference of zero: so again
a resistance minimum. Summarising the whole sequence shows that the resistance
oscillates between a maximum and minimum value, due to the interference of the
electron waves. The period of this oscillation is given by AB=@/5, i.e. one cycle per
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fluxquantum added to the ring,

Now what happens experimentally. In figure 1.5 the resistance of a ring of the type shown
in fig. 1.4 is shown in dependence of the applied magnetic field. Fig. 1.5a

clearly shows the oscillatory pattern predicted by the "theory” presented before. As the
pattern contains information of a periodic nature it can be beneficial to take the Fourier
transform of the data in order to make this aspect even more clear. This is shown in fig
1.5b. Note that the largest peak, indicated by /e, denotes the period associated with the
addition of one fluxquantum per cycle of the resistance oscillation.

Note that in passing we have introduced a very important concept in mesoscopic physics.
In “deriving” the oscillatory resistance (or likewise the conductance) of the system we
have assumed that the conductance scales with the probability for electrons to enter at
one side and emerge from the other side. This concept of transmission probability and its
relation to the conductance will be found to be of central importance throughout the book.

i?_l.d. Siﬁgle electron charging in a small island.

‘The final example we want to discuss focuses on the effect of a single electron on the

electrical conductance through a small metallic object. The effect relies on the Coulomb
interaction due to the electron charge and for this reason it is denoted as Coulomb
blockade. Figure 1.6a shows a typical set-up. A small metallic grain is embedded inside
an insulating environment, e.g. an oxide. The whole structure is put onto a good metallic
conductor, called the substrate. In addition a sharp tip is brought into close proximity to
the grain, without protruding the insulating film. Some typical dimensions are a few nm's
for the grain and < 1nm for the thickness of the insulator.
Classically, the insulating film surrounding the conducting grain forms a barrier which
will prevent electrons to travel {from the tip to the grain or from the grain to the substrate
and vice versa. Quantum mechanically however we know that a particle can tunnel
through this (classically forbidden) barrier, provided the barrier is not too thick. This

Oisland=Ne
Ry

a. b.

Figure 1.6. Coulomb blockade in a small metallic grain; a: Layout of the tip-grain-
substrate; b. schematic circuit representation



dictates the thickness of the insulators. So, the barriers can be modelled as two large
valued resistors, connecting the grain to the tip and to the substrate.
The configuration of figure 1.6a also includes capacitances. The grain will have a
capacitance to the substrate as well as to the tip. In general the capacitance of a conductor
put in an insulating environment decreases approximately linearly with the size. For the
case of a metallic sphere of diameter 4 put in infinite free space:

C=2red : (1.3)
In our case a rough estimate yields C~10-17F. Combining both aspects allows us to
represent the whole system schematically as shown in figure 1.6b.
What about the number of free electrons sitnated on the grain? In the limit of infinitely
large resistances of the barriers the number of electrons will be ¢lassically determined,
and simply be an integer: the electron either sits on the grain or it will reside elsewhere
(tip or substrate). In the other limit of very small resistances the electron waves extend
from the grain into the substrate or tip, making the number of electrons actually sitting on
the grain very badly defined. So, if we assume the resistances R 1 and R, of the barriers to
be large but finite, then charge transfer is still possible while the number of electrons at
the grain is well-defined.
Now let us turn to the energies involved in the system. The first one in the electrostatic
energy due to the charge O on the grain, given by E=02%2C, with C=C+C,, i.e. the total
capacitance of the grain. As we have seen, the number of electrons is an integer, or O=Ne
(N=1, 2,3, ..) and so the energy required to put the minimum amount of charge (i.e., one
electron, or N=1) onto the grain equals

62

Eq T (1.4)
This quantity is called the charging energy.
The second energy involved is the thermal energy, &7, with k being the Boltzmann
constant and T the temperature. Evidently if the electrons in the tip or substrate are
shaken up by the temperature to such an extent that their energy is larger than the
charging energy they may be able to get info the grain. So, to see effects due to the
charging erergy we have to require E.>>kT. This translates into: low temperature and
small grains.

Problem: Argue why a small grain size is required; estimate the temperature limit for our
typical Al grain mentioned in the text.

Problem: Argue why both resistors Ry and R, of the barriers have to be large.

Now we measure the total resistance of the structure by.applying a(small) voltage V
between tip and substrate and measure the current that results. As we have seen, the
addition of one electron to the grain requires a minimum energy given by ~E.. So, as long
as the voltage V across the structure is too small to provide electrons with an energy
larger than the charging energy (eV<~E,) no current can flow: the system is blocked. This
is called the Coulomb blockade due to single electrons. Increasing the voltage to beyond
E /e will allow electrons to overcome the Coulomb blockade and current will start to
flow. This is exactly what is shown in figure 1.7.



F igure 1:7. Experimental charging effects in a metallic grain

For voltages IVI<~8 mV one clearly can see that no current flows. At larger voltages the
~sourrent starts to flow rather abruptly. Note that at higher voltages more steps in the
current are seen. Without providing detailed arguments for the moment, these steps are a
consequence of a similar blockade, however now with 1, 2, 3, ....... electrons sitting on the
grain.

This experiment completes the short list of examples of mesoscopic phenomena. In the
rest of the course these and others will be discussed in more detail.

1.2 Basic properties of conducting systems

In this section we briefly consider a few basic properties of free electrons in solids, most
of which will be known already by the reader from introductory solid state physics and
quantum mechanics courses. The reason for rediscussing these fundamentals is that we
want to clarify a few relationships that commonly go rather unnoticed during the regular
introductory courses. These focus onto the role of various characteristic length, time and
energy scales in mesoscopic systems. Appreciating these, and understanding their mutual
relations is of central importance throughout the rest of the course. Related to the length
scales we will discuss the role of the dimensionality (3, 2, 1 or O-dimensions) of
mesoscopic structures, i.e. how do the (three) sizes of the sample system compare to the
various characteristic length scales. Given its importance in electrical transport we also
address the density-of-states {DOS) for electrons in solids, where the role of the
dimensionality is evident.

1.2.a. Length scales

Let us first concentrate on the length scales that determine the way electrons move
through a conductor.

g



= The most obvious one is the size of the system, L. Obviously the size can be different
for the three directions in space, Ly, L, and L,. The specific length for each direction Z;
{i=x, y, z) in comparison to a one of the other length scales introduced below determines
the number of relevant dimensions or the dimensionality for the process related to this
particular length scale; we will discuss this in more detail after the introduction of these
other length scales,

= For the next length scale it is important to realise oneself that electrons behave as
waves, with an energy dependent wavelength associated with it. With the electron of
mass m having a kinetic energy Ey;, and travelling at a velocity v its de Broglie
wavelength A follows straightforwardly from

2 .2 : . , ,
my D
E, = £ l.5a
kin 2 S ( )
and _
h
p:—.mv:hk:z (1.5b)

For the case of electrons in a solid one particular kinetic energy and wavelength comes
into play. For this to appreciate we have to remember that electrons are particles with spin
one-half. This implies that they are subject to the Pauli exclusion principle, which states
that no two electrons can sit in the same available state of the solid. Consequently the
electrons in the solid are "stacked" in the available states, the first electron put into the
state of lowest kinetic energy (as usual in nature), the next one in the next higher state etc.
With all electrons put in, the last electron will have the largest energy in the system, and
this maximum Kinetic energy is called the Fermi energy Eg. For this maximum energy
Eyin=Ep egs. (1.5a,b) immediately provide us with the associated Fermi velocity vg,
Fermi momentum pg and Fermi wave length Ap:

Ap =h1.2mEg (1.6)

More details on Ey are given in the next subsection on energy scales.

For electron transport nearly always only those electrons with energy at or close to the
Fermi energy are of importance (for an exception, see chapter 5, section 5.3 on persistent
currents). Thus the Fermi wavelength is the relevant length scale in a variety of quantum
effects, in particular those depending on wave-interference.

We can make a simple estimate of the Fermi wavelength by realising that the minimum
wavelength A that can be set-up (unambiguously!) in a system of electrons at an
average distance d,, will be approximately this value. As this minimum electron
wavelength is associated with the largest kinetic energy, which is the Fermi energy, this
implies that A ~Ap, and so.we immediately find .

Amin = AF ~ d,, "5Uﬂ

= The next length scale we need to consider in electron transport relates to the fact that
conductors need not be perfect. In textbooks on introductory solid state physics it is
assured that the solid forms an ideal regular crystal lattice, showing perfect similarity
from unit cel! to unit cell. "Real world" conductors may deviate from this ideal case and



e-ph scattering

e-¢ scattering

..Figure 1.8. Scattering of electrons. a. shows elastic scatterings occurring at localised,

_ fime-independent scattering centres, like impurities or walls; b. shows inelastic scattering
processes via time-dependent mechanisms such as lattice vibrations (or phonons) or
electron-electron interactions.

show irregularities in the lattice (or more formally: absence of translation invariance).
This breaks the fundamental condition for the electron wave to travel throughout the .
whole crystal, as any such irregularity will lead to (partial) scattering of the wave. This
implies that the free length to travel, called the mean free path, no longer will be infinite.
Scattering of the electron can result from different mechanisms thus leading to different
mean free paths. The first to consider results from static faults in the crystal, like missing
or displaced atoms (dislocations), foreign atoms (impurities) or walls (figure 1.8a). An
electron incident on such fault will interact with it and become scattered. As the mass of
this scattering centre, -typically an ion-, is very large compared to the electron mass
virtually no energy will be exchanged with this "site", i.e. the scattering process is elastic.
So the scattering can be characterised by E;iia=Erinat and Kipigial=kpinail; note, however,
that the direction of the two initial and final vectors need not be the same: or

E,-nm-a ] #* k final - In case many such elastic scattering centres are incorporated in the solid

we can define some average distance the electron can travel before it will experience an
elastic scattering event: this distance is called the elastic mean free path (or elastic
scattering length) I, and it will become shorter with an increase of the density of
scatterers. In the 11terature this length is also referred to as the momentum relaxation
length I ot [y, Note that also the boundary or edge of the system will effectively act as
a (huge‘) scatterer as electrons will be fully reflected from this edge (they are not allowed
to leave the crystal!). So, in small but otherwise ideal crystals, the effective elastic mean
free path is of the size L of the system. Note that the average time between successive
scattering events is given by 7,=l./vg, the elastic scattering time.

\



The second influence acting on the crystal regularity is of a non-stationary or time-
dependent nature. The most common example is the effect of temperature, which leads to
lattice vibrations (in classical wording) or phonons (in quantum language)(figure 1.8b).
An electron travelling through the crystal will experience the lattice distortion and
become (partially) scattered by it: this leads to a reduction of the mean free path. In more
quantum mechanical wordings: the electron travelling through the phonon sea (or phonon
bath) responds to it via electron-phonon interaction. In contrast to the former elastic case
the electron now picks up energy from the phonons: it even leads to an annihilation or
absorption of a single quantum of lattice vibration or phonon. The exchange of energy
implies an inelastic process, and the associated average distance travelled between
"successive" inelastic scattering events is called the inelastic mean free path or inelastic
scattering length . Evidently neither the energy nor the wavevector of the electron under
consideration are conserved in the scattering process. Given this energy exchange the
characteristic length is also referred to in the literature as the energy relaxation length Ie.
In exactly the same way as before we can define an inelastic scattering time T (or Tp)
"between" scattering events: T,=l/vg.

For this specific case, Le. inelastic scattering via electron-phonon interaction, the
particular inelastic scattering length and time are represented by lepr and To-ph
respectively. It is of interest to note that at low temperature, given the rather small

- momentum carried by a phonon, the change in direction of the electron for each electron-
phonon interaction event will be rather small as well. So electron-phonon scattering at
low temperature leads to small-angle scattering.

Not only phonons may lead to inelastic interactions. Also the Coulomb interaction of the
electrons among themselves leads to scattering with the exchange of energy. This process
is called electron-electron interaction. The amount of energy exchange is strongly
dependent on the initial difference in energy of the two electrons in the process, and so
the associated scattering length [, . and time 7., will also show a strong energy
dependence. It should be mentioned that for this case of interaction between particles of
the same mass the scattering may lead to large changes in the direction of the k-vectors of
the two electrons involved, even though only a small amount of energy is exchanged, i.e.
it may lead to large-angle scattering.

= Now we are in the position to discuss a crucial difference with respect to the quantum
mechanical consequences associated with the two types (elastic and inelastic) of
scattering. It also will allow us to introduce one more length scale, the phase breaking (or
phase coherence) length. This relates to the effect of the scattering on the phase of the
travelling electron wave. To appreciate this difference let us consider a (probe) electron
which is allowed to follow the same path twice. In case of elastic scattering the electron,
retracing its path the second time, will experience exactly-the same environment
(impurities, walls/surfaces, voids) and so it will scatter in the same way as during its first
travel. This predictability implies that also the phase of the scattered electron wave will
evolve in a deterministic (i.e. non-statistical) way: with the electron starting at some
position we can calculate exactly what the phase of the resulting wave will be at any other
position in space, irrespective of how many elastic scatterings have occurred during its
travel. So we conclude that elastic scattering does not randomise the phase of the
electron wave.



This has to be contrasted to the case of inelastic scatterings. Now the details of each
individual scattering event are unique. If the electron starts to do the path for the second
time the scattering will be different, as it depends on mechanisms that act statistically in
time and space. Because of the time-random nature of these scattering interactions the
phase is not evolving in a predictable way but statistically, which leads to a blurring of the
overall phase after a number of such inelastic events. So, in contrast to the elastic case,
we find that inelastic scattering randomises the phase of the electron wave.

In conclusion, the two mechanisms leads to a fundamentally different behaviour of
electrons contained within a restricted volume in a solid. While elastic mechanisms only
modify the wave patterns of electrons contained in the system of interest which may lead
to an increased complexity of the pattern, inelastic effects control the very existence of
such patterns and ultimately may even completely suppress these.

This automatically brings us to the third inelastic scattering length scale, i.e. the phase
colierence (or phase breaking) length, Lo (with its associated time scale 7). It represents
the distance an electron can travel before its phase becomes randomised. From its very
nature it will be clear that these phase breaking scales determine the degree to which the
electron can experience processes where the phase is of importance, i.e. in quantum
interference effects. As phase breaking and energy exchange are clearly related, we rather
loosely intermix the use of the phase breaking length [, and the inelastic scattering length
I, (or ly) throughout the following chapters, although formally these are not identical.

= The last length scale we want to introduce emerges once a magnetic field is applied to
our electron system. Such a field will interact with an electron travelling at velocity v via
its charge e, leading to the Lorentz force F =¢V A B, which is directed perpendicularly to
the directions of the field and the velocity. The effect of the Lorentz force is that the
straight zero-field path will become curved, resulting in circular cyclotron orbits (figure
1.9). Assuming for this moment that the electron is restricted to two dimensions, moving
at the Fermi velocity vy and that the magnetic field B is applied perpendicular to the 2D
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/}%’c Figure 1.9. An electron moving
in a magnetic field. The balance
V=Vg O=-¢ between the Lorentz force and the

centrifugal force result in a
circular or cyclotron motion.



plane, the resulting balance of forces yields
F.=mv& /R, = Flopem; = VB (1.8a)
From this equation we can deduce the two important parameters, i.c. the cyclotron
(circular) frequency
_YE_ B

=4l 1.8b
TR T (1.8b)
and the cyclotron radius
v mv F hkgp
=L = E o CF (1.8¢)
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The electron mass m* included in these equations does not need to be the free electron
mass, my=9.31*%10-31 kg. From introductory solid state physics we know that in the
crystalline solid the relation between the kinetic energy and the velocity, the so called E-k
or dispersion relation, is affected by the interaction of the electron wave with the crystal
lattice. This leads to a modified or effective electron mass m™. The effect on the mass is
strongest for electrons at relatively small (kinetic) energies, i.e. close to the edge of an
energy band. So, for simple metals with typically half-filled bands the effective mass
commonly does not deviate too strongly from the free electron value . In contrast in
semiconductors with the electrons close to the conduction band edge (or holes close to the
valance band edge) the effective mass may deviate strongly: in so called narrow gap
semiconductors like InAs or InSb effective electron masses of ~0.03my; are found. In
short, it ts this mass which should be inserted in eqgs. (1.8).

Note that if the electron is allowed to travel also in the third dimension (i.e. along the
direction of the magnetic field) the Lorentz force in that direction will be zero, because of
its vector-product nature. Thus the resulting trajectory will show a circular shape if
projected onto the plane perpendicular to the B-field, while the movement in the third
dimension will not be affected by the field.

1.2.b. Energy scales

In this subsection we will introduce a few energy scales that are of importance in
mesoscopic systems. In particular the thermal energy &7, the Fermi energy Eg and the
energy levels E; due to confinement will be discussed. In addition a rather unknown
energy scale will be discussed, called the Thouless energy, first introduced by Thouless.

= From subsection a. we know that electrons interact with the phonons in the system (the
"phonon bath"). Tf the system is in thermodynamic equilibrium the density and energies of
phonons are governed by the temperature T of the lattice. Strictly speaking, the only way
the lattice "knows" its temperature is from the occurrence and distribution of its phonons!
In particular the maximum energy of the phonons in the bath is given by the thermal
energy kgT, with kg being the Boltzmann constant. For the sake of convenience the
following approximate relation between the temperature and the associated energy can be
kept in mind:

T=1K <=>kgT=14%1023] ~ 100 peV
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= The second energy scale of interest follows from the fact that electrons obey Fermi-
Dirac statistics. As discussed before this implies that no two electrons are allowed to
occupy the same quantum state in a system, which makes electrons to become "stacked”
in energy filling one state after the other. The maximum energy of the electrons (at zero
temperature) is denoted by the Fermi energy Er and is determined by the density of
conduction electrons n,. The well known Fermi-Dirac distribution fepy(E,T) is given by

1
frp(E,T)= (1.9

E-Ep

1+ exp( ——)
: kgT

which is shown in figure 1.10. At zero temperature an abrupt transition from unity
occupation for E<Ep to'zero occupation for E>Ex is seen. For increasingly larger
temperatures the transition becomes smeared over an energy interval of a few times the
thermal emergy kg7, implying that at elevated temperatures empty states result below the
.Fermi energy while some states beyond Eg become occupied. In the majority of cases that
we intend-to consider we will assume low temperatures, i.e. a nearly discontinuous

transition:from unity to zero occupancy at Ep.

1.0 . =0
1 N
) .
Jeo(E) ' Figure 1.10. The Fermi-Dirac

051 ‘ distribution function fgp(E)

B fO?‘ kBT—_—O and kBT'"OI EF"

' Note the broadening of the
' transition around the Fermi
0 Yo . . _ _  energygiven by afew times

0 E—> Ep the thermal energy kgT.

In order to evaluate the Fermi energy, we want to see its relation with the size of a system
containing the electrons and the number of electrons it contains. This will also allow us to
derive a few more fundamental aspects of electrons in the solid, such as the density-of-
states (or DOS), and to discuss the effect of the dimensionality of the electron system.

Let us first concentrate on the case that electrons are restricted to certain a range in one-
dimensional (1D) space, i.e. a linear chain or wire. With the chain of length L we follow
the common way to evaluate the electron states in this system by allowing only those
electron waves whose wavelengths match the length (figure 1.11). As we assume that the
electrons can not leave the 1D-wire the boundary condition for the system is zero -
amplitude of the wave(-function) at (and beyond) the ends of the wire; note that vanishing
of the wavefunction outside L implies that the electrons are contained in a linear box of
infinitely high and impenetrable walls.

The longest wave compatibie with this condition forms a half wave spanning the length
L,i.e. A;=2L: this forms the first or lowest (1D} eigenstate 17>, The second state results
for one full wave of wavelength fitting the length, i.e. with a wavelength A,=2L/2=L.
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Similarly three half waves of wavelength A43=2L/3 for the third state, etc. can be set up,
i.e. in general for the state |j>

A;=2L/] (G=1,2,3,...) (1.10a)
For the associated k-vector of the state {j> we thus find

kj=2ﬂ:/lj:jn:/L {(1.10b)
and for the kinetic energies

£ - n? kz_?ﬁﬁ 2 (1.10¢)
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It is of importance to note that the difference in energy between two successive levels
282 s
_ _mhT2j-1 1

1s Jarger if the length into which the electrons are confined is smaller, i.e. strong
confinement leads to large energy level splitting or separation.

To see how we have to accommodate all the electrons available in the 1D-wire we need
to see how many states there are within a certain range of k-values. From (1.10b) we see
that the k-vectors are'equally spaced at intervals Ak=n/L, and so we obtain for the densizy-
of-states or DOS in 1D k-space

dN 1 L

pyp (k) = dk" ==z | (1.12)

Now assume that the wire contains N electrons-in-total, that are-uniformly distributed

along the chain yielding a linear electron density n=N/L (per unit length, i.e. in urits m-1).

To evaluate how many states are occupied by the N electrons we have to recognise that.
each k-state may contain more than one electron. We assume that the degeneracy is only
2-fold, with each k-state occupied by two electrons of opposite spin, denoted by the spin-
degeneracy gg=2. So, by integrating eq. (1.12) we immediately obtain the Fermi
momentum kg, which by definition equals the largest & value for any occupied state.



Thus,
kg

L
N= ] gpipk)dk = g;—kp (1.13a)
0
o7
kp=N-Z=NE_,T_,T (1.13b)

This immediately yields the Fermi energy
‘ h* Nz
Ep=tki=—o

T

Ty (1.14)
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Ineq. (1.12) the (1D-) DOS in k-space, pyp(k), was derived. To calculate the DOS in
energy space, pip(E), we have to take into account the quadratic E-k relation, given by

' k =(2m/ 2 JE and so one finds

dN dN dk m el | m 1
Fle—=——= k ) / =2f 1.15
PlD( ) dE dk JE pID( ) 2;‘;2[5 T th_ '\[E ( )

i.e. the 1-dimensional E-DOS follows an inverse square root dependence on energy.

In order to evaluate the Fermi momentum and the DOS in - and E-space in 2 and 3
dimensions (2D and 3D) one has to follow the same line of reasoning as shown above. As
the details can be found in the references [1] mentioned at the end of this chapter we only
quote the results:

1D 2D 3D
N 47n 67‘5271
kg —_— —_— 3 (1.16a)
&8s gs 8s
L L L. L L
P(k) .:gSL 8s xg Yy _ gs‘;i Estx 3)’ <. g:‘g (116]3)
T 4w 4 8 87
gLl | m m m~2m
(E) —J— g A— e VVE = (l.160)
g JE 7\ 2n? o ST onte?

Here n denotes the density of electrons taken for the appropriate "volume" in d-
dimensional space (d=1, 2 or 3), i.e. in 2D per area A or m2 , and in 3D per volume V or
m-3! Note that, in contrast to eq. (1.12), we have included the spin degeneracy factor also
in the DOS in k-space to stress that each state can accommodate two spin directions.
From the Fermi wave vector kg in eq. (1.16a) we can derive the Fermi wavelength
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Ap=2mlky ~ 2-3 times the interelectron distance d.., Which is in accordance with our
"statement” in eq. (1.7).

= As briefly discussed in the last exarnple of the preceding subsection, the electronic
charge of an electron implies that the positioning of an electron onto an isolated

- conductor (or island) requires a finite energy. This energy is a consequence of the finite
capacitance of the island relative to its environment. This capacitance C scales
(approximately) linearly with the size of the island, d. The electrostatic energy for the
case & single electron is put onto the island is simply given by the well known expression
Ec=e*12C (see eq. 1.4), and is denoted the (single-electron) charging energy.

= We finalise this subsection by introducing an energy scale of a slightly less transparent
nature (at least at first hand!). This energy scale, called the Thouless energy after the
person who first intreduced it in a clear way, is by no means difficult to derive. However,
it is not so easy to demonstrate at this stage its importance in mesoscopic physics. Within
this brief introduction we wili not try to explain what impact it has on various
phenomena. Only in future chapters we will show its importance.
The Thouless energy (denoted by E; or Em, (please do not confuse it with the charging
energy, mentioned in section | of this chapter!!)), provides a measure of the relation
between the energy of a state and phase evolution in a restricted area of space of size L.
More precisely, it equals the shift of the eigenenergy at a change of the phase at the
boundary of ~ .
Assume an ideal (scattering free) system. A plane (electron) wave of wave vector k (and
energy F) travelling over a distance L acquires a phase @=kL. If the wavevector of the
state is changed from k to k’=Ak+k (with associated energy E’=AE+E) the phase will
change by

Ap=AkL (1.17a)
From the quadratic E-k relation we obtain

dE  n* 24

dk_mkdhm_hv (1.179)
with v denoting the velocity of the wave. Thus, for the change in energy due to the change
in k-vector by Ak one finds

AE = £ ak = hap L = nag - 1.17

= Me=ndop=nsp (1.17¢)
with 77, being the time it takes for the wave to travers the distance L. If we take Ag~1, the
Thouless energy 18 obtained as
h

Epy, = o (1.18)
Rephrased in words, the Thouless.energy for a system of size L follows from the time it
takes for an electron wave to cover this size.
The derivation given above was for the most simple case of a clean system, allowing
plane waves to be used to represent the electron state. If the system is more complicated,
and a state can not be characterised by a single wavelength (or k-vector), the Thouless
energy can still be derived from the “time-of-flight” argument.

19



1.2.c. Dimensionality

The notion of dimensionality 1s of crucial importance in mesoscopic physics. In order to
enhance our understanding we want to look somewhat closer on how we can establish a
dD system for electrons, i.e. 0D (or d=0) for full confinement, 1D for transport in one
direction, 2D for freedom within a plane and 3D for an unconfined system.

Let us confine the electrons in a certain region in 3D space, say in & box of size
{Lx’Lyst}' The "rigid confinement" inside the box implies that the wavefunctions for all
the states are taken to be zero at the boundaries. For each direction 7 (=x,y,z) we can set up
standing waves following eqs. (1.10), i.e.

M =2L/j o (=123 L (119
with associated k-vectors
kijj =2m/ Ay = jim/ L (1.19b)

:'.For the total kinetic energy of each level characterised by the set of quantum numbers
{ jxjyjz} we simply have to sum the three components

o 2 2:2 .2 2 .2
E=2Eji=§— k?:,’r—?h—u %+%+J—Z) (1.19¢)
Ji myT A Ly Ly L7

Now assume that we have a "box" such that L, >> Ly, L, ,ie. it is a needle-shape with
the largest dimension along the x-direction. Consequently, the electrons can move in the
x-direction much further than in the other two directions. From eq. (1.19¢) it is obvious
that the eigenenergies resulting from the small dimensions Ly and L, are much larger than
that those from the large dimension L, (figure 1.12a). Evidently, this also holds for the
differences in energies of the iowest (j;=1) and second (j;=2) level for the three directions:
in the x-direction we find a rather narrow energy level spacing (figure 1.12b), while the
other two directions y and z show much larger level splittings (figure 1.12c and d). The
total energy level diagramme (figure 1.12¢) demonstrates that, at low energies (1.c. the
lower lying states of the system), only the level spacing resulting from the largest
dimension is of importance. If the system is filled by putting electrons into the box we
will do so starting from the lowest state {I,1,1}. If all electrons are accommodated (and
so a certain electron density is reached, eq. (1.13a)) the energy of the topmost state by
definition equals the Fermi energy. So, if the density is not too large, only states of the
type {jx.1.1} will be occupied. The resulting electron system is said to be truly 7-
dimensional, with only the lowest 1D subband being occupied. If the electron density is
increased we may reach the condition that it becomes energetically favourable to start
filling also states like e.g. {j,2,1}, i.e. also the second 1D subband becomes occupied.
So, a system is defined to be TD whenever electrons occupy a range of states associated
with one direction, with only the lowest state for the two other directions involved.

Problem: what condition should be met by the dimensions L, and L, to make that the
first state in the second subband will be {1,2,1}.
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Figure 1.12. Energy levels of electrons contained in a long box of dimensions L,>>L,, L,
(top panel a.). Panels b., c. and d. show the level structure for the three orthogonal
dimensions x, y and 7. Note the much larger energy level spacings for the shorter sizes y
and z, as compared to the long dimension x. The rightmost panel (e.) shows the total level
diagram. ’

In a similar way the case of a 2D system can be discussed. Assume 2 box with two
dimensions much larger than the third, e.g. L, Ly >>L,. Electrons will now be allowed to
occupy states characterised by the quantum. numbers {]ng,l} provided the electron
density is not too large. The system is said to be truly 2-dimensional, with only the {owest
2D subband being occupied. Increasing the density will, at a certain value, allow also
states like {/,.f,,2} to become filled, and so the second 2D subband becomes occupied.
So, a 2D system is obtained when the electrons are kept in a "sheet-shaped” box and with
an electron density such that only the lowest state in the third, smallest dimension is
occupied.
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If in either of the two preceding cases the electron density is increased such that not just
one but a few subbands become filled, the system is said to be guasi ID (or 2D). In the
limit that the electron density is so large that many subbands (in all directions) become
occupied the electron systems effectively becomes again 3-dimensional.

Before extending the notion of dimensionality beyond that associated with confinement
alone it is useful to point onto an important implicit assumption made in our preceding
discussion. For the very existence of k-vector quantisation in a certain direction (say x) it
is crucial that the electron wave is allowed to travel back and forth a number of times
along the length Ly, without losing its phase information appreciably. This implies that
the phase coherence length should be considerably larger than the size of the system, or
lo>>Ly. Note that this is an underlying (however cruciall) assumption which is nearly
never mentioned in textbook derivations on the electronic energy states in solids!

This influence of a different lengthscale in the problem is a good example to generalise
the concept of dimensionality. If a particular phenomenon is governed for instance by a
particular type of lengthscale, say the phase coherence length [, the ratio of this
parameter to the size of the system determines the dimensionality for that particular
phenomenon. So, if the system under consideration meets e.g. the condition Ly<<lq but
Ly, L,>>1y, than it is defined to be of a 2-dimensional nature for phenomena governed by
phase coherence. Note that if in this case Ly>>Ag, the system is completely 3D for effects
that depend on the confinement. :

Stated more generally, the dimensionality of a system can only be defined in relation to
the phenomenon under consideration.

1.3 Transport regimes and material tvpes

In the preceding section we have introduced the various length scales that govern electron
transport in solids. Employing these results allows us in this short section to define the
major regimes of electronic transport. In addition we will define the types of conducting
systems more precisely and show how these can be realised in actual materials.

1.3.a. Electronic transport regimes

Electronic transport can occur in four different regimes. These are determined primarily
by the lengthscales in the system (see section 1.2), i.e. the system size L, the elastic and
inelastic scattering (or phase coherence or phase breaking) lengths /. and /; (or l(p), and the
Fermi wavelength Ag. Just as a reminder we note that [, is governed by the typical
distance between impurities or other static lattice trregulatities, while 7; (and by the same
token [,) is determined by energy-exchanging type of interactions such as with other
electrons or with phonons, i.e. by non-stationary or time-varying interactions. The Fermi
wavelength is determined by the electron density (egs. 1.13&1.14) and is roughly given
by the average inter-electron distance (eg. 1.7).
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To define the different regimes we first have to discriminate between the quantum case
and the classical case. Evidently in the classical case we are "not interested” in any effect
arising due to the wave nature of the electrons, and so the Fermi wavelength Ag should be
small compared to all other lengthscales in the problem. In contrast, for the quantum case
the wave nature is a crucial ingredient, as this allows typical quantum effects like
interference to occur. This also implies that the phase of the electron wave should be
preserved sufficiently over the system, otherwise no "phase-memorisation” is possible.

A second way of discriminating different regimes can be set up along the lines of "how"
the electrons follow their paths. If they are scattered very often during their traversal of
the system they are called to behave diffusively: their paths are highly complex in space,
similar to the "random walk" visible in the well known Brownian motion of a particle in a
liquid (and, by the way, just as well demonstrated in the general behaviour in space of a
"drunken sailor/student/..."). If, on the other hand, the electron can traverse the system
without being scattered even once (i.e., it follows a straight line (in zero. magnetic field))
its motion resembles that of a bullet in free space, and it.is said to be ballistic.

Based on these arguments we can set up the following scheme.

| Classical Ag,l,l, << L
Diffusive - [

| Quanturn /’LF y le << L . li

| Classical A << L <1[,l,
Ballistic ------ |

I Quantum Ag,L < [, <
In the following chapters we will discuss some of the major phenomena occurring in
these different transport conditions or regimes.

b. Metals and 2D semiconductors

The second aspect we want to address in this section concerns the conditions we want to
put onto our conducting systems. From introductory solid state physics (see references
under [1]) we know that a conducting material like a metal or a semiconductor contains
electrons that are "frée" to move throughout the lattice. Their velocity (or kinetic energy)
is determined by two parameters: the electron density n, and the temperature.

Let us first concentrate on metals. In a metal each atom contributes at least one electron
that becomes free (i.e. without being trapped by one atomvion) to move throughout the
whole piece of material:-such-a free electrons is delocalised and its wavefunction is non-
zero "everywhere". The most characteristic feature of a metal is that the Fermi energy (i.e.
the highest energy an electron can have at zero temperature and at equilibrium) is located
inside one of its energy bands. For the simple metals this commonly means that
approximately only (the lower) half of this band is filled. As we know the availability of
empty, unoccupied states in the upper part of the band is a crucial feature for conduction
to take place. Examples of simple metals are Na and K, while the nobel metals like Cu,
Ag and Au are "close”. The most characteristic feature of these metals is that all the filled
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electron states are located inside a sphere in k-space, centred around k=0 and with a
radius given by the Fermi momentum vector kg. The spherical symmetry of the
momentum distribution allows very significant simplifications in many calculations.
Throughout this book we assume a single value for the Fermi wavevector and so we
implicity assume that our conductors are of the simple nature as defined here.

As mentioned, in a metal each atom contributes at least one electron to the free electron
"gas", and so the electron density n, is comparable to the density of atoms in the lattice
(~1029/m3), i.e. n, is large. Note that the Fermi wavelength, which is of the order of the
inter-electron distance (eq. (1.7)), thus will be smal!, amounting to Ap~2*10-10 or 0.2 nm.

Now let us turn to semiconductors. In a commeon intrinsic (=undoped) semiconductor,
such as Si or Ge, at zero temperature all electrons will be bound to the atoms, and so the
free electron density will be zero, implying the system will not show conduction. The
‘system is an insulator with all electrons rigidly tied into the valence band. If, at increasing
““témperature, the thermal energy kgT becomes comparable to or larger than the typical
“binding energy (or the energy gap between the valence band and the conduction band),
“electrons can be released and put into the conduction band, where they can contribute to
the conduction of the system. As many of the phenomena we are interested in require low
‘temperatures (e.g., in order to preserve the phase of the travelling electron), it is evident
that these simple semiconductors with zero electron density at zero temperature are not
well suited to our purpose and so more sophisticated "semiconductors” are needed.
The electronic properties of semiconductors strongly depend on the degree of doping.
Doping means the inctusion of a small concentration of appropriately selected foreign
atoms in the semiconductor. Provided the density of these "Fremdkoerper” atoms is not
too small they may release one electron even at zero temperature, generating a non-zero
free electron density. As the electron density now is determined by the density of doping
atorns, which is only a small fraction of the total number of atoms, the electron density
will be much smaller than for a metal (typically n, ~<1023/m3, i.e. a Fermi wavelength of
~ 10 nm). Note that also in this case the distribution of momenta in k-space will be
spherical, complying with our simplifying condition. So, the resulting clectron system
behaves as a metal, however with a small electron density.
1t should be noted that such a low-electron-density metals (which, for the sake of
simplicity and in line with the common use in the literature, we will continue to call
semiconductor!) have one highly attractive property, namely, they allow a full control of
the electron density. By mounting a metal plate in close proximity to the low-density
electron system (e.g. a 2D layer) and applying a voltage to this so-called gate, it
electrostatically affects the charge density. In particular a negative gate voltage pushes
electrons away from the vicinity of the gate electrode, in this way locally reducing the
electron density in the 2D semiconductor.system. This electrostatic controlling effect is
employed in semiconductor devices such as field effect transistors or FET's. These FET's
are the most important semiconductor devices used in chips (IC's) employed in PC's. It
should be noted that this can not (yet!) be done in a metal, because of the very high
electron density.

From the preceding section 1.3.a. it is clear that, in order to bring the structures into the
various regimes (classical<=> quantum; ballistice=>diffusive), these have to meet rather
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stringent requirements in terms of the ratio between length scales. From appendix A we
know that, employing modern electron beam lithographic techniques, structures can be
made with sizes L<~ 30 nm. Comparing this minimum feature size to the Fermi
wavelength of metals (a few tenths of nm) and of semiconductors (a few tens of nm) it
will be clear that semiconductor systems more readily will allow us to enter the quantum
regime than metals will do.

Here we want to introduce the most important semiconductor structure (at least for our
purpose), the 2-dimensional electron gas or 2DEG. Tt can be realised in various
semiconductor structures, but we will exclusively concentrate on so called
heterostructures. Semiconductor heterostructures are grown to include a number of
different (=> hetero)}-layers, which allows the use of two crucial ingredients: a thorough
confinement of the charge carriers in one direction (i.e. the growth direction) and the
spatial separation of the doping atoms from their "offspring-" electrons. If this growth is
- performed with great care the resulting crystalline structure is very clean and nearly free
of defects. Figure 1.13 shows the basic features of such a system, in this case built from
GaAs and GaAlAs as the two different types of materials for the layers. Figure 1.13a
shows the actual layer structure..Note that the doping atoms (+++) are inserted in the
GaAlAs layer above the GaAs layer, at a certain distance away from the interface between
the two. Figure 1.13b shows the energy band diagram of the structure. The most

Figure 1.13. A GaAs-GaAlAs
heterostructure containing a
2-dimensional electron gas of very
large elastic mean free path or
mobility; surface is left, inner part of
the structure is right.

a. depicts the grown structure with
the different layers, note the
AlGaAs-layer containing the n-type
dopants (darkest area) that deliver
the electrons forming the 2DEG at
the lower-AlGaAs-GaAs

(= rightmost) interface.

GaAs  AlGaAs

Val. Band

Q)
o
&>
1]
2

b. shows the energy diagram,
depicting the depth- (or z-)dependent
position in energy space of the edge
of the conduction band {CB) and the
valence band (VB); note the Fermi
Cond. Band energy Er in the system.

=
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noteworthy detail in the diagram is the step in the (conduction- and valence-) band-edges
occurring when changing from one material to the other, commonly called the band-edge
discontinuity. This step at the interface can be employed to strongly confine the electrons
in the growth- or z-direction. The (assumed) n-type doping atoms have released their
electrons, leaving them as positively charged ions (indicated by +'s in fig 1.13b); the
electrons assemble at the GaAs side of the lower interface. Note that the Fermi energy
settles itself such as to cut through the steep, triangularly shaped notch in the conduction
band edge, near the lower AlGaAs-GaAs interface. The electrons are free to move in the
two perpendicular x- and y-directions, thus forming the 2DEG.
As mentioned before the crystalline structure can be grown nearly free of defects. This
implies that electrons-meving (in 2D) along-the interface will experience virtually no
elastic scattering and so their elastic mean free path [, will be very large. Here the
additional trick employed in such heterostructures comes to work. It is found that , is
limited mostly by the ionised donor atoms that were left behind in the GaAlAs layer. As
"-t}_ge_donors are rather far away from the electrons (reason to call thern remote dopants) the
electrons only experience the weak potentials left from the unity-charged ions: they are
said to interact with the "Coulomb tail” of the charged impurity.
State-of-the-art grown layers may show elastic free paths for the 2D electrons up to
100mm or more. Note that this 1s ~ 3000 times as large as the typical Fermi wavelength
and the minimum feature size that can be fabricated. This evidently paves the way to use
such electron systems in a variety of ballistic and quantum experiments. In addition these
structures can be used as the starting system for further reduction of the dimensionality to
1D or 0D, as we will see in chapters 3 and 4.

General references to the subject

1. Introductory level textbook on Solid State Physics, e.g.

"Introduction to Solid State Physics”, 7th edition, C. Kittel (John Wiley & Sons, New
York, 1996), chapters 6, 7 and 8;

"Solid State Physics", H. Ibach and H. Liith (Springer-Verlag, Berlin, 1993), chapters 6,
8,9 and 12.

2. "Quantum Transport in Semiconductor Nanostructures” by C.W.J, Beenakker and H.
van Houten, in Solid State Physics, ed. H. Ehreareich & D. Turnbull, Vol 44 (Academic
Press Inc., Boston, 1991), sections 1-4

3. “Electronic Transport in Mesoscopic Systems”, S. Datta (Cambridge University Press,
Cambridge (UK), 1995)
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2. Diffusive electronic transport:
classical and quantum regime

Keywords: Drude model, Einstein relation, conductance quantum, classical size effects,
coherent backscattering, weak localisation, UCF

2.1 Introduction

At room temperature electrons travelling in a metallic solid conductor do so in a very
erratic way. In stead of traversing a-wire in a straight line,they in contrast only arrive at
the output side after experiencing many collisions or scatterings throuhout the wire. As
introduced in chapter 1 (section 3) the “straight line” regime is called ballistic, while the
“Intense scattering” case is denoted as the diffusive regime. In addition, we have to take
into account the role of the wave nature of the electrons. If the scatterings are such that
the phase is strongly destroyed over very short time intervals (or short distances) the
regime is called classical, while the opposite limit is the quantum diffusive regime. This
implies that, commonly speaking, the quantum regime will be accessible only in small
structures and at low temperatures.

This chapter describes the transport of electrons in solids in the diffusive regime. Despite
its familiarity a short review of the classical limit is useful. This provides a smoother
transition to the inclusion of quantum mechanical effects on the conductance. In addition
it allows us to clearly identify the differences in comparison to the second main class of
transport, i.e. the ballistic regime (see chapters 3 and 4).

From section 1.2 we know that diffusive transport is characterised by the requirement for
the electron to be scattered many times while traversing the system of size L. This implies
that in the diffusive regime we require the condition [<<L to hold for the mean free path.
To what extent quantum effects are of importance is governed by the inelastic length (or
the phase coherence length / , as we continue to loosely assume these two to be the same
(see subsection 1.2.a)) relative to the system size. As presented in chapter 1 the two
regimes (classical and quantum) are defined by comparing the various lengthscales in the
system:

, | Classical AF, L.l << L
Diffusive - |
| Quantum  A_, [ << L,

Section 2.2 contains the concise review of the classical diffusive case. Although some
aspects needed for our discussion can be found in common textbooks, the level is not
always appropriate for our approach. In particular the discussion concerning the diffusion
coefficient and the Einstein relation may be new for various readers. In addition it
discusses the effect of the size of the system on the transport properties, including the
properties of the walls/edges and the influence of an applied magnetic field. These
phenomena go under the name of classical size effects. The following section 2.3
concentrates on quantum effects in the diffusive regime. Although this is nearly
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exclusively limited to one effect, i.e. the so-called weak localisation, its importance for
mesoscopic phenomena is so large that it deserves this position. In particular, it allows the
introduction of a number of concepts, -such as the notion of transmission of (electron)
waves to evaluate the conductance and the effect of the magnetic field on the wave
properties of electrons-, which are of great use throughout the book as a whole. In
addition, connection will be made to its optical analogue, -weak localisation of photons-,
an effect also found in acoustic wave-fields.

2.2 Classical diffusive transport and classical size effects

In this section we will briefly reconsider the classical electron transport as described by
the Drude model. As discussed before the classical diffusive regime implies that the
relation between the various length scales in the system is defined as

Apa Ll << L
The main-aim is to introduce a few quantities used to characterise conduction such as the
mobility and the conductivity, and to encounter for the first time the "unit of
conductance" e2/h. In addition we will introduce the Einstein relation for the conductivity
which provides a neat and convenient bridge from the classical diffusive case to the
quantum case of the next section. Finally we will discuss what classical effects arise
when confining the electrons into a narrow channel, in particular concentrating on the
nature of the scattering (diffusive or specular) at the walls of the channel.

2.2.a. Diffusive transport: some fundamentals

Drude’s model, which was developed in the pre-quantum area at the beginning of the
20th century, is based on the assumption that the electron system can be described as an
ideal gas. A particle of the gas can move freely, only limited by occasional scattering
events (e.g. via mutual collisions and/or scattering onto local “disturbances™). This
scattering, characterised by the average time interval between scattering events or the
scattering time 7, is assumed to be of such a nature that the particle looses all information
about its former conditions, such as kinetic energy, velocity and direction. Now we have
to realise that in equilibrium the electrons from the ensemble move randomly, but
uniformly distributed over all directions, and so the mean velocity <V > of the whole
ensemble (taking into account all directions) evidently equals zero. If an electric field E
is applied, the electrons are accelerated by the resulting force —eE . The mean velocity
now depends linearly on time '

< v(z‘) >=—eEt |/ m , 2.1
with m denotmg the electron mass. As, on average, after a time 7 the electrons will

become scattered, the resulting average velocity of the ensemble (or drift velocity) is
given by

By =< V(1) >= —-:%E'r = —UE 2.2)

which defines the mobility of the electrons, y=et/m.
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For the conductivity of the system we find

j_ —en,<¥y> eznr

E E m (23)

with j denoting the current density. This is the famous Drude expression for the
conductivity.

Now we want to proceed one step further, adding some guantum building blocks to this
classical foundation. From chapter 1 we know that the electron density can be related to
the Fermi wavevector kg, the precise relation being determined by the dimenéionality of
the electron system (see eq. 1.16a). In addition we know that only those electrons with
energies close to the Fermi energy can contribute to the current, which is a consequence
of the requirement to have unoccupied states available 1mmed1ately above the equilibrivm
energy of the particles, as resulting from Pauli's exclusion principle; below we will return
to this aspect. This allows us to relate the scattering time and the mean free path in a very
simple way.

Considering the 2D case we simply can write

_ 85 k2

2.4a
¢ ax (2.42)
with g, denoting the spin degeneracy factor (g,=2). For the mean free path we know
I=vpr=TNE ¢ (2:4b)
m
Combining egs. (2.3) and (2.4) we find
eklZeZmT 2e% 1 '
Oop =8 = = —— —— 2.5
=8 B Az .k d,, 23)

with the last approximate equality derived from eq. (1.7).

Here we encounter for the first time the famous "natural unit of conductance” e2th, a
quantity which we will come across very often in the following chapters and which we
will find of central importance in the description of the conduction in solids.

Considering eq. (2.5) somewhat closer, it relates the conductivity (in 2D) to the ratio of
the free travel length and the inter-electron distance (or the Fermi wavelength). Intuitively
one will feel that, if an electron is so heavily scattered that it is not capable to run freely
for at least one wavelength, this will strongly affect the nature of the conductance. Putting
it a little further, such strong scattering may effectively lead to the inhibition of the
movement of the electron, i.e. the system will tend towards becoming some type of
insulator. If, on the contrary, the free path is considerably larger than the Fermi
wavelength, the system behaves as a regular metal.

So we may (indeed reluctantly, as far as the handwaving arguments given above, but this
can be argued in a much stronger way!) conclude that the unit of conductance
approximately separates two fundamentally different conduction regimes defining the
boundary for such a metal-insulator transition in a solid.

In the discussion just preceding eq. (2.4) we mentioned the essential role of free states
with energies immediately above (and below) the Fermi energy Ex. This can be made
clearer by rewriting eq. (2.5) in such a way that the availability of states, quantified by the

19



density-of-states or DOS at the Fermi energy, p(Ex), is directly visible. The resulting
expression can be generalised to all dimensions and is called the Einstein relation.
Equation (2.5) was obtained for the 2D case, in particular via eq. (2.4a) for the Fermi
wavevector. From chapter 1 (eq. 1.16¢) we know that the DOS for the 2D case per unit
area is given by

g5 |
papl£)= (2.6)
27h?
This allows us to rewrite expression {2.5) as follows
2
gse” 1 9 & mhkp 3 g
= —kpl=e"——(—=—)] = g° —— 2.7
92p hoo2lF ¢ 27h (.h 2m )‘ ¢ k2 VF l /2 (2.7)
or :
oap =€*papDap (2.7b)

‘The quantity Dop=vgl/2 is called the 2D diffusion coefficient. Expression (2.7b) which we
“derived for the two-dimensional case, can be shown to hold in all dimensions and so it
can be generally written as

G=e’p(Ep)D | (2.8)
which is the well known Einstein relation for the conductivity. 1t formally expresses the
role of the DOS at the Fermi energy for the conductivity. In particular it demonstrates that

a non-zero conductivity requires the density-of-states at the Fermi energy to be non-zero
as well.

The diffusion coefficient D depends on the dimensionality d (=1, 2 or 3), following
Dyp = dlv pl= é—v%’r (2.9)

It expresses in which way scattering affects the average velocity of the particle in time.

More precisely, it quantifies to what extent scattering maintains a relation between the

velocity of an individual particle before and after the scattering event, i.e. it formally

defines the (degree of) velocity-velocity correlation. This is what is clearly seen in the

expression for D due to Kubo

D= [<F,(1)7(0)>dt (2.10)
0

Here <...> denotes the average over all possible directions in velocity- or k-space which
the initial velocity w(0) can take; the subscript x denotes the direction of the applied E-
field. Via this spatial integration/averaging the dimensionality d enters into eq. (2.9).
Although we will not derive the Kubo expression (2.10), as an example we evaluate the
diffusion coefficient from it for the1D case (d=1), assuming the Drude condition, i.e.
complete loss of memory after each scattering event. Assuming an avarge scattering time
interval 71t implies that for /<7 the inner product of the two vectors v,(f) and v, (0) will be
simply (v,(0))2. For times >7the product will become random, both as far as the time
integral as well as the k-space averaging is concerned, i.e. the total summed contribution
will be zero. As in 1D the velocity only has two possible directions (+x and -x: the k-
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space is restricted to a line!) this yields (v,(0))2=vp?, i.e. from eq. (2.10) we find
Dyp=vE21, which is in agreement with eq. (2.9).

Problem: during the time 7 the velocity changes due to the applied electric field. Argue
that in general the effect of this acceleration will be negligible in evaluating the diffusion
coefficient. Quantify the conditions for this to hold.

From the Kubo expression {2.10) it is evident that if scattering does not destroy the
correlation between the initial and final state of the electron, this will affect the value of
the diffusion coefficient and so the conductance via the Einstein expression. In the
following section 2.3 we will see that quantum coherence leads to such deviations from
the simple expression (2.9).

In order to gain a more general understanding of the diffusive motion of an electron let us
see how, in a purely classical approximation, the position of such a-particle subject to
random scattering events evolves in time. Figure 2.1a shows how such a particle will
behave in space and time. Schematically figure 2.1a illustrates how a densely peaked
distribution with all particles at r=0 at =0 evolves in time, with the distribution becoming
increasingly broader at later times (¢, and 7,).
The equation governing the classical diffusion of particles is simply given as

on(7,t)

ot

Limiting ourselves for simplicity to the 2D case the solution (obtained by introducing

= DV2u(7,0) (2.11)

+=0
=0 ®
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t=t2
t=t2
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Figure 2.1. The diffusive motion of a classical particle in space in dependence of time. a.
shows in real space how a densely peaked distribution of particles at r=0 at t=0 becomes
increasingly diluted in time (t; and ty>1;). b. shows the Gaussian shape of the probability
density n(r,t) to find a particle at position r at time t.



cylindrical coordinates) for the distribution is

2
ny r
exp{—=~-— 2.12
470t P Iy 12
Note that this expression will be different for the case of other dimensionalities (1D or
3D). From eq. (2.12) we also can calculate the mean distance the ensemble of particles
diffuses away, from the origin at a given time #. After some mathematics one finds

nyp(F, 0=

[I7in(F, )d7 _ I

() =dr(t)l>= fn(?,r)d?

(2.13)

This implies that, in the diffusive regime, the average displacement follows a square root
behaviour versus time.

Expression (2.13) allows the straightforward evaluation of the phase-coherence length
-and the inelastic length in the diffusive regime in terms of their associated times 7, and 7
réspectively

lpi =D, (2.14)

- This relations will be employed at various occasions in the following sections and
chapters.

2.2.b. Classical size effects

In the discussion of the various length scales in chapter 1 we have seen that the
boundaries of the system may have an effect on the transport properties, as they act as
elastic scatterers. We now want to investigate this a little more systematically. The effects
resulting from the influence of the boundary go under the name classical size effects. The
wall or boundary of the system will reflect electrons impinging on it from the interior or
bulk of the system. This reflection can be of two types (figure 2.2). Either the incoming
electrons are scattered and reflected randomly in all directions in (half-)space, yielding an
isotropic distribution of the outgoing particle flux in the ideal case (see fig 2.2a). In the

a. b.
Figure 2.2. Electron reflection at the wall or boundary of the sample. a shows diffusive
reflection with the incoming electrons being reflected isotropically in all directions; b the
incoming electrons are specularly reflected, with the wall acting as a flat mirror



other limit the particles are specularly reflected at the wall, with the boundary in this way
acting as a perfect mirror (figure 2.2b). Note that specular reflection implies that the
momentum of the particle is conserved along the wall, while it is reversed perpendicular
to it (in this way conserving energy, as required for an elastic process!).

What conditions has the wall to meet to provide specular reflection? Realising that our
classical particles also have a wave nature, we can argue simply in analogy to the optical
equivalent. This implies that whenever the wall is “wavy” on a length scale Ap the
electron wave diffracts and will become dispersed over different directions. This quantum
mechanical probability distribution over angle has the classical equivalent that the
electrons become distributed over a range of reflection angles and so specularity is

- affected. For metals, with Ag ~ 0.2 nm, this implies-that the wall has to be atomically flat,
a very severe condition for any structure that can be made artificially (see Appendix A).
In practice this means that specular reflection at a metal surface nearly never occurs. In
contrast for semiconductors the typical Fermi wavelength is 10-50 nm. This is in reach of
present day nano-fabrication techniques, and we will see that specular reflection indeed is
found.

We now discuss the influence of wall scattering, including the role of an applied magnetic
field. We can distinguish four cases, i.e. specular and diffusive scattering at zero and non-
zero magnetic field.

I. Zero magnetic field, B=0

a. Specular wall reflection

Figure 2.3a shows the effect of the wall for this case. Because of the mirror-like
behaviour of the wall the momentum of a particle hitting the wall will be affected in a
fully predictable way. The longitudinal component (along the x-direction of the wall) Dy
will be conserved, or py j,=px oup While for the perpendicular component we immediately
find py in=-Py our- As we are interested in the current flow in the x-direction along the wall
this implies that with the average momentum <p,> also the average velocity <vy> IS

Figure 2.3. The effect of specular (a.) and diffusive (b.) reflection at the wall on the
transport of electrons.



conserved. So, from the Drude expression eq. (2.3) we immediate conclude that the
conductivity is not affected by specular reflection at the boundary of the system.

b. Diffusive wall reflection.

In this case a particle incident on the wall may become scattered randomly in all
directions (figure 2.3b). This implies that the wall effectively acts as "just another
scatterer” being added to the system. In order to evaluate its effect more guantitatively we
introduce a second wall, in parallel to the first at a distance W, thus forming a channel
(note that for simplicity we limit the discussion to a 2D system). The two walls that act as
diffusive scatterers effectively lead to an increase in the density of scatterers. This results
in a reduction of the mean free path approximately given as

—1—-~-_=1+i (2.15a)

g I W ,
yielding an effective scattering time Tog=I /v, and the (Drude) conductivity becomes
approximately

my mvg I+W [+W
pW )= L= = ()= po( ——) (2.15b)
enly el W |14

where p denotes the infinite-size or bulk Drude conductivity. A more accurate
expression can be found in ref. 2. Two limits can be distinguished. If the width is much
smaller than the mean free path eq. (2.15b) yields

p(wW )~ pO% (W<<l) (2.16a)

For the 2D case the more accurate calculations shows that a (relatively weak) logarithmic
dependence needs to be added by multiplying eq. (2.16a) by 1/In(l/W).
In the opposite limit l<<W eq. (2.15b) yields a weak dependence on the width following

(W)~ po(1+%) (l<<W) (2.16b)

From the preceding discussion we can conclude that the nature of the reflection at the
wall can be derived from a systematic experimental study of the width-dependence of the

resistivity p(W).

II. Non-zero magnetic field (low field regime): magneto transport.

In chapter 1 we have seen how a magnetic field affects the motion of an electron due to
the Lorentz force acting via the velocity and the charge of the particle. In the plane
perpendicular to the B-field the resulting motion is circular with a radius given by eq.
(1.8¢) as R_=mvy/eB the cyclotronradius. The-question-is-hew this new lengthscale will
affect the transport in case the size of the system is reduced by the introduction of walls.

a. Specular wall reflection

In the preceding case of zero magnetic field we arrived at the conclusion that the
longitudinal transport was not affected by the wall in case of ideal specular reflection.
The basic argument leading to this conclusion was that the longitudinal component of the
momentum is not affected by the mirror-like scattering. The same argument continues to
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Figure 2.4. Electrons moving in a magnetic field in a 2D channel and between two
specularly reflecting walls W; and Ws. The magnetic field is taken perpendicular to the
plane of the picture. The "central” trajectory T; is the normal bulk cycloidal path formed
by the sum of the electric field induced longitudinal velocity v. and the cyclotron motion
due to the magnetic field. The two trajectories T at wall W; and T; at W, are each others
complement as far as wall scattering is concerned; note that these paths tends to follow
the wall in a peculiar sequence of bounces and circle segments, called skipping orbits.

hold for the non-zero B-field case, although this is not as self-evident as it may seem at
first sight. In order to appreciate this one should note that the Lorentz force, leading to the
formation of cylotron orbits (see egs. 1.8), induces a coupling of the two (orthogonal)
components of the velocity in the plane perpendicular to the magnetic field, a coupling
which is absent at zero {ield. So a change of the component perpendicular to the wall is
accompanied by a modification of the longitudinal component as well. We will find,
however, that the combined influence of the two wall leads to a zero net effect.

Figure 2.4 shows schematically what happens. Let us assume that the field is such that the
distance W between the walls is larger than the cyclotron diameter. Any path that keeps
the central or bulk part of the channel, e.g. trajectory T, in figure 2.4, will not feel the
wall. Thus, with its transport properties not being affected, the current carried by the
centre part is also not affected.

Now consider an orbit that may hit the wall, such as T, in figure 2.4. Because of the
specular reflection (at wall W) the resulting orbit forms a sequence of identical circle
segments, skirting along the wall. This type of orbit is called skipping orbit. The centre of
the circularly shaped orbit travels with a (average) velocity vq determined by the Fermi
velocity and the distance of the centre from the wall. In particular orbit T, has a velocity
component that increases the mean velocity of the electron, thus leading to an increase of
the transported current along this wall. We will return to these peculiar edge trajectories
in even greater detail when discussing quantum ballistic effects in chapter 4. The
sequence of "hits and segments" continues until a bulk scattering event breaks the
translation symmetry, and depending on the details of the event, either a new skipping



orbit or a bulk orbit (of the type T;) will result. It is important to note that, whatever the
particular shape of a skipping orbit along edge W may be, one always can define a
complementary skipping orbit at opposite edge W5, and in figure 2.4 the complement to
trajectory T is indicated by T3. Note that the mean velocity of the centre of orbit T; at
wall W, is opposite to that of a trajectory at wall Wy!

Now what is the effect of these complementary trajectories on the fotal or net transport in
the x-direction along the channel? From the symmetry of the system it is straightforward
to see that the local increase of the current via orbits along wall W is exactly cancelled
by the local decrease along wall W.

In this discussion we assumed that the bulk did not contain (elastic) scatterers. It is not
difficult to see that adding such scatterers-does not affect the line of reasoning. So the
cancellation of the two contributions at the edges continues to hold, irrespective of the
‘addition of scatterers. _

From this discussion two important conclusions can be drawn for this case of specular
edge reflection. First, the two facing walls defining the channel each contribute an equal
-but opposite additional contribution to the current. This implies that no effect results for
.ithe net total current that flows through the channel, i.e. the magneto transport of a
-narrow system is not affected by specular reflection at the walls. However we may
proceed one step further. The locally enhanced current at one wall which is compensated
by an exactly as large reduced current at the facing wall, can be described as if, in
addition to the net current I flowing through the sample, a circulating current is set up
along the whole periphery of the sample. Note that this peculiar current certainly is
affected by scattering events but it is not suppressed to zero!

It will not be difficult to see that this circulating current will continue to flow even if the
net current is put to zero. So, the circulating edge current is only controlled by the
strength of the magnetic field (and, to some extent by scattering), and it is stationary and
time-independent, implying it to be dissipation free. The persistent nature of the current
makes it a thermodynamic equilibrium property of the system as a whole. This persistent
current has various similarities to the supercurrent flowing in a superconductor. We
return to persistent currents in mesoscopic normal (i.e., non-superconducting) conductors
in chapter 5.

Problem: in order for a persistent current of the type discussed above to develop, are
there conditions for the inelastic scattering length that have to be fulfilled?

b. Diffusive wall reflection

The effect of the elastic scattering at the walls of the (2D) sample is depicted in figure
2.5. To demonstrate the effects most clearly we_assume that the width W of the sample is
comparable to the elastic scattering length /.; other (limiting) cases can be deduced
straightforwardly. Figure 2.5 shows three characteristic paths, taken at different values of
the magnetic field B. Trajectory Ty, taken at zero field, demonstrates the effective
decrease of the elastic mean free path as discussed before (see 1b), quantified by eq.
(2.15). Increasing the field will reduce the cyclotron radius R, following eq. (1.8¢). To
demonsirate its consequences for electron transport two characteristic cases are shown.
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Figure 2.5. Electrons moving in.a magnetic field and between two diffusively scattering
walls W and Wa, * indicate scatterers. For clarity the channel width W is taken
comparable to the elastic scattering length. The magneiic field is taken perpendicular to
the plane of the picture. Trajectory Ty is at zero magnetic field. The other two trajectories
are for B-field values such that the associated cyclotron radii meet the conditions R .~W
(T2) and R.<<W (T3) respectively..

T, results for a field B, such that R (B,)~W while T results for the case that the field B,
is considerably larger, i.e. R (B;)<<W. At B, there is an increased probability for the
electron to hit the walls. The increased elastic scattering at the walls yields a reduction of
the effective mean free path and so the conductance will be reduced as well. Increasing
the field to B3 reduces the cyclotron diameter to well below the channel width. This will
imply that the majority of the orbits will not experience the walls any more while
traversing the length of the sample. This implies that for such (large) fields the character
of the reflection at the walls becomes unimportant. We thus no longer can discriminate
between specular and diffusive scattering and just the bulk properties of the channel
determine the conductance, '

p
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Figure 2.6. Classical magnetic field dependence of the longitudinal resistance of a
channel demonstrating the effect of the nature of the wall scattering. The top curve shows
the behaviour for diffusive scattering at the walls, with the characteristic bump occurring
at a B-field such that the cyclotron radius matches the width of the channel; the bottom
curve shows the flat, field-independent behaviour in case of fully specular reflection at
the walls.
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This is shown in figure 2.6. The topmost curve sketches the B-dependence of the
resistance for diffusive wall scattering, clearly showing the initial rise of the resistance
due to orbits of the type T, (see figure 2.5) with its peak at a field B.~B,. More accurate
calculations show that the peak actually occurs at such magnetic field that W=0.5R. (see
ref, 1 at the end of this chapter). This is followed by a decrease due to the reduction of the
fraction of orbits experiencing the walls, with the resistance approaching the bulk value.
Note that the resistance for ideal specular reflection (lower curve of figure 2.6) is
independent of the field, as discussed in L.a and ILa.

Now we are in the position to see if the theoretical predictions made above are confirmed
by experiments. Figure 2.7-shows results obtained by Thornton-et.al.(Phys. Rev. Lett. 63,
2128 (1989)) in a 2DEG in a GaAs/AlGaAs heterostructure (see chapter 1). Samples of
different widths W between 0.13 and 1.15um are investigated. To ensure diffusive
scattering at the walls the structures are defined by ion implantation, a method which
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deliberately induces local damage and depletion in the 2DEG, leading to rough walls. In
the field range between 0 and 1T we very nicely find the characteristic behaviour
sketched in figure 2.6, and a quantitative analyses shows also excellent agreement as far
as the position of the peak of the resistance at R (By)=W.

Problem: check this agreement by taking the electron density from the paper of Thornton
et.al.

Problem: imagine the channel would be made of a metal, with a Fermi energy of [ eV.
Estimate the magnetic field required to fulfil the condition for the peak in the resistance.

With this example we close this section on classical diffusive transport, including some
classical size effects induced by confining the electrons into a narrow channel. In the next
section we will see what effects may arise once we allow quantum interference to affect
glectron transport.
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2.3 Quantum diffusive transport: weak localisation

In the preceding section 2.2 we discussed classical diffusive transport, i.e. in the limit
where the phase coherence length l(p (which we, as usual, loosely "mix" with the inelastic
length [}y is very much smaller than the size of the system. In this section we will discuss
the opposite limit, defined by
/’L]_: s le << L s li,q’)

In chapter 1 we discussed the fundamentally different nature of inelastic (or phase
breaking) and elastic (non-phase breaking) scattering. The preservation of the phase as
occurring in elastic scattering will maintain quantum interference, which will be shown to
lead to marked effects in the conductancein this regimerEvidently to experimentally
enter this regime we should bring the system at low temperatures to suppress phase-

breaking influences like phonons.
" The phenomenon we will concentrate on goes under the name of weak localisation (WL).
Basically it resuits from the (quantum induced) enhanced probability for electrons
experiencing many elastic scatterings to return to their initial position. This leads to a
tendency for electrons to "stay where they are"”, 1.c. some kind of electron localisation,
resulting in a reduction of the conductance of the system.

2.3.a. A simple introduction to the theory of quantum corrections to the conductance:
Weak Localisation effect

In deriving the Drude expresston for the conductivity, eq. (2.3), a fundamental
assumption i that each scattering event fully destroys all information on the initial
velocity (size and direction) of the particle. In quantum terms this also implies that the
phase correlation is completely suppressed during such event. If however, in contrast, the
phase of the electron is (partially) preserved during scattering, this will affect the
diffusion coefficient and so the conductance employing the Einstein relation eq. (2.8).
From this equation, which contains the diffusion coefficient D given by the Kubo
expression (2.10), it is immediately clear that conservation of the phase will introduce a
correlation between the velocities for times beyond the elastic scattering time 7, and up
to the phase-coherence time T

A fundamentally correct derivation of weak localisation requires a rather involved
mathematical approach based on so-called diagrammatic techniques, which is well
beyond the scope of our introductory text. We will use an approach employing "ray or
geometric optics”, augmented by the phase per raytrace, called the Feynman path method.
Figure 2.8 shows the basic ingredients of this approach. The transport of an electron from
an initial position 1 to a final position 2 is described as the transmission of an electron
wave from 1 to 2 through the diffusive medium, This implies that the electron wave,
starting at position 1, will become distributed over a number of partial waves y, each
traversing the system along a different path p; while experiencing many elastic scattering
events before ultimately arriving at 2.

It should be noted that, to allow the use of the semi-classical Feynman paths to evaluate
the total transmission probability, we implicitly assume that the electron really can follow
a well-defined path, i.e. it should not be scattered too strongly on its characteristic length
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Figure 2.8. Electron waves travelling through a disordered medium containing elastic
scatterers. The wave of a single electron at position O is distributed over a number of
partial waves ¥, each following a well-defined path vy arriving at position R with a
[Iransmission coefficient t;. Note that the phase @; on arriving at position R depends on
the path length thus differing for each individual path.

“scale, Ap. As discussed immediately following eq. (2.5), violating this condition will lead
to strong localisation, a phenomenen requiring a completely different description. To
calculate the total quantum mechanical probability for the electron to travel from O=>R
we have to evaluate the vector sum of all the partial waves arriving at R, i.e. including the
phases @; of all the partial waves as acquired while following their individual paths.
Figure 2.9 shows a scattering medium with a number of scatterers *, denoted by 0,1,2,3,
... The electron wave is taken to start at position 0. We can distinguish between two
different sets or ensembles of paths. The first set just connects two random pesitions, €.g.
0 and 7. Paths like {0,1,7}, {0,4,2,7}, {0.5,4,3,2,7} etc. all contribute to the total
amplitude of the wave at 7, which then is given by

W(7) =Sy, = Xt;exp(ig;) (2.17)
i J :

Note that such a sum also contains contributions from multiple scattering, e.g. a path such

as {0,4,2,4,2,7} is included, and so evaluating it will be a matter of tedious and accurate

bookkeeping!

Figure 2.9. An electron

wave starting at position 0,

with its partial waves
L travelling along various paths.
9" “The solid lines show paths
' leading from O to (a randomly
chosen final) position 7. The
dashed sequence of lines
forms a path that allows the
electron to return to its
starting position 0.




Formally, from eq. (2.17) we straightforwardly can write down the total probability for
the wave at (say} position 7, as

PSP =315+ 3 151 cos(e; — o) (2.18)
J =k
Now we assume that many different paths contribute to the total amplitude. In the second
term of eq. (2.18), containing the cross-product terms, the random distribution of the
phases ¢; for all the paths p; yields on average as many positive and negative
contributions, thus reducing its sum to a small value. So, the total probability for forward
transfer between two randomly chosen positions (0 and 7 in our case) approximately is
just the sum of the probabilities of the individual partial waves.

Phurd = X 17 : (2.19)
J

- Next we pose the question what happens if we take the initial and final position in space
to be the same. This implies that we want to know what probability is associated with
refurning to the initial point. In figure 2.9 paths like e.g. {0,1,7,6,0} and {0,5,4,0} are
typical examples, taken for the starting position 0. Let us look in a little more detail to the
various trajectories involved in the total return probability. Concentrating first on

-randomly chosen different paths, it is evident that the same argument holds concerning
the phases as given before for the different points in space and thus the total probability
resulting from these trajectories is again the simple sum of the partial probabilities (eq.
(2.19).
However, in addition to these randomly chosen paths we also have to include a particular
type of complementary trajectories. More specifically a typical example in figure 2.9 is :
{0,1,2,3,45,0} and {0,5,4,3,2,1,0}, i.e. the first is the time-reversed version of the second
{and vice-versa). These time-reversed twins of course are not independent. In particular
the identical length of the two paths implies that the phase-differences acquired during
travel will be exactly the same. In addition the symmetry of elastic scattering events
dictates that also the amplitude of the two partial waves will be the same.
Write jj. for the amplitude of the wave along path p; taken in one particular direction (say,
clockwise), and . for the arriving amplitude after traversing the path in the opposite,
counter-clockwise direction. For the total contribution of this path to the return
probability we thus find

Pi(0—>0) =15, +15_ 4.2, co8(Q; ~ @+ 1.t ;, cos(@; — p;) =43 (2.208)

as tj;= §;= I from the symmetry argument. For the results after summing the contributions
of all paths we thus find

Pt = PO 0)=Z Pj(0—>0) =415 (2.20b)
i J

One factor of 2 results from the fact that we simply have summed over two trajectories

per entry j: for each path denoted by a single j also the complement was taken in the sum.

However then we are still left with a second factor of 2. This factor is the direct

consequence of the coherent, in-phase addition of time-reversed paths.
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So we conclude that the phase-coherent summation of time-reversed trajectories in a
diffusive medium leads to an increased probability for electrons to return to their initial
position. This is commonly referred to as coherent back scattering. It implies that
electrons indeed tend to remain at their initial site, an effect which leads to a reduction of
the conductance (and an increase of the resistance) of the system, denoted as Weak
Localisation (WL).

Before providing a more quantitative estimation of the strength of weak localisation in
the conductance we first want to demonstrate a quite remarkable effect associated with
the directions of the electron waves involved in this quantum coherent retura
phenomenon.-Figure 2.10 shows twe specific scatterers-1 and 2, with a plane electron
wave incident on the two from the left. The wave, with the incoming plane wave front at
A indicated by the dashed line, is (partially) scattered directly at each scatterer and
returned, but in addition it is (partially) scattered to the other scatterer at a distance Aryg,
followed by returning to the left. To calculate the total leftwards outgoing wave we have
to.(coherently) sum the individual contributions, including the phases, and see what
.eondition is required to recover a plane wave front at B and C, denoted by the dashed
Jines. Now consider the two parallel rays R1 (top) and R2 (bottom} of the incoming beam.
R1 is scattered from 2 to 1 and we assume it to leave 1 at an angle d relative to the
incoming direction. The lower ray R2 follows the path 1 to 2 (i.c. reverse as compared to
R1) and we look at the ray leaving 2 at the same angle 8. Note that the figure also shows
the rays leaving at the complementary angle -9.

The difference in pathlength, 4l;,(0), between the two rays that leave 2 and 1
immediately follows from the geometry, yielding

Al (8 )=a—a'= Ars{cos(8 }—cos( &' )) (2.212)

with 6 =6+85 (and 6"-6 for the complement) is the angle between Ary, and the direction

Figure 2.10. Coherent back-scattering of a plane electron wave at A incident on two
elastic scatterers 1 and 2. At B a wave front leaving the scatterers at an angle —0 relative
10 the incoming beam is shown; similarly a wave front leaving at +8 is indicated at C.



of the incoming wave (see figure 2.10). Assumning & to be small (see below) we find for
the associated difference in phase

+
Agyy(£8)=2n 202(F0) _py Anp
F Ap

{—%82 cos(6)E8sin(8)) (2.21b)

For the total outgoing wave we have to sum the + and - terms and so the contributions
due to the sin(8) term cancel, so we only have to consider the cosine term. The
contributions of the two rays only add constructively if they differ in phase by no more
than ~/2. As the alignment of the two scatterers is completely randem, we now have to
average over all possible directions of Ary, relative to the incoming beam, i.e. with the
angle 8 covering the range -/2<6<n/2. This yields-forthe average over angle

<Ay cos(8)>=Any /2=1,/2 (2.22)

the last equality resulting from the fact that we take the two scatterers 4t their minimum
average separation 4ry, ~I,. Combining eq. (2.22) with eq. (2.21b) and including the
limit <A@;,> <7/2 we find the following maximum angle &, for the reflected outgoing
wave relative to the incoming wave

Sma = JAF /L, (2.23)

As discussed previously we limit ourselves to the case that the electron can travel freely
at least over a number of wavelengths or Ag<<l,, which implies that §,,, << 1. So we

have to conclude that the reflected wave only has an appreciable intensity within a (2D or

3D) cone with a (small) top-angle 28, relative to the direction of the incoming beam.
This underlines that indeed the wave is truly back-reflected in a coherent way.

Now we are in the position to calculate quantitatively the effect of weak localisation on
the conductance of the system. For the sake of simplicity we will limit the discussion to
the 2D case. We employ the celebrated Einstein relation, eq. (2.8), for the conductivity
and see how the coherent backreflection reduces the diffusion coefficient by an amount
AD.

Using the Kubo expression (2.10) for D as the velocity-velocity correlation,

D= [<(1)5,(0)>ds
; g
we evaluate the correction resulting from the increased correlation due to the coherent
backscattering, with v, (Dl~lv (0)l-ve. The (negative) contribution to £ thus can be
written as

AD=—<vpvp *51%3.)(* B (AS(F = 6)) > direction (2.24)

with <....>g;ection denoting the averaging over all (2D) directions of the incoming beam,
as usual for the calculation of the diffusion coefficient. It leads to the 1/d-factor, with d
denoting the dimensionality of the problem (see also eq. (2.9)). The maximum angle Jnax
is included squared as we are calculating the return probability. From our semi-classical
ray-optics picture Py, m(AS(r=0)) is the {classical) probability for the particle, starting at
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a certain position r=0, to return to within an area of size AS around this initial position,
and within a time scale that 1s relevant for the problem at hand; note that this "origin" can
be taken completely arbitrarily. This probability integrated over all times can thus be
written

Proryrn (AS(F = 0)) = AS* C,ppyyrm = ASIC(O t)dt = AS — j n(0,n)de  (2.25)
"0
with n(0,f) given by expression (2.12), i.e. representmg the probabthty to return to the
initial position at a certain time ¢. From (2.12} we immediate find for the 2D case

v
nzp(o t)—H0C2D(O I)-—-m 7 - : (2.26)
Before proceeding by evaluating the integral of (2.23) we have to include two more terms
to it, based on the refevant time scales in the problem. First, we have to realise that
-electrons traveling for times shorter than the elastic scattering time 7,=[./vg will not be
able to return what so ever, and so they will not contribute to the backscattering. This
=.m_ight be accounted for by changing the lower limit to the integral from 0 to 7, but to
allow for the statistical nature of this aspects it is covered by multiplying C(0.f) by the
factor (1-exp(-#/7,)). Secondly, there is also an upper bound to the integral: by the time
the wave loses its phase coherence it no longer can contribute to coherent backscattering
and so we should limit the integral to times smaller than the phase breaking time 7,
Again by accounting for the statistical nature it is incorporated by multiplying by the
factor exp(-#/Ty).
The last term to be defined in eq..(2.25) is the return area AS. From the discussion around
the figures 2.9 and 2.10 it is clear that we can not define "a return” any better than given
by the average distance between elastic scatterers Ary, ~I., and so we immediately find
(in 2D) for the typical return area AS ~/,2.
Introducing the three factors into eq. (2.25) and including also eq. (2.26} we find

VF 5max '
ADs py = — £ L HEEN —oxp(—— 1 —exp(—— ))dt 2.27
2p == jt P %)( ol e)) (227)
The time-integral yields In(1+7,/7,), which equals ~In(7,/7,) if the phase breaking time is
much larger than the elastic time.

Thus the final expressmn for the weak localisation correction to the conductance reads

126

AUZD—B pzDAD2D~_Z—7ETl (-;—) (2.28)
[4

It demonstrates two important properties. First, its size is of the order of the conductance
quantum e2/h. Secondly it is only weakly dependent on the ratio of the phase breaking
length and the elastic length, once this ratio is >>1.

Equation (2.28) is for the 2D case; similar expressions can be obtained for the 1D and 3D
case. One finds that the effect strongly increases at a reduction of the dimensionality, i.e.
it is largest in 1D,

It is also noteworthy to see that the dimensionality for weak localisation is governed by
the phase breaking length [, in comparison to the size of the system.
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Before proceeding to discuss some experimental results that demonstrate this quantum
interference effect in the diffusive regime we first have to consider how one would be
able to determine it: if the WL only reduces the conductivity by a small fraction we need
a way to distinguish between the classical conductance (eq. (2.7a)) and the correction due
to WL (eq. (2.28)). To this purpose we consider the effect of an applied magnetic field on
the WL effect, and we will find that for sufficiently large fields the correction Ay o from
eq. (2.28) becomes suppressed. This allows us to distinguish between the classical and the
WL contribution.

Applying a magnetic field to an electron travelling at a velocity vg results in two effects:

= Classically it will bend the path of the electron due to the Lorentz force, leading to the
formation of the circular cyclotron orbits; we have discussed this in chapter 1, egs. (1.8).
The important question we have to pose is how this curvature affects the WL correction,
i.c. what effect does it have on a trajectory and its time-reversed complement (see again
figure 2.9). Evidently the field-induced curvature affects the precise shape of the
trajectories. In particular, the two time-reversed trajectories will become increasingly
dissimilar for increasing field strength. However, at the small fields required to affect the
WL (see below) the effect due to the curvature turns out to be negligible.

= Quantum mechanically the magnetic field affects the canonical momentum p via the

vector potential A defined by the magnetic field as B = VAA.From introductory
gquantum mechanics we know that for a charge g=-¢

P=hk =mV+qA=mv —~cA (2.29)
which implies that the wavevector k becomes B-dependent. The electron travelling at the
Fermi energy from position 1 to 2 along a path defined by ! acquires a phase

2 2 2
Apy_yy = [k-di = zx%ja}; -df—Zn%_[ Adl =A@y + A0y  (230)

1 1 1
Note that the phase acquired following the trajectory is affected by the magnetic field via
the second term of eq. (2.30), 1.e. via the vector potential. We will return to this aspect in
more detail in chapter 5.
Now let us concentrate on a typical WL trajectory, i.e. a time-reversed pair that
(approximately) returns to ifs initial position after a number of elastic scatterings (figure
2.11). The resulting closed trajectory implies that in the expression (2.30) for the phase
the integral should be interpreted as a loop integral enclosing the area S. For the phase
this yields

: er— - ey e
A =kpL-2n—0A-dl =kgL-27—-4pB-dS =kpL-2n—@ 2.31
1=2@ = KF }j F hﬁ) F . (2.31)

with @ denoting the flux B.S penetrating the area enélose by the closed trajectory. The

quantity #/e is called the (single charge) flux quantum, written as @y=h/e. Now take the
two time-reversed trajectories. Encirculating it clockwise will yield

ACIWS(P = kFL~27z:£ (2.32a)
D
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Figure 2.11. A typical trajectory that
contributes to weak localisation, allowing
an electron to leave from I and, after a
number of elastic scattering events, returning
- to-a position-2; or-vice versa going from 2 to
1; 1 and 2 are separated by less than an
elastic length 1,. The rrajectory encloses an
~  area indicated by §.

'Z@hﬂe traversing it in the opposite (i.e. counter clockwise) direction yields

y <

AcchwsP=kpL+2n— (2.32b)
Dy

Note that the zero-field term kgL is (evidently) independent of the direction of travel. For

the difference in phases acquired in travelling clockwise and counter clockwise along the

time-reversed paths we thusfind

Aqo:A@(B)=(2x—(—2xj)§:4x—qj—-47r-§§- (2.33)

0 Py Dy
Note that the magnetic field enforces the two time-reversed trajectories to become
dissimilar as far as their phases are concerned. Stated differently, a magnetic field leads to
time-reversal symmetry breaking, a very general quantum phenomenon associated with
the application of magnetic fields.

As we have discussed in relation to eq. (2.20) at zero B-field the fully in-phase coherent
summation of the waves of the two time-reversed paths resulted in the factor-of-2
increase of the probability for back scattering. This implies that the phase-shift (2.33)
induced by the field will reduce this sum following cos(AQ(B)), i.e. the magnetic field
indeed gffects the contribution to the weak localisation. In particular, at such a field that
this shift amounts to ~7/2 the (zero field) constructively interfering contribution to WL
(from that particular path) at a certain B-field will turn into a destructively interfering
contribution, and so it will become suppressed.

Now we have to realise that the total WL effect results from contributions from a large
ensemble of individual (pairs of time-reversed) trajectories, each of different shape and
size and so enclosed areas S;. At a given field the phase shift depends (linearly) on the
area 5; associated with each partlcular trajectory p;- More specifically, for the whole set of
tra}ectones the longer ones, which most likely (but not necessarily!) will also enclose the
larger areas S, will acquire a larger phase shift than the shorter ones. The longest paths
which can contribute to WL are those with a size of approximately the phase coherence
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length, i.e. L,y <~l,, with an associated enclosed area § Iy = m(ly / 275)% . These will

yield the largest phase shift at a given field. So, as a consequence, and based on eq.
(2.33), weak localisation will start to become suppressed whenever

Ap=—=—5§, B. = i
From this a characteristic field B, can be defined where the suppression starts to become
effective
e~ “%Q“ = % (2.34b)
lp el '

!
2
ar(-z% S B, (2.34a)

So, in conclusion, weak localisation can be suppressed by applying a magnetic field such
that the zero-field time-reversed trajectories become dissimilar in acquired phase due to
 time-reversal symmetry breaking. This suppression of WL provides a way to study the
effect experimentally.

2.3.b. Experiments on Weak Localisation

In the following part we discus two experiments showing weak localisation in the
conductance, one on a semiconductor system and one on a metal. In order to demonstrate
the very general nature of coherent backscattering in disordered system we show a third
experiment which is not associated with electrons but employs optical waves.

1. Weak localisation in two-dimensional electron gas in a Si-MOSFET.

We first concentrate on the effect in a 2-dimensional electron gas in a semiconductor
structure. (D.J. Bishop et.al,, Phys. Rev. B26, 773-779 (1982)). The 2DEG is formed at
the interface of a Si-MOSFET, the gate of which allows the electron density to be
controlled; in this way the diffusion constant can be varied via the elastic mean free path
and the Fermi velocity (see eq. 2.9). Figure 2.11 shows one of the results obtained in the
experiment (noisy curve, “overlapped” by the solid curve b; the (fitting) curves a, b and ¢
result from a full theoretical treatment). It is obtained at T=100 mK and an electron-
density n,~4.5%10'° m. Note the characteristic field scale for reaching a “field-
independent” value B~ a few times 0.1T (note: 1 kG=0.1T).

[c}) a=0.5
i F=1.0
T, =370%10719

-20 —-18 ~-1.0 =05

o} a=15
Tj{%asmo‘“ see Rg (chms/c) - .

X i BKS-26-75-5 Figure 2,12, Reduction of the

{b) a=1.0 . . ; .
F-1.0 A resistance with magnetic field, due
Ti=3.75x107" T=C.1K

to suppression of the weak
localisation, in a 2D electron

- system atthe Si-SiOx interface.

The “noisy curve” is the

actual experimental data. The
smooth curves a, b and ¢ represent
different curves resulting from a fit
to the theory.
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Problem: Rewrite the resistance contribution due to WL in figure 2.12 in a change in the
conductance; is the value thus found in reasonable agreement with eq. (2.28) assuming
the logarithmic term to be of order unity?

Problem: Take from the original paper of Bishop et.al. the mobility. Evaluate the elastic
mean free path from the electron density and the mobility. Evaluate also the phase
ccherence length from the characteristic field scale of fig. 2.12, using eq. (2.34b). Is the

. assumption of the near-unity value of the In-term allowed?

2. Weak localisation in a thin metallic Mg film.

In this magnetoresistance experiment Bergmann (Phys. Rev. B25, 2937-2939 (1981); see

also Physics Reports 107, 1-58 (1984): the figures-are taken from this last paper, i.e. their

figures 2.11. and 2.12) investigates the magnetic field dependence of the conductance of a

very thin Mg filin evaporated onto a crystalline quartz substrate. Homogeneous films with

. thicknesses varying between 7 and 12 nm were obtained by performing the evaporation

" with the substrate held at ~ SK. The data points, shown in figure 2.13a, are taken at five
different temperatures between 4.5 and 20K. The magnetic field for each temperature is
indicated next to each individual experimental curve; it varies for the range of
temperatures taken in this experiment. This change of characteristic field scale is
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Figure 2.12. Weak localisation in a thin Mg film. Panel a. shows the experimental results
obtained at five different temperatures between 4.6 and 19.9 K. The resistance in an
applied magnetic field shows the characteristic behaviour of weak localisation, with a
(temperature dependent) suppression field. In panel b. the phase breaking time is shown
as deduced from the measurements.
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accordance with the decrease of the phase breaking length with increasing temperature
(eq. 2.34b). The full curves are fits to a full theoretical treatment of the WL problem; note
the very good agreement obtained in this fit! From these results it is rather straightforward
to evaluate the temperature dependence of the phase breaking time; this is shown in
figure 2.13b.

Problem: Determine the dimensionality of this WL experiment. For this to do, remind
yourself on which length scales are relevant. Take the needed values from the Phys. Rev
paper of Bergmann.

3. Coherent backscattering in optics: the narrow coherent cone; -

The third experiment we want to discus seems to be of a completely different nature. In
the preceding discussion we have concentrated on electron waves in diffusive systems.
However, from the whole line of reasoning it is completely self-evident that the whole
line of reasoning that leads to WL should hold for any type of waves in a diffusive
medium! So it is anticipated that also mechanical waves (e.g. in acoustics) or
electromagnetic waves should show the same phenomenon, with the (important!)
exception that a magnetic field will not be able to break the time-reversal symmetry in
these cases. This missing control mechanism (or "experimental knob") thus demands a
different approach in order to investigate the phenomenon, in order to separate the WL
contribution from the much larger "classical” background. This can be done by employing
the aspect of coherent backscattering into a narrow cone as discussed before (see figure
2.10). We found the important result that a beam incident onto the diffusive medium
shows an increase probability of being backreflected, preferentialiy within a cone
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Figure 2.14. Schematic diagram of the
optical set-up to study weak localisation
of optical waves in a disordered medium.

Figure 2.15. Coherent backscattering
in a suspension containing I pm Latex
spheres. p is the suspension density.
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determined by eq. (2.23) with a total angle

S cone =28 max ~ JAp /1, (2.35)

Note that this expression is formally only "correct” for the 2D case; however it is found to
depend only very weakly on dimensionality. We want to describe an optical
(=electromagnetic wave) experiment which nicely demonstrates this coherent
backscattering.

Figure 2.14 shows the set-up for this experiment (Albeda et.al., Phys. Rev. Lett. 55, 2692-
2695 (1985)). Then optical wave is provided by a He-Ne laser. The diffusive medium is
realised by dispersing Latex polystyrene spheres of ~ 1 um diameter in water. The
effective elastic mean free path could be varied by changing the the density of the
suspension. The laser beam reaches the diffusive cell (which contains the "milky”
suspension) via a beam splitter. The beam reflected from the cell is measured by a photo
“detector PD. The position of the detector can be varied in space, which allows an angular
“dependent determination of the reflected bearn. The results of these measurements are
~“shown in figure 2.14. The three sets of data are for different concentration of the particles
“'in the suspension. The solid curves are fits to a more complete theory, but the typical
""'angle is found to be in very good agreement with our simple eq. (2.23).

2.4 Closing remarks

In this chapter we have discussed a number of classical and one quantum phenomenon
that are characteristic for mesoscopic systems in the diffusive regime. Here we want to
make one additional remark derived from the quantum phenomenon of weak localisation.
As we have shown this results from the complex electron wave interference in the
diffusive background. It is of interest to briefly reconsider the magnitude of the effect, as
given by eq. (2.28). Apart from the weak (logarithmic) dependence on the ratio of the
times for phase breaking and elastic scattering, the typical amplitude in the change of the
conductance due to WL amounts to e%/A, i.e. the conductance quantum. Stated differently,
irrespective of the details of the distribution of elastic scatterers (i.e., the microscopic
configuration), the quantum effect on the conductance always is of the same order of
magnitude. On the other hand, it will be clear that changing the configuration of the
scatterers will result in some change in the conductance. Combining these arguments
points towards the presumption that varying the microscopic details of a mesoscopic
diffusive medium while maintaining its macroscopic, average properties, leads to
variations in the conductance that will be (typically) no larger than the conductance
GqUArIWm.

This conclusion can be verified in a much more rigid way, and the important and highly
fundamental phenomenon of such fluctuations in the conductance of diffusive systems is
very well known in the literature under the name of Universal Conductance Fluctuations
or UCF. The adjective "universal” stresses the role of the conductance quantum in this
respect. In addition to Weak Localisation it is the second important quantum phenomenon
found in diffusive mesoscopic systems.
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3. Classical ballistic transport

Keywords: Electron reservoirs, transmission probability, Landauer approach, electron focussing,
non-focahty, negative Hall resistance

3.1 Introduction

In this chapter we want to address a less commonly experienced way of electron transport in
solids. In chapter 2 we discussed the well-known diffusive regime: here the intense scattering of
the electrons only allows us to calculate voltages and currents by evaluating the average motion of
these particles, and not the detailed behaviour of a single electron. This also implied that (at least
for the classical diffusive case) the currents are determined by the local electric fields inside the
solid.
In contrast the regime we are concerned with in the present chapter is of a completely different
nature. We will see that the total currents now can be obtained by concentrating on a single
particle, whose time- and postion dependence we are able to describe accurately, and subsequently
sum all particles involved.
Refering to section 3 of the first chapter the classical ballistic regime is characterised by the
following relation between length scales:

Ap << L < I, I,
i.c. the size of the system, Z, is taken to be considerably smaller than any of the characteristic
scattering lengths. The Fermi wavelength is assumed to play no role at all: effects due to quantum
interference will be discussed in the next chapter, 4. The implication of the relation of system size
to scattering lengths implies that the electron, once set into motion, will continue in straight lines
all the way through the whole system. It is this very simple way of motion, which is completely
similar to the way larger (so by definition classically behaving) bodies like tennisballs, rockets and
bullets move through free space, that defines the name of this regime as ballistic.
In this chapter we will see how this simple but less common propagation of electrons gives rise to
rather surprising phenomena in transport properties like the resistance and the Hall voltage.
Section 3.2 will provide the basic ingredients to describe this classical ballistic regime, including a
short introduction to the role of the probability of electron transmission and the associated
Landauer approach in electron transport. Section 3.3 shows a few characteristic exemnples of
experimental results obtained in this area.

3.2 Transport mechanisms and description of the ballistic regime; the Landauer formalism

Figure 3.1 shows a system which demonstrates the most characteristic aspects of ballistic
transport. A piece of conducting material of length L and width(s) 7 is assumed to be so clean
that it does not contain any impurities etc. that may act as elastic scatterers for the electrons. In
addition we assume that also no inelastic scattering takes place in the channel area, e.g. by taking
the temperature sufficiently low. This immediately points towards a very important aspect of
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Figure 3.1. Particle moving through a narrow channel. As all scattering lengths are taken much
larger than the length L and width W of the channel the electron trajectories are Jully determined
by the initial conditions (at the entrance) and the walls of the channel itself.

ballistic transport, namely the decoupling of the area that determines the tesistance and the area of
energy dissipation.

As figure 3.1 shows, electrons are allowed to traverse the system of interest without scattering. So,
a particle entering the system from the left with a certain velocity, or kinetic energy, will maintain
this while travelling all the way to the right. This implies that nowhere in the system of interest, as
defined by the "boundaries or limits" L and W, the particle is allowed to exchange energy with the
environment. However, it is evident that the particle has been set into motion, e. £. at some position
to the left from the left entrance of the channel, by some type of soutce, e.g. a battery. As a "mirror
image” of this process the electron will be absorbed by a "sink", finalising its independent ballistic
life in a sea of brothers and/or sisters. It is at this place that the energy of the electron can be
d15$1pated via inelastic scattering processes like electron-electron or electron-phonon interaction.
So we conclude that, while the transport occurs inside our system of interest, the dissipation of
energy takes place outside this restricted area. This implies that for the description of batlistic
transport processes and phenomena we are allowed to completely decouple the (interesting)
transport system from the (dull and/or complicated) dissipation systems. This separation provides a
tremendous simplification!

A second, related, aspect which surfaces in this discussion is that processes (like current flow)
occurring at a certain position in space are strongly determined by the processes (e.g. injecting of
particles by a battery) taking place at other, remote positions. This is called non-locality, and so
ballistic processes are nearly always non-local in nature.

The separation of the transport area from the dissipation areas allows us to discuss the two
independently. So, before proceeding with the transport, we will first concentrate on the
dissipation areas.

From introductory solid state physics (and from chapter 1) we know that electrons behave as
Fermions, obeying Fermi-Dirac-(FD) statisties. They-are-allowed to move (more or less) freely
throughout a piece of conducting material, with the velocity of "each individual” electron
determined by the particular state it occupies. ‘At zero temperature the maximum or Fermi velocity
v, and likewise the maximum kinetic energy or Fermi energy E, is determined by the total
electron density (see egs. (1.14) and (1.16)). Likewise at non-zero temperature, the distribution of
kinetic energies over the particles in a certain region in the solid is completely determined by the
particie statistics (eq. {1.6)).



In thermal equilibrium each electron interacts with the environment, i.c. the phonons of the
background atomic lattice as well as with the other electrons. From thermodynamics and statistical
mechanics we know that if particles, contained in a certain volume, are in full equilibrium (i.c.
there is complete exchange of particles throughout the whole volume) the ensemble of particles is
characterised by a constant chemical potential [iper. It can be shown that for particles subject to
FD-statistics the chemical potential equals the Fermi energy (at zero temperature), i.c. the
maximum kinetic energy of the particles.

Such a region in space where electrons are in full mutual thermal equilibrium, characterised by a
uniform chemical potential, is denoted an electron reservoir or electron bath. So, all particles
inside a reservoir will have a kinetic energy Ey <t the chemical potential of the reservoir.

Problem: Inside a reservoir electrons are in full thermal equilibrium. What restrictions on the size
of such a reservoir can be defined, in terms of the characteristic length scales from chapter 17

In addition to the kinetic energy the particles may have potential energies as well. E.g., electrons in
a reservoir kept at a certain electrostatic potential ¥, will maintain there kinetic energy but are
able to do additional work by draining away power from the electrostatic source. So, the
properties of the reservoir connected to a circuit will be completely determined by its eleciro-
chemical potential u given by

B= Uohem YAV = Hopom —€F = Ep—eV (3.1)
with the last near-equality being exact at zero temperature.

The way we have defined the electron reservoirs is quite restrictive: we assume all particles to be
in mutual equilibrium. Evidently this will hold for particles inside a closed box, as these "meet one
another" sufficiently to establish this overall state. It is, however, our aim to use these reservoirs as
the sources of electrons in our ballistic systems, which will require that a reservoirs should
somehow become connected to the external world, e.g. our ballistic channel system of figure 3.1.
This immediately rises the question what will happen if we allow particles from outside to enter
the box and, by the same token, particles from inside to leave the box.

Now we make the important assumption that all phenomena we want to study occur under near-

0 S : a Figure 3.2. The energy
E - * diagramme of an electron
electrochemical poifntial P reservoir. Note the chemical
I "o potential lpem (~ Er), and
B the total maxinum energy
Hchem (Ep) : e given by the electro-chemical
Hres I > s energy characterising the
[ > reservoir, Hpes.
" bottem of conduction band ) - < Electrons leave with energies
eV E<,,, while they can enter at
any energy. The reservoir is
N .
- S bounded by the wavy line.
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equilibrium conditions. This implies that the number of particles inside the reservoir is large in
comparison to the nuraber of particles that leave or enter the reservoir, and we assume that these
(relatively) few particles entering or leaving do not affect the equilibrium inside the reservoir. So,
whatever the energy of an incoming electron, it will not affect the energy distribution of the
emitted electrons from the reservoir: i.c. the electrochemical potential y. will continue to be the
proper characterising quantity for the reservoir. By the same token we assume that the reservoir
will be accessable for electrons of all kinetic energies, and such an electron will only be allowed to
leave the reservoir after becoming fully in equilibrium with the ensemble.

So, in conclusion we have defined the electronic properties of the electron reservoir by its
electrochemical potential s4q, with all particles leaving the reservoir with a total energy <p,
while 1t can absorb and thermalise electrons of any energy. Such a reservoir is also denoted as an
ideal contact. Figure 3.2. provides a pictorial view of these properties. In pictures containing
reservoirs these will be mdicated by a wavy line representing the position of the interconnect to the
system of interest.

Now let us study a typical system containing a sample system with contacts attached to it. Figure
3.3 shows such a circuit, with four contacts connecting the bar-shaped system, it is called a four-
terminal configuration. It is set up for the measurement of the resistance of the sample, and shows
contacts used in two distinct manners: as current contacts and as voltage contacts.

L_..._._....._..J‘

I
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Figure 3.3 A typical 4-terminal
N resistance measurement configuration
Ine?{:o with two current coniacts and two
J W /K "J\/‘IN\NU“__ voltage contacts. I represents the
I \;—(/ 1 =0 overall or nef current passing through

net the sample via the current contacts.

Although we assume that all these contacts are of the ideal reservoir type as discussed before, the
way they are actually employed in the measurement is rather different, and it will allow us to
introduce the important notion of net current versus fotal current in a contact. While the two
current contacts at both ends of the bar are used to inject and drain the nef (i.¢. externally
measured) current 7 in and out of the sample, the two side-placed voltage contacts do not carry a
net current. This is explained in more detail in figure 3.4a and b. In the top panel, a, the voltage
contact is shown. By definition, a voltage measuring probe should not draw any nef current in or
out of the system. As discussed, this net current condition is of a dynamical nature resulting from
the balance between the absorbed current J;; incident on the reservoir from the sample and the
current emitted Z,,; from the reservoir into the sample. The incoming current I, is fully
determined by the processes inside the sample (and not by the voltage contact reservoir!).
Similarly the outgoing current I, only depends on the electrochemical potential i of the voltage
contact reservoir (and not on any process inside the sample!). This implies that the required
balance only can be established if the reservoir appropriately adjusts its electrochemical
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Figure 3.4. Contacts and particle exchange.
The outgoing current I,,,; is determined

reservoir% by the electrochemical potential .., of the
= reservoir. The incoming current Iy, is
I =0 ;4—-——-— Iin determined by processes occurring inside
net - = » the sample. The net current is the difference
E Iout between the ingoing and ouigoing currents.
Ry S |
=  a. Voltage contact: the average net current
R flowing through the contact is zero. The
a. contact establishes this condition by

appropriately adjusting its electrochmical
potential -

Teservoir

b. Current contact: the average net current
L owing through the current contact is
e 1Y g g
Ine?éo . determined by the external current supply

I source. The electrochemical potential of the
contact py adjusts itself such as to make the
average difference between the outgoing and
incoming current equal to the externally

b. applied net current I.

out

Hy

PAVAVAVAVAVAVAVIVAVA

potential, in this way adjusting [, So, the condition at the voltage contact of figure 3.4a 1s
gy such that Tye=l o - Liy=0 or Iy=lin (3.2a)

A similar reasoning is used for the current contact (figure 3.4b). As the total net current is
established by the external current source, i.c. /=, we immediately are lead to the conclusion
that the electrochemical poténtial of the current contact z adjusts itself to match the average
current balance, t.c. ,

g such that I =l - L=/ (3.2b)

Note that the approach taken here is rather opposite to the way currents and voltages are calulated
in classical diffusive systems of the type encountered in the macroscopic world. In that case we
usually apply a finite voltage and evaluate the current resulting from it. In contrast in the case just
discussed we impress the net-current condition and let the electrochemical potential adjust itself to
provide this required current level.

From the discussion. it is obvious-that the common distinction made between current and voltage
contacts no longer holds in the present case. Usually a voltage contact is said to couple to (and so:
affect) the sample only weakly, simply because of its "zero current measuring condition". As we
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have seen this is not at all the case for the present voltage contact. The intensive exchange of
particles between the contact and the sample does {virtually) not depend on the nef current drawn
through the contact and so voltage and current contacts of the same size equally interact with the
sample. This implies that a description of the properties of the sumple has to include the properties
of the contacts, at least to the degree of how easily particles are exchanged with it, i.¢. the degree
of ransparency or transmittivify of the sample-reservoir interface. Below we will see that the

. concept of particle transmission is of central importance in the description of electron transport in
ballistic systems.

One question may arise after studying this section. In more commeon, i.c. diffusive, electronic
systems (see chapter 2) the current(-density) at a certain position is determined by the (local)
electric field. In contrast in the present discussion on ballistic systems it seems that the electric
field does not play any role, neither local nor non-local. To a large extent this is a correct notion.
In the diffusive case of chapter 2 the current density is given by the average drifi velocity of the
electrons. As the extensive scattering completely randomises the direction of the instantanous
total velocity (which, for the electrons contributing to the conduction, approximately equals the
Fermi velocity), the resulting drift velocity (which is much smaller than the Fermi velocity) only
results from the acceleration in the local electric field during the short time interval between two
successive scattering events.

Thas is not so for the ballistic case. To appreciate this we return to the discussion just following
eq. (3.1). There the assumption was ade that the currents in the system are such that the system
is kepticlose to equilibrium. This for instance implies that the net current in a current contact is
much smaller than its incoming and outgoing currents {see figure 3.4b); just as well it leads to the
requirement that all contacts are only allowed to support electrochemical potentials much smaller
than the Fermi energy. This implies that nowhere in the system the maximum kinetic energy of
particles deviates appreciably from the local Fermi energy (or local chemical potential) (Note: it
should be remarked here that in a ballistic system no single local Fermi energy can be defined,
because of the anisotropy resulting from the external currents!!).

To be somewhat more specific assume the maximum difference in electrochemical potentials in the
circutt 1S eV, with eV <<FEp. A particle leaving a contact at the Fermi energy and experiencing
the electric fields associated with the electrochemical potential differences in the sample may show
a maximum angular deviation form its initial direction (i.c. the direction obtained at the moment of
injection from the contact) approximately given by p,a €V oy /Ep<<1. This means that a particle
injected from a contact into the sample and moving at the Fermi velocity into a certain direction,
will continue to do so all the way through the sample, without being affected appreceably by the
externally applied electric field.

So in conclusion, while in diffusive systems electric fields determine the local (and overall)
currentflow in the sample; this does not hold for ballistic systems.

The question which immediately arises is: if it is not the electric field which governs the particle
flow, what then determines the currents in a ballistic system. To that purpose figure 3.5 shows a
typical multi-terminal configuration, i.c. a sample with three contacts. Let us concentrate on the
leftmost reservoir 1 and see how different particles, starting from this contact move through the
sample, ultimately leaving the system via one of the contacts. Note the strong similarity to the well
known "pin-ball" playing game. Assuming that the walls of the system show full specular



Figure 3.5. A typical 3-terminal ballistic structure fo illustrate the role of the transmission
probability. The central T-junction can be described by a scattering- or distributionmatrix for
particles to.and from all three reservoirs. Lines and arrows leaving the left reservoir 1 indicate
four different particles a-d arriving at the different contacts, including one of these particles (d)
being returned (= reflected) to contact 1. '

reflection we can indicate the various paths a particle can follow after leaving contact 1. Particle @
follows a path directly connecting contact 1 and 3. Path & is from a particle also arriving at contact
3, however only so after experiencing a number of (specular) reflections at the walls of the sample.
Particle ¢ is reflected a few times at the walls of the input lead before becoming scattered into the
lead towards contact 2. Finally path & shows the case that the incoming particle experiences a
number of reflections at different walls, ultimately becoming back-reflected to the contact of
origin, 1. Based on these few examples of the "pin-ball" experiment we can conclude that the
particle flow is determined by the scattering properties of the system. As the current flowing from
contact k to contact m is determined by the number of particles leaving & and arriving at m, we can
obtain the current flow by simply evaluating the rransmission probability for particles arriving at
n from k. This transmission probability for travelling from contact & to contact , denoted by
T, is defined as the fraction of particles emitted from £ that arrives at m, by definition 0<7;<1.
It can be determined for each pair of contacts by repeating the "pin-ball” experiment many times.

The use of transmission probabilities to calculate the currents at the terminals of a sample (and so
the conductances between these terminals) is at the basis of the so-called Landauer formalism,
named after R. Landauers original pioneering approach starting in 1957 (which, by the way, has
been highly controversial for at least two decades, before becoming of major importance!). We
will employ this method at many occasions throughout this book, both in the classical regime as
well as for the quantum case. In this last case we feel considerably more at home, as in the
quantum case the occurrence of a particle at some specific position in space is determined by the
local amplitude of the wave function, a quantity which intrinsically represents its probability. In
addition, to calculate such amplitudes one has to solve the Schroedinger wave-equation in space,
which simply is a (wave-)scattering problem. We will return to this problem for the quantum
mechanical case in Chapter 4 in the quantum ballistic regime, where we also will derive the
specific relation between the conductance and the transmission probability, as well as how the
currents are determined quantitatively by the electrochemical potentials at the different contacts of
the sample system.
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3.3 Experiments in the classical ballistic regime: electron focussing and negative-Hall resistance

The preceding section provides us with a very simple and transparent technique to understand and
describe electron transport in samples in the ballistic regime. In the present section we want to
discuss a few characteristic experiments in this regime, which show the strength of this ballistic
scattering approach. In addition these experiments show results which are at first sight rather
counterintuitive, in this way stressing the fundamentally different mechanisms being responsible for
the electronic transport in the ballistic as compared to the (more common) diffusive regime.

We will discuss two types experiments: the first goes under the name of electron focussing and the
second is referred to as the negative-FHall resistance.

a. Electron focussing

Figure 3.6 shows the sample lay-out for the electron focussing experiment. For simplicity we will
limit ourselves to the case of a 2-dimensional electron gas (2DEG), as established ina
semiconductor heterostructue, as discussed in Chapter 1 and in Appendix X. Remember that such
2DEG shows the required ballistic properties because of the use of remote doping. As seenin
figure 3.6 the "infinite" 2D plane is divided into three areas (each with contacts/reservoirs attached
to it) by some type of "line-screens”, actually implemented by surface gates put at a negative
potential realtive to the 2DEG (see figure 3.7 and Chapter 1 for more details). Small openings or
point contacts are inserted in the screen between the lower left area and the top semi-infinite 2D

A

a

Injector Collector
electron reservoir electron reservoir

Figure 3.6. Electron focussing in a 2-dimensional electron gas. Electrons, only allowed to move
in the 2D-plane of the figure, are injected from a narrow opening (or point contact) I in the
"line-screen” from the injector reservoir into the semi-infinite area above the screen. With a
magnetic field applied perpendicular to the 2D electron system, the injected electrons will follow
the curved circular cyclotron orbits, with the diameter determined by the field strength B. At a
second opening C in the screen, the collector, electrons can be detected and drained away via the
collector reservoir.



plane, as well as between the lower right area and the semi-infinite plane. The two point contacts
are separated by a distance L. We use the leftmost point contact / to inject electrons mto the
system (by applying a small (electrochemical) potential to the injector reservoir. By the same token
the right point contact C is used to see if any electron arrives af that particular position. We can
apply a magnetic field perpendicular to the 2DEG plane, i.¢. always electrons will move
perpendicular to the B-field.
For simplicity we assume that all electrons injected at / will do so perpendicularly to the screen
(we will return to this condition later). At zero B-field the injected electron will set of into the
semi-infinite 2DEG space along a straight line, indicated by « in figure 3.6 (we are in the ballistic
regime!), and will ultimately be drained away by the (large) contact connected to that area. Once
the magnetic field is switched on electrons will become bended away from their straight path and
start to follow circular cyclotron orbits, as discussed in Chapter 1, From that discussion we know
that the radius of curvature (or cyclotron radius) is given by eq. (1.6¢) as R.=mvgleB, 1e. itis
inversely proportional to the magnetic field. Just as a typical value for a 2DEG in GaAs one finds
R=1im at B=0.1 T. For the majority of chosen magnetic field values the circular orbit followed
by the injected electrons will hit the screen at a position away from the collector opening ¢: see
paths &,d and /. Only for very specific values the beam of electrons will be arrive at the collector,
either directly (path ¢ in figure 3.6) or indirectly after one or more (specular) reflection(s) at the
screenwall (path e). It is straightforward to calculate the field values for this focussing to oceur, as
the condition is simply given by

N#2R. =L (N=1,23,..) (3.33)
or

By = N+ 2mvg

~ (3.3b)

From this we see that the condition for focussing is fulfilled for magnetic field values at equal
intervals AB=2mvg/el.
Figure 3.7 shows the experiment. In figure 3.7a the layout of the actual sample is shown: the
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Figure 3.7. Experimental details and results for electron focussing in a 2DEG system. a shows
the actual sample used for this experiment, with the two opening between the wedge-shaped gate
ends forms the two point contacts for injection and detection. In b the voltage (or electrochemical
potential) measured at contact C is displayed in dependence of the magnetic field; T=4K.
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Scanning Electron Microscope (SEM) picture shows the surface gate pattern in lighter shade, with
the two point contacts formed at the "meeting" of the sharp wedge-shaped features left and right
from the central screen, which separates the injector and collector regions (top left and top right
{or reversed, as this double point contact sample is completely symmetric)). Figure 3.7b displays
the result obtained at 7=4K (H. van Houten et.al., Phys. Rev. B34, 8556 (1989)). It exactly shows
the behaviour predicted from the simple arguments formalised in eq. (3.3b), with peaks in the
voltage measured at the detector contact, resulting from the focussing of the electron path onto
the detector point contact C. Note the nice characteristic pattern of peaks at equal intervals in the
field B. Note also the absence of the peaks at magnetic fields of opposite polarity. .

This experiment only works out if the-electrons can traverse the large 2D area without being
scattered, i.c. truely ballistically. If any scattering occurs, either elastically or inelastically, this will
change the direction of the travelling electron, in this way deviating it from the detector point
contact. The main consequence of such scatterings will be to reduce the number of electrons
arriving at the detector, and so the detected voltage will drop. So, if the 2DEG shows a finite
mean free path /, we anticipate that the detector voltage will depend on it exponentially,
approximately following exp(-rtL/27), i.c. determined by the ratio of the mean free path /to the
travelled distance along the semi-circle(s) nZ/2. Note that the travelled length is the same
irrespective of the number of times N-1 the particle is reflected at the screenwall!

Problem: discuss the effect on the peak height due to a less-than-unity (specular) reflection at the
screen;in particular consider this for different peaks, i e. with different N.

The effect of scattering is shown in figure 3.8, an experiment performed on a multi-point contact
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Figure 3.8. Electron focussing in a multi-point contact geometry, performed at T=0. 3K ashows
the peak patterns obtained at the different detector point contacts are located at 4, 8, 16, 32 and
64 pm from the injector point contact. Note the reduction of the field interval between the peaks
with increasing distance I, and the strong reduction of the amplitude of the peaks. b clearly
demonstrates the exponential behaviowr of the amplifude versus the distance.



geometry, with (detector) point contacts located at distances 7=4 to 64(!) um. The experiment,
performed by J. Spector et.al. (Surf. Sc. 228, 283 (1992)), clearly demonstrates the inverse
proportionality of the intervals AB on the different lengths L as given by eq. {3.3b). In addition the
very strong reduction of the amplitude is clearly visible. If the amplitude is presented (on a
logarithmic scale) versus the distance between injector and detector, the exponential behaviour is
striking, which confirms our intuitive guess presented before. From the exponent one finds a mean
free paths / ~ 15 um, which 1s approximately twice as small as obtained for the bulk of this 2DEG
by measuring the mobility (see Chapter 1 for details). So, it seems that scattering is more effective
in case of focussing as compared to normal transport. This is not too difficult to see, as for
focussing the requirement is rather strict; any small deviation form the original path will make the
electron to miss the detector opening, while in transport the electron contributes to the current als
long as it keeps a forward velocity, even though the contribution will be reduced by somewhat Like
a cosine of the angle between the average current direction and the actual velocity direction.

Before closing the discussion of this experiment we have to return to the condition for
perpendicular entrance of the electrons from the injector. Although we will not go into all details
here it'is obvious that electrons will (ballistically) traverse the point contact at various angles from
the normal. From quantum mechanical arguments (see Chapter 4) we can show that indeed the
electrons enters in a finite opening angle, the width of which is basically determined by interference
effect occurring of the electrons with their Fermi~wavelength and the size (width) of the point
contact. It is rather easy to see that this non-zero opening angle results in a broadening of the
peaks. A finite angle simply implies that already at fields B<By; electrons entering at'a non-zero
angle (relative to perpendicular) can reach the detector and give rise to a current or voltage at
contact C. More details can be found in the work of Beenakker and van Houten [1].

Problem: convince yourself from this argument by some simple schetches. In addition discuss
what additional mechanisms may lead to a broadening of the peaks.

b. Negative Hall resistance

In this subsection we will discuss experiments which study transport in four-terminal geometries of
a cross shape. Such configuration is particularly known for its use in Hall experiments, and one of
the experiments we want to address relates to the question of how the ballistic nature of transport
affects such a Hall experiment. The rather peculiar results provide a quite impressive way to show
the differences between the two regimes, diffusive and ballistic.

For this purpose we assume a cross-shaped sample, as shown figure 3.9; again for reasons of
stmplicity we take a 2DEG. In figure 3.9a the sample is assumed to be diffusive, i.e. the size of the
system (width and length) is much larger than the scattering length. Current is applied to the via
current contacts 2 and 4, and to be specific, the last contact 1s put at zero (electrochemical)
potential, i.c. ¥3=-114/e=0 (note: e=le}). If the current flows from contact 4 to contact 2, the -
electrons move oppositely from contact 2 to 4. We take the direction of the B-field relative to the
diffusive electron flow such that the electrons are bent towards contact 3. If the cross is ideally
symmetric, the resulting excess negative charge at 3 implies a positive voltage difference V}-V3,
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Figure 3.9a. The Hall effect
of a 2D electron system in
the diffusive regime. As usual
two current contacts (2 and 4)
_ are used for supplying the
current; two voltage contacts
(1 and 3) allow measurement
of the Hall voltage via pi; - 3.
Dashed lines are equipotential
lines.

Figure 3.9b. The Hall effect in
a 2DEG in the ballistic
I regime. The Hall voltage (from
Uy and pi3) now follows from
: ¢ the particular electron
Y; §= M, trajectories and the
4 requirement of zero net current
at the two voltage contacts I
and 3. Three pairs of
H3 ' trajectories a,b and ¢ are
shown for increasing magnetic
Sields.
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Now let us turn to the ballistic case, which we evaluate by looking at trajectories of electrons
travelling at the Fermi velocity. To evaluate the resulting Hall potential in figure 3.9b three (pairs
of) electron paths at different magnetic fields are shown, all emanating from the current contacts 2
and 4. Note that, following the same arguments as discussed when introducing the current- and
voltage contacts in relation to figure 3.4, we impress the net current / flowing in and out the
current contacts and we evaluate the electrochemical potentials that establish themseleves self-
consistently at the various contacts.

0 (3.4)
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The first pair of paths (a/ from contact 2 and a2 from contact 4) is taken at zero magnetic field:
evidently the trajectories are straight lines, with a/ being absorbed in reservoir 4 and a2 in contact
2. Increasing the field may lead to trajectories like b/ and 52. The peculiar property of these
trajectories is that, despite being deflected "to the left", the specular reflection of the particle
makes it to arrive at the contact terminal af the opposite side of the sample. This will make the
charge to build up with opposite polarity as compared to the common diffusive case, thus yielding
a negative Hall voltage. To be more specific for the case of these two trajectories, we employ the
“zero net current" requirement for voltage contacts. For the case of simplicity we assume that for
the given magnetic field only electrons that follow the indicated trajectory will reach contacts 1
and 3. First consider trajectory 52 as all electrons emitted from contact 4 have an energy <z4=0
(the electrochemical potential of this lead) all electrons arriving at reservoir 3 will have this . As -
for voltage contact 3 the requirement is that just as many electrons leave the reservoir as there are
absorbed, this immediately implies that the electrochemical potential of the reservoir will adjust
itself to that of the incoming particle flow, i.c. p3=14=0 and so 3=0. Because of symmetry
evidently the same argument holds for electrons on trajectory b/, leaving from reservior 2 and
arriving at 1. This implies py=p,. As current is forced from 4 to 2 this yields V,<V,~0 and so pp=-
eV,>0. So we conclude that s;=1=-e}’;>0 or ¥,<0. This implies that the Hall voltage for the
ballistic case and for this particular magnetic field value is given by
Vranpat _V1-Va_ mi—p3 -y V-V

Reanpan=—"—7 == = ar S T <0 (3.5)
So, for the ballistic case and at the given magnetic field we thus find a negative Hall resistance,
opposite to the diffusive counterpart of figure 3.9a. Before switching to the actual experiment let
us first see what happens if we increase the field further, i.c. trajectories ¢/ and ¢2. As is obvious
from figure 3.9b the electrons now arrive again at their "regular” contacts, and so the Hall voltage
will be again positive. In summary, we anticipate in a small symmetric cross with specularly
reflecting walls that for certain ranges in the magnetic field the Hall voltage will become negative.

Figure 3.10 shows the actual result of such an experiment (Ford at.al,, Phys. Rev. Lett. 62, 2724
(1989)) on a high-mobility 2DEG structure. In the field range between - and + 0.15T the Hall
resistance is found to have the opposite sign as compared to the high field range.

Ry, (k0)

, Figure 3.10. Experimerttal

| ; demonstration of the negative

. -05 o 95 ) Hall resistance in a ballistc
B(T) cross. Note the negative Hall

range from ~-0.15t0 0.15 T.
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Figure 3.11. Hall effect in the

ballistic regime at large magnetic
_ fields. As the cyclotron radius is

small compared to the system

sizes the electrons contributing

to the current will flow along the

walls in "skipping orbits”.

Before closing this chapter we want to pose the question on what will occur at such large
magnetic fields that the cyclotron radius is much smaller than the typical dimensions of the cross.
It is not difficult to see that the only electrons that can now contribute to the current (both total
end net) are the "skipping orbits" introduced in section 2.2 (see e.g. figure 2.4). These trajectories
adhere to the walls of the system while experiencing specular reflections. Figure 3.11 shows the
resulting electron paths. The most striking feature of the resulting electron trajectories is that we
very simply can evaluate the transmission probabilities in this case. As an exemple, an electron
leaving contact reservoir 2 will be "pressed” against the lower wall, bouncing its way to contact 3.
This will be so for each electron from contact 2, or T3,=1. This immediately implies that the
electrochemical potential of contact 3 will become identical to that of contact 2. Similar
arguments hold for contacts 3=>4, 4=>1 and 1=>2, with all associated T's being unity.

Tt is important to note that in contrast electrons leaving from contact 3 will rot arrive at contact 2
directly’ This implies 7530 and consequently we find T3, # T53. Comparing this to the zero
magretic field case, it is not difficult to see (e.g. from figure 3.9b, zero field traces al and b1) that
the topological symmetry of the system yields 753,=754 at B=0. The large field case of figure 2.11
demonstrates again in a rather striking way the time-reversal symmetry breaking action of the
magnetic field. With this quite general statement we close this chapter on classical phenomena in
the ballistic regime.
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4. Quantum ballistic transport

Keywords: Landauer formalism, electron waveguides, modes, conductance quantization, Landau
levels, edge states, (integer and fractional) quantum Hall effect

4.1 Introduction

In chapter 3 we have discussed the characteristic propertiés of electrons in ballistic or clean
systems. Throughout that chapter we assumed that the entities contributing to the transport of
charge through the system behave classically. This implied that the electrons could be taken as
particles following trajectories described by the laws of classical mechanics.

In the present chapter we again focus on the ballistic regime. In this case however the wave nature
of the electrons is included and we will see how this affects the transport in mesoscopic-sized
systems.

Following the short introduction of this section (4.1), in section 4.2 we discuss the conductance in
a ballistic system in terms of an elastic wave scattering problem and derive the famous Landauer
expression for it, which provides a simple relation between the transmission probability and the
conductance between two points. From this description based on. wave propagation the natural
role of 1-dimensional transmission modes or quantum channels will become evident. In section
4.3 the effect of a large magnetic field on the properties of electrons is reviewed and the formation
of Landau orbits and its consequences for the density-of-states is demonstrated. Next, in section
4.4 the results of the two preceding sections are employed in a 2-dimensional electron system to
show the formation of conducting channels at the boundary of the system, denoted edge states or
edge channels. These 1-dimensional quantum channels will be used as the foundation for the
description of the famous (integer) quantum Hall effect. The chapter will be closed by briefly
mentioning a few of the more exotic phenomena in high fields, namely the fractional quantum
Hall variant and the recently introduced Composite Fermion; this is to be found in section 4.5.

4.2 Electrical conductance, transmission and conductance quantisation

In this section we will introduce the key aspects of the description of the transport of electrons in
the ballistic regime. Elaborating on a brief introduction given in section 2 of chapter 3 we will
show how the conductance of electrons in a clean system is simply determined by the probability
of the particles to reach the appropriate contacts. In addition, the ballistic properties of the system
combined with the wave (or quantum) nature of the electrons will allow us'to derive a quantitative
relation between this probability and the conductance, leading to the famous Landauer expression
for the conductance. From this derivation the importance of the 1-dimensionality of the
contributing electronic quantum states or channels will become clear, in particular as we will
show that each quantum channel yields exactly the same contribution to the conductance of the
system. The most striking consequence of this "equal contribution™ aspect is that the conductance
of a finite-width system is quantised in units 2e2/h.
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In section 3.2 of the preceding chapter we discussed the classical transport of electrons in
mesoscopic systems in the ballistic regime; it was limited to the low-bias or linear regime, i.e.
assuming all applied potentials in the system to be much smaller than the Fermi energy (or more
precisely, Ex/e). From that discussion, centered around the figures 3.1, 3.2 and 3.5, three main
notions emerged. First, the role of electric fields (or gradients of the potential) resulting from the
small potential differences applied to the contacts in the system was shown to be negligible. This
is a direct consequence of the fact that in the ballistic regime and under linear conditions the
relevant particles travel close to the Fermi velocity, while variations in the velocity resulting from
(local) electric fields will be much smatler. It is this consequence which allowed us to use
(classical) ballistic laws. Note that this fact leads to a tremendous simplification of the problem, as
we do not need to know how the electric fields are distributed throughout the system. In addition,
note the important consequence of this point that the local velocity does not depend linearly on the
local electric field, and so the transport is intrinsically non-local! This should be contrasted to the
commeon, diffusive case where, for isotropic conductors, we always assume the local current (or
velocity) and local electric field to point into the same direction, related via the (scalar)
conductivity.

Secondly, the ballistic nature of the transport allows the direct evaluation of the probabzhty of an
electron that emerges from one contact & to reach a second contact j. From the geometry of the
system, including its-walls etc., the transmission probability Ty can be calculated. This is
particularly simple in the classical case of chapter 3, but also in the present quantum case this can
be done in principle. As the probability is a direct measure of the fraction of (a) particle(s) that,
emitted from one reservoir and arrives at the second reservoir, it allows us to quantify the
distribution of the (net and total) currents over the various contacts of the system. From this
distributton of the currents the associated electrochemical potentials (or voltage differences) can
be evaluated. Below we will do this quantitatively for a simple strip-shaped structure.

Third, the fact that the excess electric fields within the system resulting from the applied potentials
do "not" affect the fiow of the particles implies that, within the actual system of interest, there is
no dissipation of kinetic energy of the electrons to the rest of the system. This dissipation only
occurs within the reservoirs themselves (where full thermal equilibration of all particies is
assumed to take place). ,

With having rehearsed/recapitulated these three important basic points for ballistic systems we are
now in the position to employ these to the quantum ballistic case.

As introduced in chapter 1 in the quantum ballistic regime the various length scales are related to
each other as

A L < I, <
i.e. the Fermi wavelength and the system size are both smaller than the elastlc and inelastic mean
free path. The fact that Az and L may have comparable values allows the occurrence of
interference effects in the system, in much the same way as one finds in optical phenomena such
as single-slit experiments. Having /; larger than any of the other relevant length scales assures that
the phase of the waves is preserved, a prerequisite for any interference effects to take place. The
condition for [, assures that we are in the ballistic regime.
Figure 4.1 shows a typical ballistic system with a tube- or strip-shaped conductor of width Win
the x-direction and length L in the y-direction, connecting two electron reservoirs. Following the



¥
¥

L

channel

Reservoir 1 Reservoir 2

k k k k k

right left

right
b. : C. d.

left right

Figure 4.1. Electrons in a ballistic channel. a. The 2D channel of length L (in the y-direction)
and width W (in the x-direction) is connected to two reservoirs characterised by electrochemical
potentials py and . b. The E-k dispersion relations for electrons: b and d in the two reservoirs,
and ¢ within the channel. Note the difference in occupation in the channel for the right-going
states (filled up to sy from the left reservoir) and the lefi-going states (filled to 1, by the right
reservoir). )

common use in the literature the interconnecting central strip is denoted as the channel: it should
be well-distinguished from the notion of a quantum channel or mode to be defined below! The
electron reservoirs or contacts are characteriised by their electrochemical potentials 4 and 1.
This difference in electrochemical potential z-,=Ap=eV/|, results from an externally applied
voltage between the two contacts 1 and 2, V,. Taking the whole system to be at zero
temperature, the electrochemical potential defines the maximum energy up to which the electron
states are occupied. For the sake of simplicity it is assumed that the strip or channel is 2-
dimensional (2D); we will return to this point at the end of this section.

From figure 4.1a it is obvious that the right reservoir can only-be reached by-electrons with a &-
vector component pointing towards the right, i.e. right-going &-states moving in the positive y-
direction, similarly the opposite holds for left-going states moving in the negative y-direction that
can arrive at the left reservoir. As we are interested in the quantum properties of the electron
transport we have to describe it in terms of electron states associated with electron waves. Let us
focus on the quantum states within the channel region, say at the intersect indicated by the dashed
line A-B, to see how these can be described, including their occupation via the reservoirs. In the y-

[
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direction the electrons are completely free to travel. This implies that for &, the electron states are
given by the parabolic free electron relation; this is shown in figure 4.1b, ¢ and d. Clearly the states
at the left contact are filled up to the (higher) electrochemical potential 1 {figure 4.1b) and those
at the right contact to the (lower) value g, (figure 4.1d). In the channel region right-going states
only are filled from the left reservoir and so will be occupied up to 14, as shown in figure 4. 1c.
Similar arguments hold for the left-going states. As the right-going states are filled up to a higher
energy, it is clear that more (and also faster) electrons. arrive at the right contact than will be
emitted from it, yielding a net particle current from right to left (or a net charge current from left
to right).
Before proceeding to evaluate the current we have to take into account also the transverse
momenta &, of the electrons. For this direction the electrons are confined and can not move freely. -
As discussed in chapter 1 this results in the formation of bound states, the number of states
depending on the width of the channel. Figure 4.2 shows this schematically, assuming the
confinement to have vertical walls (in £-x-space). The resulting eigenstates have associated
energies £, which for an (infinitely high wall) box-shaped confinement can be calculated readily
(see chapter 1). With the k, quantised and denoted by the index n the total energy of an electron
residing in a state characterised by {mkpy} is given by

. 2

En(k):Enx'i-h_krgy 4.1)

2m

Electrons residing in a state with transverse quantum number # are said to occupy the n-th mode
or subbgnd or quantum charmel that 1s available for transport in the channel (note here the
different meaning of the word "channel"}). Note that at a given total (kinetic) energy for a high
mode index 7 the kinetic energy in the y-direction is small, as a large » mmplies £ to be
(relatively) large.
Now we make an important step. As each electron is characterised by the quantum numbers n and
kyy, with the first being discrete and the second continuous, they simply behave / -dimensional, Tt
is this 1D nature of the electron states which allows us to very elegantly evaluate the net current
through the channel. We first evaluate the total and net particle currents, which via the charge-per-
particle directly yields the (charge) current.

"""" ) Figure 4.2. The bound states resulting
i I R M from the confinement of electrons in the
E. N =3 . ransverse (or x-) direction of the channel
- of figure 4.1a. The successive eigenstates
E, . with eigenenergies E . are indexed by the
E mode number n. The highest mode that is
1x occupied (i.e. below the elecirochemical
X—> potential p) is denoted by N, ..
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The particle current J,, ;, that flows within a single mode » is simply given by the product of the
density and the Ve10c1ty of the particles, integrated over energy,

Ji;
Jpn = [l EY*p1p oy (EYE (4.2a)
o .
with v, denoting the particle velocity and pp, |, being the I-dimensional density-of-states for
mode »; both these quantities are energy dependent. The fotal particle current or number of

particles flowing through the channel in one direction thus follows by summing the contributions
of all modes n

Jy= Y Ta(= Y, [v,(Eyepip (E)dE (4.2b)
n n o0

Nm;;aénotes the highest occupied mode, i.e. for which the bottom (with vpg,,,=0 and
by (Eky_ )=0)isstill below the electrochemical potential of the system (figure 4.2). From

figure 4.1 it is obvious that the net particle current through the channel (say at A-B in figure 4.1a)
simply is the difference between the right-moving particles (in states up to 1) and left-moving
particles (up to [y, with l>1), Le.

Jp net = Jp right () — ‘]p left (H2) (4.3)
From quantummechanics we know that the velocity of a partlcle is given by
1dE, (k)
E}= 4.4
v (E)= h s (44a)
For the I-dimensional case the density-ofustates (disregarding the spin) is given by (see chapter 1)
1 dE,(k
PipalE) == (= k( )y (4.4b)

which makes the product of these two factors
1
Va(E*pip n(E) = (4.5)

i.e. it is independent of energy E or mode index n, and given by (the inverse of) a constant of
nature, h. Taking into account that each state can accommodate g.=2 electrons (due to the two
spin directions) e.q (4.5) should be multiplied by this factor.

By combining eqs. (4.2)-(4.4) the net particle current contribution for one single mode becomes
H—Hy _28u (4.6)

h h
Remember that Au=-¢V, is the difference.in electrochemical potential resulting from the applied
bias voltage between the two contacts 1 and 2. Noting that each particle has charge g=-¢ we thus
find for the net charge which flows from left to right in (the single) mode n

]p,n,net = Jp,n,right(iu“l) - Jp,n,!eﬁ‘ (Up)=g;

Aut
Jonner = 85 €T p y ner = ~2e—— A (4.7)
and so for the total net current as the sum over all contributions per mode
N
At 2e?
J=Jyper = Z‘]ennet = Nmax*—2e—— h ‘“Nmax*_h"*vl.’z (4.8)
n=1



This can be rewritten in terms of a (two-terminal} conductance, reading

J 282
Gy, 2Glzfvl—z:f‘V’n~1ax"‘—h— (4.9

This is the famous expression for the two-terminal conductance of a mesoscopic ballistic system.
It expresses that this conductance is universal, as it is given in units of the conductance quantum
2e2/h which only contains constants of nature, and that it is quantised as it scales with the integer
number of occupied quantum channels. Note that the factor of two directly follows from the spin
degeneracy. The universality is a direct consequence of the cancellation of the energy dependence
of the velocity and the density-of-states, which only holds for 1-dimensional systems (see eq. '
(4.5)). This leads to the important result that each mode n contributes exactly the same amount of
current to the total net current, as can be seen directly from eq. (4.8).

From figure 4.2 and from chapter 1 we see that the transverse confinement due to the width W
determines the number Ny, of subbands or modes with an eigenenergy E,, below the Fermi
energy (or electrochemical potential) and that will occupied. Assuming again that the confinement
is square-well shaped, we can estimate this number by noting that

T
k = 4.10a
i.n W ( )
and _
okl kL, =kF (4.10b)
The value n=Np, if obtained from the condition k&, Npax S*F <ky n_ 1. Assuming that a

reasonable number of quantum channels is transmitted we have Ny, >>1 and so it is clear that
for most n we will have ky y,,,<<kp and so k. Ny = K » which implies (from eq. (4.10a))
T i A

W= Npax — = Npay ——=N_,. =& 4.11
So, changing the width of a structure allows one to tune the number of 1D modes that is
transmitted through it. As eq. (4.9) shows that the conductance depends linearly on the number of
transmitted modes, Np,,,, we conclude that the conductance of a (narrow) opening will increase
stepwise with increasing width: each time the width increased so much as to allow the next mode
to become occupied and transmitted the conductance will show a stepwise increase by the
universal amount 2e2/h. Note that the stepsize will be only 2/ if each state will be occupied by a
single spin direction only, e.g. in the case of a large magnetic field. We will return to this aspect in
the next section of this chapter.

Before proceeding to generalise the Landauer formula we first want to show some experimental
evidence for the rather remarkable conductance quantisation. To this purpose a narrow
constriction or point contact is required, of the same nature as the one that was introduced in
chapter 3 around figure 3.6 and 3.7a. Starting from a nearly ideal 2-dimensional electron gas at the
interface between two III-IV materials with a large elastic mean free path (from chapter | we
know [, can be tens of jim's) properly shaped gates are realised at the surface by e-beam
lithography. The configuration is shown schematically in figure 4.3. With a negative voltage to the
gates the electrons underneath it will be repelled, leaving a short and narrow channel for the
electrons to travel from the one half-plane of 2DEG to the other. In this way the shape of the gate
pattern is "imprinted" into the 2DEG, defining the narrow channel or point contact required for



Gate

Figure 4.3. A cross section of a
(quantum) point contact or QPC
realised in a 2DEG. Surface gates
with a negative voltage relative to
the 2DEG remove the electrons of
the 2DEG underneath, imprinting

a short and narrow channel in the
2DEG. The width W of the channel
can be controlled by the gate voliage.

our experiment. Note that the width 77 of the channel can be controlled by the gate voltage, with a
more negative value making it narrower. The conductance through the point contact is measured
via two contacts attached to the two large ZDEG areas.

The results at low temperature (~ 1K) are shown in figure 4.4, as obtamed by B.J. van Wees et.al.
(Phys. Rev. Lett. 60, 848 (1988)). The behaviour of the conductance fully complies to the
"predictions” made above, i.¢. a nice stepwise increase with increasing (i.e. less negative) gate
voltage or increasing width # of the point contact, with step size 2e2/4. In the original experiment
up to 16 steps were seen. Because of the quantised behaviour of the conductance. of such a
contact it is commonly referred 10 as a guantum point contact or QPC. It may be of some
(historical) interest to mention that in this case the experimental result preceded the theoretical
description.

(e"/nh)

CONDUCTANCE

-2 . -1.B -1.6 -1.4 -1.2 -1

GATE VOLTAGE (V)

Figure 4.4. The quantisation of the conductance in a (quantum) point contact of variable width,
realised by a gated structure on a Gads-41Gads heterostructure containing a high mobility
2DEG; less negative gatevoltage results in an increase in width. It shows the stepwise increase in
units 2e2/h for each additional mode that is tramsmitted through the OPC.
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channel

Reservoir | Reservoir 2

Figure 4.5. Schematic representation of a state in a certain mode R wzrh a waveﬁmcﬂon Wi oy
that is partially reflected inside the system, leading to an ejj’ectzve transmission probability T,.

It is important to note that in the derivation of eq. (4.9) it has been assumed that each
particle/wave emitted from (say) the left contact in a mode that is allowed in the center of the
channel, will reach the right reservoir. Stated differently, we require a complete or unity
transmission through the channel for each wave in an allowed mode. The natural question arises
of what will oceur if this condition is relaxed, and we allow waves to be transmitted only partially.
Figure 4.5 schematically shows how the wave can be represented in the system.
Let the wavefunction Wn ky represent the wave in mode 7 and let us assume that its transfer from
the left to the right reservoir is characterised by a (complex) transmission coeflicient 7, t.e

the transmitted partial wave is given by b Yaky (4.11a)

and the reflected partial wave by n - Ynly (4.11b)
Taking the wave function to be normalised, this implies for the transmission coefficient 7 and the
reflection coefficient 7,

oty +rar, =t PP =T, + R, =1 (4.11¢)
Here 7, is called the transmission pro_bability and similarly R}, is denoted as the reflection
probability. Note that the normalisation (4.11c¢) is the same as that we require the conservation of
particlesor of wave probability to hold! As now the probability for the wave to reach the other
side of the system (i.c, to be transmitted) is given by 7,, <1 it is not difficult to see that the
contribution to the current for the n-th mode in egs. (4.2) and (4 .8) is reduced by the same factor.
This implies that the conductance can be written as

J 2" N ax
Bt

n=1
This expression is one representation of the famous Landauer formula for the conductance of a
mesoscopic system, Note that if we take T=1 for 17 up to Ny, and T,=0 otherwise we regain the
origina! expression eq. (4.9). So, a finite transmission probability leads to a reduction of the step
size, which will break down the property of universality of the conductance quantisation.

Gy =

Before closing this section we want to return to the simplification that was made just following
figure 4.1, taking a 2-dimensional strip as our starting point for the channel. Evidently, the whole
discussion was centered around the further reduction of the dimensionality of the system to 1D, as
only for that specific case the energy-dependence cancellation of the velocity and the density-of-
states (eq. (4.5)) holds. By the same token, if we would have started from a 3D structure, the wire
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Fi lgure 4.6. Quantization of the conductance of a metal-metal contact formed by two touching
metal wires. By vibrating the two wires relative to each other the contact conductance is varied in
time, which is measured. a. shows the wires, with their bare ends bent such as to weakly touch
one another. b. displays the result obtained for two gold wires. It cléarly shows the plateaus in the
conductance at integer units 2e2/h.

should be made so narrow in two directions that all transport takes place via a limited number of
1D quanturn channels. If this is-so the wire will show quantised conductance.

A recent very simple and in this way highly instructive experiment shows the validity of this
argument, performed by J.L. Costa-Kraemer et.al. (Surface Science 342, .1144-11149 (1995)).

It basically consists of two macroscopic metallic wires (of a few tenths of mm diameter) that are
bent such as to touch each other loosely (see figure 4.6a), in this way forming a small- sized metal-
metal contact. The main idea now is that the conductance of the contact will depend on the force
pressing the two wires to one another. So, by varying this contact force the conductance will vary
as well, and it would be of interest to see whether the conductance indeed shows quantization
under these conditions. The conductance is measured by applying a fixed bias voltage of a few
tens of mV and measure the, current flowing through the contact. The force on the contact is varied
by just "tapping” onto the fixture that holds the two wires. This leads to vibrations of the wires,
yielding the required varidtions of the force in time. A trace of conductance-versus-time thus
should show the anticipated phenomenon. This is indeed the case, as is seen in figure 4.6b. Here
two goid wires are employed. The conductance clearly shows quantization in units 2e2/h , just as
predicted.

Before closing this section we want to present one more experiment relating to the phenomenon of
quantised conductance. Evidently, the quantised nature of the conductance results from the
stepwise change of the number of modes that can be transmitted through the channel if its width is
varied. Basically no restriction on the type of waves is posed in the derivation given above (except
the cancellation of eq. (4.5)), and so a similar phenomenon should be obtainable for acoustical or
optical waves. This has indeed been shown in an experiment by E.A. Montie et.al. {(Nature 350,
April 18 (1991)) using near infrared optical waves of A=1.55 pum. Figure 4.7a shows the set up of
the experiment. Here the light is allowed to enter a detector volume ("integrating sphere” with
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Figure 4.7 The optical analogue of the conductance quantisation. a. schematically shows the
apparatus, with the diffuser used to uniformly occupy all optical modes, and the integrating
sphere employed to measure the frue total transmitted power. b. shows the result of the
transmitted power (or the fotal transmittance) in dependence of the width of the slit: here a and b
represent two different measurement runs.

with added detector) via a shit the width of which can be varied via a piezo driving element. Note
that the'slit decreases in width if the piezo element is forced to expand (via a voltage applied to the
ends of the element). Figure 4.7b shows the result. We see a clear stepwise increase of the
transmitted power or the total transmittance through the shit in dependence of its width. Note that
each step requires the slit width to increase by ~ 0.7 um or half a wave length, which is in
accordance with the fact that one additional mode is allowed {cmp. to eq. (4.11)).

Problem: One important difference between the optical and the electron interference experiment
is the absence (for the optical case) of the energy-dependence cancellation, as seen to exist for the
eleoctron case (eq. (4.5)). Discuss the consequences of this difference.

In the section we have limited the discussion to quantum ballistic transport in zero magnetic field.
In the next two sections the effect of magnetic fields will be discussed, and in particular the large-
field regime will be investigated.

4 3 Tapndau quantisation in larce magnetic field

At a number of places before we have discussed the effect of a magnetic field on the motion of
electrons. In chapter 1 it was shown that the linear motion of a charged particle like an electron
becomes curved due to the Lorentz force acting on the charge. The resulting orbit is circular
perpendicular to the applied field B (see fig 1.9) with a cyclotron radius depending on the velocity
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of the particle and the field strength (eq. (1.8c), encircled with the angular cyclotron frequency
given by @, =eB/m (eq. (1.8b)). Note that the cyclotron frequency is independent of the velocity
of the particle, so all electrons revolve at the same rate! This motion, which is completely
classical, results in effects like the reduction of the resistance of narrow channels with diffusive
wall scattering (see section 2.2, figures 2.4-2.7), the occurrence of electron focusing (section 3.3,
figures 3.6 and 3.7) and the formation of skipping orbits as introduced in section 2.2 (figure 2.4)
and used in the Hall effect discussion at figure 3.11. - -

However, in addition to the classical effect of introducing a curvature of the path of the charged
particle we also introduced a guantum effect on the field on the electron trajectory by realising that
the canonical momentum p is modified via the vector potential A associated with the field strength
B; this was done in section 2.3 in relation to the effect of the magnetic field on the quantum
phenomenon of Weak Localisation.

In this section we will study the quantum effects resulting from the interaction of electrons with a
large magnetic field. In particular we will see how the field leads to the formation of quantisation
of the areal size of the electron orbits and how this modifies the density-of-states from its zero-
field (quasi-) continuos character to a fully discrete spectrum, each state being associated with a so
called Landau level.

As already introduced in section 2.2 it can be shown that a magnetic field B modifies the
canonical momenturm p via the vector potential A defining the field via B=V A A following
ﬁzhigzmﬁ——'qﬁ:mﬁ%—eﬁ | (4.13)
Note that the quantum mechanical aspect only-comes in via the relation p=hk,as the remainder
of eq. (4.13) directly follows from classical mechanics and electrodynamics. The main quantum
consequence is that the electron wave vector (and so the wave length and the phase) now is
affected by the vector potential or the field. As the magnetic field only couples to the directions
that are perpendicular to the field, we limit our discussion to the case that our system is 2- '

dimensional and that the field is taken perpendicular to the 2D plane. In addition we assume an
ideal, ballistic system without scattering.

Already from the classical cyclotron motion which implies a harmonic oscillator behaviour, the
application of quantum mechanics should lead to the formation of eigenstates with energies
quantised in units associated with the classical oscillating frequency. For the Hamiltonian we can
write

_ (P+eA)?
T 2m

with P denoting the momentum operator and U(x,y) representing the electrostatic potential in
which the electrons move. We first assume a uniform, unbounded 2D system, and so we may take

U(x,y)=0 everywhere, Introduéihg a paﬁicﬁlar gau-ge‘for the vector potentiai, A=(0, Bx,0) then
elementary quantum mechanics yields the following eigenvalues for the energy of the electrons

E, = (n+%)h(oc (4.15)

H +U{x,y) | (4.14)

with @, being the (classical} cyclotron (angular) frequency and #n=0,1,2,3.... being the index that
classifies the particular "state". These "states” are called Landau levels. So, at (large) magnetic
fields electrons are only allowed to occupy these levels, or, stated differently, the zero-field
continuous 2D density-of-states (see eq. (1.16b)) is converted into a discrete DOS at high field.
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Figure 4.8. The densities-of-states p(F) for zero and high magnetic field. At zero field all states
in the constant 2D zero field DOS are filled up to the (zero field) Fermi energy Ex{B=0), with
states beyond this energy being empty. At large fields the DOS becomes discrete forming Landau
levels (arrows) at energies (n+1/ ko,

Note that this implies that now many electrons occupy a "state” with the same energy, i.c. such a
"state" is strongly degenerate, reason for us to denote these entities by levels. At first sight this
may seem to lead to a rather fundamental problem related to the fermion nature of the electrons
involved. From the Pauli exclusion principle we know that no two fermions are allowed to occupy
the same quantum state. However, realising oneself that not all electrons occupy the same {r=x,y}
positioniin the 2D system, the added quantum number associated with position again leads to
individual quantum numbers {»,r} for each electron.

Now let us determine the degree of degeneracy per Landau level. Although this can be done
exactly we want to employ a simple picture for this purpose, based on the conservation of the total
number-of electrons in the system. Figure 4.8 shows the DOS (E). For the zero-field case the
DOS for 2D is constant. At zero temperature the states are occupied up to the zero-field Fermi
energy Ep(B=0), indicated by the filled rectangle, and empty for all states at energies beyond. The
high field DOS is denoted by the 8-functions (arrows) positioned at the energies given by eq.
(4.15). Assuming that the total number of states is the same for zero field as well as for high field
(which is reasonable, as the total number of electrons will not change as well!) we immediately see
that all electrons residing in an energy interval siw, will "condense” into a single Landau level as

follows: states from 0-7w, enter the n=0 state at Lg =(1/2)Aw,, states between Aiw - 2haw,

condense into £, etc. From eq. (1.16b) for the 2D case the number of states for an area S and

per unit energy is given by

*
m

N29(3=0)=P2D(B=0)*S=gsﬁ*5 (4.16)

with g =2 for the spin-degeneracy. Thus the number of states available in a single Landau state and -

within the area § becomes
*
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Here @ denotes the total flux B*S penetrating the area § and @y=h/e is the single-electron flux

quantum. By taking a unit area equation (4.17) immediately provides the number of states per

- Landau Ievel or the "DOS" for this case. One word of caution concerning the use of the "DOS" of

eq. (4.17) might be useful, as it is not a quantity given per unit energy but per "unit level” in stead!

Note that eq. (4.17) states that the number of electrons which can be accommodated (in a given

area) in a Landau level {n} increases linearly with the applied magnetic field.

From eq. (4.17) we can derive a convenient quantity relating the number of electrons in the area S,

Ne=nS, to the number of flux quanta Np=@/ Py penetrating the same area, called the filling factor
V:Ne; n,S :ne(I)O:neh (4.18)

N D D/ (DO B el

It is tmportant to note that the formation of the 8-functions for the non-zero field DOS as shown in
figure 4.8 imply that many electrons occupy states with exactly the same energy. This may seem
rather striking in view of the fact that electrons are Fermions and so they should comply with
Pauli's exclusion principle which states that no two Fermions are allowed to occupy a single
quantum state. This implies that all the electrons occupying the energy-degenerate states in a
single Landau level should have at least one quantum number that is unigue to each individual
particle. It is not difficult to see that this is the position vector {r}={x,y}, i.c. individual orbiting
electrons residing in the same Landau level try to prevent mutual overlap. Although maybe
superfluous to say, this is not required for electrons.in different Landau levels: here the different
Landau level index n makes up the distinction in quantum numbers and so these orbiting particles
are allowed to occupy the "same position” in space!

Expression (4.17) allows us to calculate the area &S in the {x.y} plane occupied by a single (spin-
degenerate) state, by simply taking N1, n=2=2, which yields

o8 = LA = ©o (4.19)

eB B

This leads to the important conclusion that each spin-degenerate state in each Landau level
occupies such an area in real space that it contains exactly one single fluxquantum. Realising that
this area is "shared" by two electrons (spin-up and spin-down) the area per electron is only half
that given by eq. (4.19), and so one can associate a length scale (or radius) with a single electron,
given by :

| 85 / B
In= = : 4.20
B g eB ( )

This new quantum length scale is called the magnetic length.

It is important to note that the preceding conclusion does not imply that the (real space) spatial
extent of Landau level states-of differen: quantum number 7 1s the-same. To explain this more
clearly we want to see what relation exists between this new quantum length scale and the
cyclotron radius as its classical counterpart. From €q. (4.19) we see that the area covered by each
Landau level state is exactly the same, irrespective of the level quantum number n. Referring to
figure 4.8 it is obvious that the lower Landau levels will be occupied by electrons originating from
lower-lying states, i.e. by electrons of a smaller kinetic energy. The corresponding “orbits” will
have a smaller “radius” as well, and so these will “trace out” a smaller area in space as compared
to those associated with the higher lying states. The same thing follows (of course!),




Figure 4.9. The real space areas
covered by electron states in a 2-
dimensional electron system in a large
magnetic field The resulting Landau
levels are identified by the quantum
rnumbers n=0, 1, 2, ......

The area for each (disc- or
ringshaped) state is the same
implying that the area of each state
encloses the same flux, namely one
Sluxquarnttum @y, The dotied outer
circle represents the classical
cyclotron radius.

however now in an exact way, by evaluating the solutions to the Hamiltomian (4.14) such as to
determine not only the energy eigenvalues but also the eigenfunctions. These also show that the
Landau states of high-index number indeed have a larger extent in real space than those from the
lower levels. From these Correspondence Principle arguments the following picture arises (see
figure 4.9 and 4.10). Figure 4.9 illustrates that each state covers the same area in space, i.e.

the #»=0 state occupies the central disc of area &5=@,/B, the next state (»=1) occupies the
ringshaped strip adjacent to the disc, which also has the same area, etc. This can be continued up
to the highest occupied level, determined in the way as shown in figure 4.7.
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Figure 4.10. llustration for the
approximate shape of the wave-
Junctions for the different Landau
level states.

a. shows the area for the n=0 state
with a schematic representation of the
wavefunction. Note the non-zero value
of w,? over the area of the disc.

b. shows the similar picture of the
next higher state n=1. Note the
near-zero probability w;Z over the
center part of the area, demonstrating
that the different Landau states try fo
avoid each other. ¢. shows the same
Jor the highest lying state n=2.
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Denoting N, as the highest occupied Landau level, it is simple to derive the relation between the
magnetic length and the classical cyclotron radius Re Nmax™"Nmax/eB. By equating the kinetic
energies one can write directly

| ) 1 1. heB

PRLASYS :(anax+_)hwc:(Nnxa*< +—)—— (4.21a)
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and so

B, Ve = \/M(ZNTE e V2N max +Dip | (4.21b)

Figure 4.10 illustrates the approximate correspondence between the areas in real space and the
shape of the Landau wave functions for the various Landau states, From this combination the
correlation between the different areas in space with the electron probability for the different
Landau level states becomes clear. Note that the for increasing Landau level quantum number the
average orbit size increases. Note also that the distribution of the probabilities over space for the
different Landau quantum numbers demonstrates that states associated with different 52 try to
avoid each other, in this way making the different eigenstates of the Hamiltonian orthogonal.

Before closing this section two more aspects may be useful to be mentioned. First, in the
discussion of the effect of the magnetic field on the electron orbits and their energies we have
completely neglected the effect of the spin of the electrons, except by introducing the spin
degeneracy factor g.=2, e.g. in the DOS (eq. (4.16)). From introductory quantum mechanics we
know that the spin will lead to a finite energy difference between a state with spin parallel and anti-
parallel with respect to the direction of the applied field. This is called the Zeeman splitting, the
size of which is governed by the product of the Bohr magneton up and the Lande g-factor. As a
consequence the energy spectrum given by eq. (4.15) will be modified to read

E,(B)=(n +§-)th %gﬂgs = (n+2i)hf£;iigﬁ (4.22)

m 2 my

It is important to notice the difference between the effective electron mass 7" and the free electron
mass 7. For the free electron case the Lande factor is ~ 2, however in semiconductors it may
deviate strongly from this value and it even can depend on the magnetic field. Despite this in
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: i Figure 4.11. The energy spectrum of
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! K - electrons in a 2DEG in a high
i th - < - magnetic field, including spin. Note
: . that each spin-degenerate Landau
1
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: : level &-function is resolved due to the

: L ! 11 Zeeman splitting, yielding separate &
05 L5 2.5 /3 : 4.5 Junctions for spin up and spin down
(in units ho,) E.(B%0) states.
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semiconductors the spin splitting contribution commonly is more than one order of magnitude
smaller than the Landau splitting, mainly because of the strongly reduced effective mass. Figure
4.11 shows schematically the resulting DOS if the spin splitting is included. It should be
compared to the arrows shown in figure 4.8,

A second aspect that needs mentiening is the notion of the Fermi energy (or the electrochemical
potential) for an electron system in a magnetic field. From thermodynamics we know that the
Fermi energy is defined as the lowest energy required to add the (N+I)st electron to a system
containing N electrons. Stated differently, it is the energy of the state immediately beyond the
highest occupied state. This clarifies what has been schetched in figures 4.8 and 4.11, where
Erp(B=0) and Ep(B#0) are indicated by arrows. While for zero magnetic field the Fermi

energy is defined completely by the electron density (egs. (1.14 and (1.16a)) this no longer is true
at non-zero field. The discrete density-of-states, resulting from the formation of Landau levels
which contain many states that are degenerate in energy, makes that Fermi energy always lays in
one of the Landau levels. As the energy of these levels shifts with the applied field following eq.
(4.15 (or (4.21)), the Fermi energy no longer is constant but depends on the field. As many
quantities such as the magnetic polarisation, the thermopower, the heat capacity etc. depend on the
Fermi energy (and the DOS at the Fermi energy) these will be affected by the magnetic field as
well. In the next section we will see that this also holds for the conductance.

Pmbl{;:;n: schetch the Fermi energy in dependence of the magnetic field. In particular, consider

how it will evolve for such large fields that only the lowest Landau level is occupied. What will be
the spin state of the electrons in this last case?

4.4 Edée states and the guanturn Hall effect

The preceding section provides all the basic ingredients required to discuss the transport of
clectrons in large magnetic fields, i.c. in the case Landau levels are formed. Here we will make
some connection to the end of Chapter 3, where skipping orbits along the wall of a system were
seen to develop if a sufficiently large field was applied. While these skipping orbits were just
"simple” classical bouncing orbits, in this section we will see how these develop if quantum
mechanics is taken into account. Again, as in the preceding section, we limit ourselves to the 2-
dimensional electron gas case.

The derivation which lead to the introduction of Landau levels as the discrete density-of-states for
electrons in a large.magnetic field started by introducing the Hamiltonian.eq..(4.14) for a {single,
non-interacting) electron in a magnetic field. To highlight their main aspects it was assumed in
section 4.3 that the electrostatic potential energy is constant everywhere in the system, arbitrarily
taken as U(r)=0. This is equivalent to dealing with a uniform and thus unbounded system. The
question to address now is how these quantised Landau level states are affected by the
introduction of boundaries or edges in the system. Figure 4.12a shows the typical case of a
channel connecting two large 2DEG areas or reservoirs. Note that we have taken the walls or
boundaries of the channel to have a finite slope. By definition the channel defines the area

J1
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AN
a Figure 4.12. A finite width channel

ina 2D electron system. In a. the

. channel is shown in real space;
electrons are confined in the x-
direction and free to move in the
Y-direction. Quiside the channel the
electron density is zero. In b, a
cross section of the energy landscape
in the (bounded) x-direction is shown.
The dashed line is the electrochemical
potential i, which is constant
throughout the system. Note the x-

b. dependence of the electron density

and so the Fermi energy.

within which conductance takes place and so the electron density is non-zero. This immediately
implies that the Fermi energy will be non-zero too. As outside the channel the electron density is
zero we arrive at a (x-) dependence of the electron density and the Fermi energy. This is shown in
figure 4.12b. It is important to note that, in order to obtain a position-dependent Fermi energy we
are not allowed to vary the electrochemical potential. In doing so we would violate the
thermodynamic requirement of a constant 4 throughout a system of particles that are free to move,
which is the case for the electrons inside the channel. As we know that in this area the relation
#=Ep(x)+U(x) should hold, - i.e. the electrochemical potential is the sum of the kinetic energy and
the potential energy - , the channel is actually formed by the position-dependence of the
electrostatic potential energy, U(x).
At zero magnetic field the electrons will fill all the states available up to the electrochemical
potential (figure 4.13a) (Note: to complicate matters not further we assumed that the channel is so
wide that so many transverse modes (see discussion in section 4.2) are formed that actually a
continuum of states results). Now the magnetic field is switched on and Landau levels are formed
at (kinetic) energies given by eq. (4.15) (neglecting the spin for the moment). For the total energy
of an individual state in a particular Landau level it is not difficult to see that we can write

i 2 k2

E,(x,k,)=(n+ho, +U(x) + —2 - (4.23)

2 2m
For the time being we assume the last term, representing the kinetic energy in the y-direction
which is somtimes called the guiding energy, to be negligible, an assumption we will return to
below. Also below it will become clear why we do not include a kinetic term for the x-direction.

o



continuum of
filled states

X ———> Figure 4.13. Electron siates in a
.  channel. a. represents the case for
a. 1 zero magnetic field, where states are
formed characterised by the wave
vectors {k, ky}. In b. the magnetic
field is switched on and Landau levels
are formed, characterised by the level
- g indices n=0, 1, 2, ... Note the three
- x- ==l = d w different electron states Sy at the
lowest (n=0) Landau level in the
] center of the channel, state S af the
< 3 same position but at the highest
occupied Landau level (n=2), and
b state 83 in the lowest Landau level but
at one of the edges.

Eq. (4.23) is schematically represented in figure 4.13b: the solid lines are the Landau levels with
index #=0, 1 and 2, that fall below the (zero field) electrochemical potential, and so which will be
occupied by electrons. From the picture it is clear that in the center of the channel the constant
U(x) (which we take as the zero energy reference) will also make the Landau levels to be positton
independent. In contrast on approaching the boundaries of the system we see the electrostatic
potential energy to rise and so, following eq. (4.23), also the energies of the Landau levels will
increase similarly. This implies that the Landau levels cross through the electrochemical potential,
one after the other and each at a distinct x-position. Before discussing the consequences of this
crossing in more details let us first concentrate on the characteristic behaviour of electrons at
different positions in space. An electron at the lowest (#=0) Landau leve] sitting in the middle of
the channel (see Sy in figure 4.13b) will see a constant electrostatic potential energy and so it
effectively will behave as if it is situated in a system of infinite size. As discussed in section 4.3 this
implies that it will just be confined to a disc-shaped area, as shown in figure 4.10a. Note that its
center of motion will be fixed in space. Remember from section 4.3 that the diameter of this disc is
approximately twice the magnetic length (eq. 4.20). The same thing holds for the higher lying state
S, shown in figure 4.13b. ' :

For the state S at the edge (figure 4.13b) the situation is different. Here the electrostatic potential
energy rises (gradually) while approaching the boundary. The gradient of this potential gives rise

to a finite electric field, following E(x) = —VU(x) J(note the distinction between energy E and
electric field £ 1). This has an important consequence for the motion of the electron. Looking to



the problem in a classical way the combined action of the electric and the magnetic field lead to a

finite drift velocity given by
E
Vi n,y (%)= “"‘@"‘l (4.24)

Here we take the electric field and the magnetic field perpendicular to each other, as the magnetic
field is perpendicular to the 2DEG and so it will be perpendicular to any wall in the plane of the
2DEG. From the geometry it thus is clear that the (drift) velocity is directed along the y-axis, and
5o in the direction of the channel. So we have to conclude from this classical argument that an
electron at the edge of the system will move along this edge, i.e. an edge current is seen to flow. It
will not be difficult to see that this edge current is the quantum analagon of the current resulting
fromthe classical skipping orbits as discussed before (see section 2.2).

Note that the drift velocity of the electron yields a wave vector in the y-direction as well, simply
givenby k, , =mvg, /[ h .

Problem: Assuming a typical electric field at the edge of ~ 10* V/m and a magnetic field B=2 T,
show that indeed the last term of eq. (4.23) is much smaller than the first one. Take the effective
mass m=0.05 * the bare electron mass.

From figure 4.13 it is obvious that the direction of the velocity (and the associated wave vector)
will be opposite at the two sides of the channel; this follows immediately from the opposing
direction of the local electric fields. Consequently edge currents flow in opposite directions at the
two sides of the channel. Note that this implies that, if the system would have been circular (or of
any other shape that is finite in size) a circulating current is set up, in accordance with the simple
skipping orbit picture.

Now we want to return to the discrete nature of the Landau levels and see how these edge
currents affect the transport through our channel, i.c. what effect it has on the nez current flowing
from one contact at one end of the channel to a second one at the other end. From figure 4.13 we
see that the state denoted by S5 in the lowest (#=0) Landau level sits at the edge and so it will

Figure 4.14. A quasi-classical presentation of edge states resulting from the orbiting+translating
electron trajectories at the boundary. Based on the case of figure 4.13b the 3 filled Landau levels
result in 3 distinct paths the centers of which closely follow the boundary of the system. These
electron states are of a I-dimensional nature and extend all the way along the edge, and are
called edge states.
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experience the lateral movement along the edge into the y-direction. Now we know that for the
net current only electrons at the electrochemical potential contribute. So, we can imit our
discussion to those positions in space where a Landau level crosses through the electrochemical
potential, i.e. states such as Ss. Figure 4.14 shows Aighly schematically how we may view semi-
classically the resulting edge state currents to flow along a (single) boundary, assuming the
magnetic field and electron density of figure 4,13, 1.c. with 3 Landau levels below the
electrochemical potential. Note that these states extend all the way along the edge of the system.
There is however one more important characteristic that has to be mentioned. From the figure we
see that the typical width of the state is approximately given by the magnetic length /g. In addition,
from the discussion in section 4.3 we know that no two individual states of the same Landau level
can be closer to one another than this characteristic length scale, because of the Pauli requirement.
This implies that only one extended edge state electron trajectory is allowed per (crossing of a)

Figure 4.15. A piciorial view of edge states or edge.channels in a 2DEG subject fo a large
magnetic field The topmost figure (a.) shows the system in an (x,y,E) representation,” =
demonstrating the relation between the positions of the edge states and the crossings of the
Landau levels with the constant electrochemical potential. The lower panel (b.) shows these states
in real (x,y,z) space. Note that the figures are cut-throughs: the system is assumed continuous
along the y-direction.
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Landau level, or, each edge state is /-dimensional in nature. This is a very important conclusion as
we will see below.

So, in short, we have shown that near the boundary of a 2DEG system subject to such a large
magnetic field that Landau levels are formed, well defined edge states (sometimes also called: edge
channels) develop which are characterised by the following: they are of a 1D nature; these states
have a width of typically the magnetic length; there are just as many edge states as there are filled

Landau levels in the bulk (or central area) of the 2DEG; each 1D edge state is characterised by the’

quantum numbers {1,k }; they are spatially separated by distances governed by the confining
potential gradient.

Problem: Evaluate the spatial separation between two adjacent edge channels, in terms of U(x)
and the applied magnetic field B. Taking the same typical electric field at the edge as in the
preceding problem, how does the separation compare to the magnetic length?

Figure 4.15 shows in a pictorial way the most important characteristics of edge channels, both in
energy space {(a.) as well as in real space (b.). It illustrates the relation between the edge states and
the Landau levels from which these are formed. This picture also shows that electrons residing in
(Landau level) states in the center of the system, with their center-of-orbit being stationary, will
not make a contribution to the currents in the system.

Now we are in the position to discuss how the fact that the net current in such a 2DEG in a large
field is carried by the 1D edge states affects the conductance through the system. Figure 4.16a
shows these edge states running through the channel, connecting the two contacts or reservoirs 1
and 2 with their respective electrochemical potential s and u,; we assume 1>z and write
A=~ The left reservoir 1 (put at the largest 1) emits electrons into the system. Evidently

P 2
- o
1
H1 XT ) Figure 4.16. Edge states and their
S ! > occupation by two contacts or
2 0 > % reservoirs attached at the ends of
y ——> the channel. Panel a. shows the

system in a schematic way, with the
two contacts at the ends; the contacts
are taken to be at electrochemical
potentials py and p; respectively, with
Ap=p-p>>0. In b. the difference in

= occupation of the states at one
boundary relative to the other is
shown. Note that all the net current is
carried by the edge states and in the
energy inferval Agt.
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these electrons only can occupy edge states. Now it is important to note that at only one side of the
confining channel these electron states allow electrons to travel from contact 1 to contact 2. So,
only at one side of the channel the edge states will become occupied up to the electrochemical
potential 111 of the emitting contact 1. By the same token the edge states at the opposite side of the
channel only contain electrons travelling in the opposite direction and they will be occupied by
electrons emitted from contact 2 and thus these states will be filled up to ,. Note that again the
magnetic field leads to breaking of the time-reversal symmetry: while at zero field all states can be
occupied by electrons travelling in both directions this is no longer so at non-zero magnetic fields.
Figure 4.16b shows this in an (£,x) cross section through the 2DEG. For simplicity two Landau
levels are assumed to be occupied in the center of the 2DEG, and so two edge states will be
present.
To evaluate the current we sirply can take the same approach as before in section 4.2, starting
from eq..(4.2). For each edge channel # we can simply write

My

et n == [ vy(E)*p(E)dE (4.25)

Ha
for the net current as it is transported within the energy interval Au=u,-1,. Note that, as before, all
the current from e.g. contact 1 to 2 for energies <y, is compensated by current (at the opposite
edge) running from contact 2 to 1, and so this will not contribute to the net electron flow from
contactl to 2 (and so the net current from contact 2 to 1 (because of the negative electron
charge)). Now the important aspect of the 1D nature of the edge states comes into play. From the
discussion around eqgs. (4.4) and (4.5) we know that the particular feature of 1D systems is that the
velocity and density-of-states have their energy dependence cancel, yielding that the product of the
two is the constant 1/A (see eq. (4.5)). This is also the case here, and so we can use all the steps

following eqgs. (4.4} and (4.5) as well. This immediately leads to the net current per edge channel
being given by

2
Jner n= €8s AAU' 8s Vbzas (4.26)

with Viae=-(l1-LipYe bemg the voitage difference between the two contacts 1 and 2. This is the
current per edge channel, and so the total current is obtained by simply multiplying (4.26) by the
number of edge channels (or occupied Landau levels), N, max- Consequently the (two terminal)
conductance is given by

N1
; z ']ner,n )

G — net . n=() - Nmax gSe (427)
Vbias . .Vbias h.

which again shows the (by now rather familiar) quantisation of the conductance in units e2/4 (if
the-spin is taken into account). The "quantisation counter” N, is now given by the number of
edge states in the System, in contrast to the zero magnetic field case discussed in section 4.2 where
this parameter was related to the width W of the system (see eq. (4.11)).

As a next step we introduce additional contacts in the system. More specifically we add two more
contacts in order to realise a system in which we can study the Hall effect. Figure 4.17 shows the
typical Hall configuration, with a total of 4 contacts (note the similarity to e.g. fig 3.11). On



Figure 4.17. A typical
4-terminal configuration
employed to discuss the Hall
effect in the edge channel
regime. For simplicity two

edge channels are assumed to -

exist (N=2).

purpose we have deformed the ideal Hall cross into a topology that is less symmetric, as we want
to show that the result we obtain for the Hall conductance will be extremely insensitive to the
particular configuration. This is in marked contrast to a common Hall experiment, where the
symmetry of the layout is crucial for a valuable measurement. We assume the net current to be
introduced via the (current) contacts 1 and 3, and. we evaluate the (Hall) voltage developing
between the (voltage) terminals 2 and 4. Take z;>u5.
As all edge states populated by reservoir L up:to-z follow the lower edge and terminate in
(voltage) contact 2 the fotal current running from 1 to 2 is given by
e

J152 = H185 7 N (4.28a)
1t is crucial to note that the direct inverse current, i.e. flowing directly from reservoir 2 to
reservoir 1, is zero, as no edge state leaving reservoir 2 connect to contact 1. Or

Jr_1=0 {4.28b)
Similarly for the total currents injected into the system from all contacts we can write down the
same, or _

e

Jiosi+1 = Hi&s 7N (4.29)
and

Jis15i =0 (4.29b)
Now we have to distinguish between the current contacts 1 and 3 and the voltage contacts 2 and
4. At voltage contact 2 the »et current should be zero and so .

Ji52 =253 _' (4.302)
or from eq. {4.28a) _ :

= (4.300)
Evidently the same will hold for contacts 3 and 4 and so

M= (4.31)

Now let us turn to the current contacts. Here the conservation of current requires (see figure 4.17)

of



Tper =—(J152 = J451) (4.32)
and so, using eqs. (4.28a} and (4.30b) we immediately find

4 [ €
Iner = =(tt1 = H3)gs - N = (11 ~Ha)gs N =eVg; N {4.33)
So, the Hall conductance follows as
! e
Gpay == Ng,— 434
Hall Vs 85 (4.34)

We find that the Hall conductance (or equivalently the Hall voltage at fixed current) is quantised,.
again the well-known units e2/h. This is the famous integer quantum Hall effect or IQHE, as it
was found experimentally by K. von Klitzing et.al. in 1980 (Phys. Rev. Lett. 45, 494 (1980)), an
accomplishment for which von Klitzing received the Nobel prize for physics. It is denoted
"integer" while the counting factor preceding the quantised unit e2/A is an integer, a point we will
return to at the end of this section.

One of the more recent experimental results of this quantisation of the Hall conductance is shown
in figure 4.18. Even though this figure may look somewhat complicated at first sight it contains a
wealth of information which we will discuss step by step. Two traces are displayed, the topmost
one being the Hall conductance Gy, while the lower, much more structured trace denoted by p,
basically is a measure for the strength of the scattering from edge to edge (i.e. inter-edge events of
the type S, or S3 that will be discussed in figure 4.19). The filling factors are indicated at the top
of the figure. Note that the plateaus in the Gryap-B curve correspond to the complete filling of a
certain number of Landau levels (i.e. integer filling factors v, as given by eq. (4.18)) while the
steps i between correspond to the case that a certain Landau level in the bulk (or center of the
channel) passes through the electrochemical potential. Note also that the structure in both curves
does not stop at filling factor v=1, but in stead a whole "wood" of peaks and valleys, and plateaus
18 visible at filling factors smaller than one: we will return to these features at the end of the
chapter?

In order to appreciate the quite striking implications of this (integer) quantisation we need to
discuss a few more details. First, it is of importance to note that in the derivation along the eqgs.
(4.28) to (4.34), we have actually employed the Landauer formalism as introduced in section 4.2
around eq. (4.12). The particularly attractive feature we were able to use was that the transmission
probabilities Ty were very easy to evaluate, as these were either 1 or 0 (e.g.,

Ji5220=T =T =1 and Jy 1 =0=2T 41 =17, =0).

The second point to note is that at first sight it may seem rather "superfluous” to make the step in
eq. (4.33) from 4, to i, and from iy to y4. This however is not the case. It should be note that the
determination of the electrochemical potential of a currens carrying reservoir is not at all obvious:
any non-zero resistances inside the contact will lead to potential gradients and so it is not clear
what will be the exact value of the electrochemical potential up to which energy the edge states
will be occupied. This is no longer so for the voltage contacts. Here the zero current condition
allows a direct measurement of the electrochemical potential of the emitted electrons (i.c. those
that are injected into the system). It is this distinctive use of current and voltage contacts which
allowed the first quantised Hall measurement by von Klitzing et.al. already to be at a precision of
~ 0.001 % or 10 part-per-million (ppm). At present (1996) such measurements are employed to
realise a universal standard of resistance, and accuracies of 0.001 ppm (or nine digits behind the
decimal point!) have been achieved.

Jg
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Figure 4.18. The quantised Hall effect in 2DEG in a GaAs-AlGaAs heterostructure. The very high
quality (=200 m*/Vs or | ~10 um) of the low-density electron system (ny=1:3%1045-m-2) is
clearly seen from the rich structure in both the Hall resistance Py as well as the length-wise
resistance p,,. In the Hall trace flat plateaus are seen: these occur at integer filling factors v, and
demonstrate the quanium Hall effect. Note that a plateau in the Hall resistance corresponds to a
minimum in P,,. Based on the electron density v=1 is found at B=5.5T. Up to this field value the
plateaus result from the integer quantum Hall effect; beyond this field the plateas (and
corresponding minima in the resistance) are due to the fractional quantum Hall effect. The
feature at B=11T at v=1/2 is discussed separately in the text.

In this respect a third comment is useful. For this accuracy to be reached one has to have unity
transmission from contact to contact. We want to dwell on this aspect somewhat more, as it will
provide us with some more insight in the effect of scattering on the QHE. Figure 4.19 shows the
Hall cross configuration with again two edge channels. In this figure a number of different
scattering processes are indicated and we will see what their specific consequences are for the
QHE. One can distinguish between intra-edge scattering events, making the electron to change
from one edge state to a different one (i.c. a change of n) however continuing to adhere to the

. same boundary of the system; .one.such case is indicated by S, in figure 4.19. It is crucial to note
that this would only lead to a rearrangement of the charge carriers over the different edge states,
and so it will not affect the total current that enters the following (voltage) contact. This-implies
that intra-edge scatterings do not affect the accuracy of the QHE. The same holds for scatterings
such as S, and S,. These events, where the particle crosses all over the sample from one boundary
to the opposite one and called inter-edge scattering, indeed affect the net current. However the
current arriving at the voltage contact is affected by exactly the same amount and so the Hall
conductance will remain unaffected. The third type of events, denoted by S,4, however is of a more
serious nature . This is also an inter-edge event, however now the net current is nof affected while

9o



Figure 4.19. Scattering
processes in the guantum Hall
regime. Note the distinction
between intra-edge scattering
_events (such as §;) and inter-
edge scatterings (S, S3 and
'Sy In particular events that
.. .allow an electron to by-pass a
" voltage contact strongly affect
the QH accuracy, e.g. process
Sy which pass by contact 2,

the current arriving at the voltage contact (in this case contact 2) will become reduced. Thus the
Hall conductance will increase beyond its quantised value, detoriating the intrinsic QH accuracy. It
is good to note in returning to figure 4.18 that indeed we see that at the plateaus of the Hall
conductémce where the filling factor is integer, the value of o, becomes very small. This is in
agreement ‘with the fact that g, represents the degree of inter-edge scattering and the notion that
for an accurate quantisation the inter-edge scattering should be minimal.

Problen‘_'a: what geometrical measures should be taken in order to reduce inter-edge scattering
processes as much as possible? What length scale(s) are involved?

4.5. Closing remarks

Before closing this chapter we want to hint upon a few more phenomena that relate to the integer
quantum Hall effect. It 1s impossible to discuss these at any depth as most of these phenomena
require a much more rigid approach. The essential difference between the simple integer effect and
individuals from this "zoo of exotic (though very interesting!) animals" requires one to go beyond
our beloved single-particle picture for their proper description.

First, the very fact that we indicate the phenomenon discussed up to now as the integer QHE
indicates that a different type may exists as well. Indeed, only a few years after the 1980 discovery
of the JQHE, a second type was found (D.C’ Tsui et.al, Phys. Rev. Lett. 48, 1559 (1982)). In
large magnetic fields such that the filling factor v=n A/eB, representing the number of electrons per
flux quantum (see eq. (4.18)), is <1, additional flat plateaus are found. Figure 4. 18 shows a whole
sequence of these to occur, From analyses it is found that these corresponds to filling factors of a
Jractional value

y=2 (435)
q
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with p and g positive integers, and ¢ being restricted to odd values. As the filling factors no longer
are integer, this effect is denoted as the fractional quantum Hall effect or FOHE. The essential
difference with the integer effect is that in the description of the fractional effect the Coulomb
interaction of the electrons has to be taken into account. Note again that at the plateaus in the Hall
conductance the scattering is suppressed; as is seen from the strong reduction of p,.

The second, even more recent addition is only slightly visible in figure 4.18, albeit only in the p,,
trace. At such a magnetic field that the filling factor equals 1/2 a weak feature is seen. More
importantly, looking to the symmetry of the FQH py - minima structure below and above the
v=1/2 position makes one to believe that, even though the 1/2 state seems:to differ from the
regular FQH states (e.g., as seen from the absence of a plateau at 1/2), it at least will not be
independent from it. This notion has been addressed strongly over the last few years and a rather
peculiar picture has emerged, based both on theoretical considerations as well as experimental
results. It is believed that at (and near) filling factor v=1/2 a new particle comes into being. This
particle is a combination of an electron with two flux quanta coupled to it. Such a dressed-up
entity is denoted a quasi-particle, and for this particular case it is called a Composite Fermion or
CF. These peculiar particles have been proposed first by J.K. Jain in 1989.

Now, as this CF particle has two flux quanta adhered to it, at a field such that v=1/2 the total
available field is "distributed" over the available electrons (to form the CF's), and as a
consequence the CF experiences a zero effective magnetic field. One of the immediate
consequences is that at such a field that v=1/2 the CF should travel in'a Straight line, or the
composite particle will show an infinitely large cyclotron radius. In section 3.3a the electron
focusing experiment was performed at small fields to verify the classical cyclotron motion of
electrons. A similar experiment should be possible with composite Fermions, but now with
reference to effective fields. Indeed such CF focusing experiments have been done to investigate
this prediction and has been found to agree.

Just as a short final note on these peculiar particles we return to the noted particular grouping of
the fractional p,,- minima around the 1/2 filling factor field value. These fractional states now can
be interpreted as the infeger quantum Hall states for the Composite Fermion. To show this more
clearly one can rewrite the fractional filling factors (4.35) for the most clearly visible plateaus (or
the strongest minirma in py, ) as

p

= 4.36a
2ptl ( )
or, writing Vp=1/2 (i.e. the filling factor for the ideal formation of the CF's)
+1 2p%
11 1_plvotl 2p] (4.36b)

V. Vo P p p
This expression shows that p now represents the index of the highest filled Landau level, however
not for electrons but for our new quasi particle, the CF.
[t wiil not come as a surprise that in this highly intriguing much work is in progress to understand
the properties of these exotic new particles.

From the preceding two examples it will be clear that exciting new phencmena are stil} discovered

in these by now very mature 2-dimensional electron gases in semiconductors, and it is likely that
more will emerge in the (near) future!
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5. Aharonov-Bohm effect and persistent currents
in non-superconducting systems

Keywords: phase coherence; fluxquantum; diffusive transport; thermodynamic
equilibrium; energy eigenstates;

5.1 Introduction

In the classical Drude description of transport of electrons in the solid state (see chapter 2,
section 2} it is assumed that, whenever an electron scatters, all information on its previous
“state will be lost. As we have seen in chapter 1 such loss of information only occurs in the
case of inelastic scattering events, where each particular scattering event is unpredictable
in both time and position. In contrast, elastic scattering affects the trajectory of the
travelling electron in such a way that the phase shift resulting after the scattering event
can be predicted. Consequently this will lead to quantum interference of the electronic
wavefunction over a length scale determined by inelastic processes, a size which
commonly is much larger than the elastic mean free path (e.g., see chapter 2, section 3).
In addition, this not only holds for a single electron, but also for the average effect of a
number of electrons, i.e. it affects the conductance.

In this. chapter we will discuss two-particular-effects which clearly demonstrate this
quantum-interference, both occurring in small ring=shaped structures. These are the
Aharonov-Bohm effect and the phenomenon of persistent currents in normal (i.e. non-
superconducting) conductors. The two effects are discussed here sequentially as they are
connected rather strongly.

5.2 Aharonov Bohm effect in the solid state

In this section we introduce the effect of a magnetic field on the electron transport
through ring-shaped conductors at low temperatures, such that phase coherence of the
electron wavefunction in the ring is (at least partially) preserved. We will see that the flux
enclosed by the ring modulates the total transmission through the ring with a period of
either one flux quantum or half of it. This periodic flux dependent modulation leads to an
oscillatory behaviour of the conductance versus the applied B-field. The amplitude of this
oscillatory part is found to be ~2¢*/ at low temperature and low voltage across the ring
terminals. Increasing these leads to suppression of this amplitude, and we will see that the
characteristic energy scale is given by the Thouless energy, introduced in chapter 1. We
will also see how averaging over an ensemble of (nominally equal) rings will lead to
suppression of the one-flux quantum periodicity while preserving the half-flux quantum
contribution. After a brief introduction to the effect, we continue with a theoretical
discussion of the subject in subsection 5.2.a., followed by a few important experimental
results (subsection 5.2.b.).
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Fig. 5.1. Aharonov-Bohm configuration. The solenoid generates a magnetic field, with
the shield preventing the field fo be present at the trajectories of the electron.

The Aharonov-Bohm (AB) effect bears its name after Aharonov and Bohm who
presented a thought experiment, describing how a magnetic flux affects the interference
of a split electron wave [Phys Rev. 115, 485 (1959)]. The most essentia} aspect of the
"experiment” is that it unambiguously confirms the physical reality of the magnetic vector
potential, raising it from a mathematical entity to a true physical quantity. Fig. 5.1 shows
the basic features of the experiment. An electron wave emitted from a source is split into
two partial waves which are recombined at a further distance, effectively forming an
electron interferometer. The two partial waves enclose a flux localised in the area
between the two waves, such that no magnetic field exists anywhere along the path of the
electron waves. However, despite the absence of a magnetic field all the way along the
trajectories (and so without the Lorentzforce acting on the particle!), the vector potential
associated with the field can not taken to be zero everywhere along a closed path,
irrespective what gauge is chosen.

Quantum mechanically we know that the vectorpotential A modifies the canonical
mormentum of an electron with charge -¢ travelling at a velocity v according to

p= hkﬂir:mv + eA 5.1)

A change in momentum implies a change in phase acquired by the electron after
travelling a certain distance (see also below). So, a magnetic field which may be zero at
the actual electron trajectory, still affects the phase of the electron wave via the vector
potential. : - : : .

It took quite some time before this rather remarkable fact became accepted, and even now
the discussion is not fully completed, despite the indisputable experimental confirmation
of the effect for electrons in free space (A. Tonomura et.al., Phys Rev. Lett. 48, 1443
(1982); A. Tonomura et.al,, Phys. Rev. Lett. 56, 792 (1986)). Although of considerable
fundamental interest, we will not discuss these experiments in detail but continue with the
theory for electrons in a solid.
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The total phase acquired by a propagating electron along some path described by a
position variable [ immediately follows from the canonical momentum of eq. (5.1)

AQ :jk'.d?:%j(mmeﬁ)df:mv + AP, (5.2)

i.e. the sum of a contribution due to the velocity v of the particle and one resulting from
the vectorpotential A. Thus, the phase shift induced by the vectorpotential is given by

Ao =+ [Adl | (5.32)

and so the phase shift induced by the vectorpotential on an electron propagating once
around a closed loop is found as

B - ®
Ady = % §A.dl = %ﬁ(mm.ds S -%BS =m (5.3b)
0

~with @, being the flux quantum A/e. So the phase difference equals 27 fimes the enclosed
Sflux in units.of the flux quantum @), As a phase difference is only distinguishable
Mod(2r) any effect resulting from this enclosed flux will show a periodic behaviour, with

a period of one flux quantum. The enclosed flux is often referred to as the Aharonov-
Bohm- or AB-flux. '

5.2.a. The Aharonov-Bohm and Altshuler-Aronov-Spivak eﬁeétx in the solid state ~

We want to investigate how the Aharonov-Bohm effect manifests itself in the solid state,
We concentrate on electrons in metallic structures in the quantum diffusive regime, 1.e.
lp<<lg~<L, with L denoting the size of the AB structure, more specifically the length of
the circumference of the ring. Contrary to the original AB experiment, in these structures
the magnetic field commonly is not confined to the centre of the ring or loop only, but it
will also penetrate the metal where the electrons reside, i.e. the electrons experience the
B-field in this case. Despite this (rather fundamental!) difference, also in the solid state
the effect is called the Aharonov-Bohm effect.

Figure 5.2 shows a ring of small crossection, with two diametrically positioned leads attached

at the junctions J; and J, to allow conductance measurements. An external magnetic field
induces a flux @ in the ring. Two types of trajectories are shown, one connecting the input
junction (I; ) to the output (J,), and the second type returning the particle to the input

junction. In figure 5.2a two paths 1 and 2 of lengths L; and L, respectively (Li~L;) run along

the "top" and "bottom" branch of the ring, each path covering only half of the circumference L

of the ring. In b. the paths 3 and 4 fully encircle the loop clockwise and counter clockwise
respectively.
Let us first concentrate on the trajectories of the type 1 and 2 shown in figure 5.2a. The

acquired difference in AB phase between the two paths follows directly from eq. (5.3b), with
half of the total AB phase lagging (i.e. with negative sign) along one path and the other half

leading (positive sign) along the second path. Consequently the phase difference will increase

18
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Figure 5.2. Simplified picture of the electron
wave interference in a conducting ring. Two types
of trajectories contributing to the AB effect are
shown. J; is (arbitrarily) taken as the junction
with the input lead and J, that for the output side;
a.: two semicircular orbits 1 & 2 leading to
coherent forward scattering; b.: two full circular
orbits 3 {(dashed line) & 4 (solid line} leading to
coherent backscattering; ¢. vectorial summation
of output wave amplitudes; d. total transmission
0 probability T=Ib+b, (solid line is for identical
path lengths 1 & 2; dashed line for non-identical
e - - - path lengths). A more eluborate evaluation shows
that the oscillation at ®=0 can not take any
random value between the extrema, but is either maximum or minimum, i.e. the phase is either

Ad=0 or Ap=m. This is shown in e.

by 27 each time one flux quantum is added to the ring. So the period of the AB oscillations
resulting from these types of trajectories equals @, or A/e.



In chapter 2 we have seen that, based on the Landauer approach, the conductance of a system
is determined by the transmission probability of the electron waves. So, to calculate the
conductance of the ring we have to evaluate the total transmission probability for a unity
incoming wave from (e.g.) the left lead, splitting at the entrance junction [y, each partial wave
travelling along its respective path and recombining at J,, taking into account the phase
acquired by each partial wave. We first will give a simplified picture of the resulting
interference of the electron waves, and discuss and correct one error that results from this
simplified picture afterwards.

Let us write a; and a, for the amplitudes of the partial waves in path I and 2 leaving the
wave-splitter J;, and b; and b, for the waves arriving at J, to form the output wave (fig. 5.2a).
With unity incoming wave, laj+a,l2=1 the total transmission probability 7'is derived from the
vector summation of the partial waves b; and by, yielding 7= 15;+5,# (figure 5.2c and d). We
simply can write

bj=a;F(L)exp(—id;) = a;F(L)exp(~i(Ad, j + A0y ) (=12)  (5.4)

- with Ag, ; denoting the acquired phase at zero B field for the partial wave along path j, etc.
The prefactor F(. Lj) 1s real and we assume it to be 1 for the moment.
For the transmission probability T we thus find

T = a? FX(Ly) + a3 F2(Ly) + 2a1a, F (L) F(L, ) cos(Ady — Ady) (5.5)

In an ideal, perfectly symmetric ring both the lengths of the trajectories 1 and 2 as well as
the amplitudes of the partial wave amplitudes a; for the two paths (¢) = a; = %“\/5 ) are

equal. The equality of the length implies that also the phase differences A¢, ; for the two
paths will be the same. At zero magnetic field the two partial waves will arrive at the
output terminal with the same phase, i.e. cos(A¢,- Ad,)=1. From eq. (5.5) we see that this
constructive interference yields a maximum total (forward) transmission probability T of
the wavefunction at the output lead, or a maximum of the conductance through the ring
(fig. 5.2d, solid curve). With the assumption F(/)=1 we find 7=1, i.e. unity conductance at
B=0 or @=0. At non-zero flux a non-zero phase difference will result from the vector
potential term and so the cosine term in eq. (5.5) will become <1 (fig. 5.2¢). In particular
at ®=®y/2 the cosine will be -1, leading to a full suppression of the transmission, i.e. zero
conductance or infinite resistance of the loop. Thus, the resistance is found to oscillate
with the applied flux, with a period given by a flux quantum penetrating the ring. The size
of the oscillation is governed by the ratio of the two output partial waves by and b,.

To fulfil the conditions for a ring to be ideal we have to realise that the zero flux phase
difference result from the difference in path length of the two halves of the ring, taken in
units of the Fermi wavelength Ap. In a metal Ap equals.a few.tenths of a nm. This would
imply that the fabrication of these rings should be accurate to better than 0.1 nm, a
conditton which can not be met using present day technology (see Appendix A). So,in a
realistic ring the two halves of the loop will not be identical and thus the phase difference
on arrival at the output at zero B-field will not be zero. As the phases will depend on the
specific microscopic details of the two trajectories, its difference A¢(P=0) at arrival will
have a random value anywhere between -x and +7, making the total transmission to lay
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somewhere in between the maximum and minimum at random at @=0 (fig. 5.2d, dashed
curve).

The picture we presented above provides a transparent view of the way electron wave
interference leads to AB oscillations. However, as we mentioned at the beginning, it is
highly simplified. If a more elaborate approach is taken the main modification that
follows relates to the zero-flux phase of the oscillation. In the preceding discussion we
“forgot” to take into account that, at (e.g.) the exit splitter a certain fraction of the wave
that approaches the splitter via one arm does not leave the ring but “crosses over” and
continues into the other arm, somewhat similar to the AAS type of contribution. This has
consequences for the zero-flux phase. While the simple picture yields a random value for
it, i.e. -n<A@(P=0)<-7, the more complete calculation shows that A¢(D=0) is either 0 or
. Now it is found that the randomness associated with the microscopic details of the ring
enters in a different way, namely which of the two values is assumed in a particular case
is again random. This is shown in figure 5.2¢ by the solid and dashed curves. As just
briefly mentioned, it is the accounting for the wave that continues inside the ring after a
splitter that is the key element for this symmetry of the transmission (and conductance)}
around zero flux. Basically this “accounting” guarantees that we meet the fundamental
requirement of conservation of particles in the transmission process through the structure
with in addition the condition for time-reversal symmetry at zero magnetic field. Note
that the first of the two conditions is quantummechanically equivalent to the conservation
of wavefunction probability 'PI>. One step further, the correct way of keeping track of the
wivefunction probability implies that we allow the formation of well-defined eigenstates
irf':'the ring. We will return to this aspect in section 5.3 on persistent currents in normal (=
non-superconducting) conductors, where the existence of these eigenstates is at the key
element for the occurrence of such currents.

Y

In a realistic ring two more influences have to be accounted for. Just as the lengths of the
two halves may differ, also the junctions may show asymmetries in their wave splitting
(and combining) properties. This implies that the amplitudes a; wilt differ. From eq. (5.5)
it can be seen immediately that 7, . will be kept equal to 1. However, the minimum
transmission will become finite, i.e. T,,;,>0. This implies a reduction of the amplitude of
the AB resistance (or conductance) oscillation (see figure 5.2d).

In our preceding discussion we assumed that the total incoming wave intensity arrives at
the output junction, i.e. in eq. (5.4) we took the prefactors F(L)=1. This will no longer
hold when scattering is taken into account: any scattering of the electron(-wave) while
traversing the arms, either elastic or inelastic, will reduce the transmitted amplitude,
making £ (L J<1. However, the way the two different scattering mechanisms affect the
transmitted amphtudes differs.considerably. .

Inelastic scatterings will reduce the phase coherence during the travelhng of the waves
along the respective paths. So, the resulting phase coherent amplitude, which is the only
relevant contribution to the AB effect, will be governed by an exporential decay in
dependence of the path length / in terms of the phase coherence length Iy ie. given by
exp(-Li/l ). This loss of phase coherence thus is accounted for by multiplying the total
transmission T of eq. (5.5) by a factor

N



G(l¢):exp(-L1ﬂ¢}.exp(—L2/1¢)=exp(-L/Z¢) (5.6)

with L denoting the length of the circumference of the ring. From this it is clear that the
phase coherence length is the relevant length scale governing the maximum size a lecop
may have to display these phenomena, i.e. preferably the diameter should be not too large
compared to [, ‘

The effect of elastic scattering on the amplitude is not so simple to evaluate
quantitatively. Initially an elastic scatterer wili reduce the amplitude of the forward
travelling wave in an arm. However, the wave thus reflected may become re-reflected by
a scatterer lying more "upstream” along the path. This process results in multiple elastic
scattering leading to a complicated standing wave pattern, the details of which will
depend on the microscopic spatial arrangement of the individual elastic scatterers.
Evidently this process affects both the (zero B-field) phase and amplitude of the wave
that ultimately arrives at the output junction, however its complexity prevents a
quantitative evaluation. We will return to the problem of the amplitude of AB oscillations
after discussing the related AAS oscillations and see that it relates to the probiem
discussed. at the very end of chapter 2, when we very briefly hinted upon Universal
Conductance Fluctuations (UCFs).

Despite the complexity introduced by elastic scatterings this has no effect on the
phaseshift induced by the magnetic field. This rather remarkable (and counterintuitive)
fact is an immediate consequence of the way the vector potential acts along a path, as
expressed by eq. (5.3b). From it we read that the field-induced.phase:shift only relies-on
the enclosed area S of a closed orbit. So, irrespective of the:details of the trajectory (e.g.
whether parts of it are traversed more than once due to multiple reflection), at a given
field value the acquired phase of eq. (5.3b) will depend only on the fixed area enclosed by
the circumference of the ring.

Let us now turn to the second type of trajectories, indicated by 3 and 4 in Fig 5.2b. In
contrast to the preceding case these waves encircle the full loop, returning to their point of
entrance to interfere. This leads to coherent back scattering (or reflection), in contrast to
the preceding semi-circular trajectories showing coherent forward scattering or
transmission (note that both affect the total transmission, as the sum of the probabilities
for reflection and transmission equals 1). Apart from this, a more intricate difference
between the two types atise.

Assuming only elastic scattering processes in the two arms, any (clockwise) path 3 can
aiso be traversed in the reverse (counter clockwise) direction, i.e. being a path of the type
4. So, each path 4 can be seen as the time reversed trajectory of a path 3, making the
phases acquired (at zero flux) for the two partial waves exactly equal. This implies that at
zero flux the resultinginterference will always yield the maximum total wave amplitude,
or maximum backscattering probability R. With 7=1-R this yields a minimum in the
transmission probability from entrance to exit lead and so a maximum in the resistance
(minimurmn in the conductance) of the loop.

At a non-zero flux @ the complete encircling of the loop (in mutually opposite
directions!) leads to the following phase shifts for the waves 3 and 4:
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and Apy =~2r——=—-Ap; (5.7b)
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1mp1y1ng a total phase difference A¢;-Ad, that is twice as large as in the precedmCr case

of the semi-circle trajectories 1 and 2. o, in this case one oscillation period is obtained if

the flux through the loop s increased by @y/2, i.e. twice as small as before. This is called

the @y/2=h/2e, Alishuler-Aronov-Spivak or AAS oscillation, after the persons who were

the first to investigate these.

Concerning the effect of scattering all the arguments given before for the common AB
effect also apply to the present AAS case.

Problem: The effect of the phase coherence-length is to reduce the AB resistance
oscillation amplitude. Discuss which will be affected most: the A/ or the h/2e
oscillations.

We now want to return to the problem of how to evaluate the amplitude of AB (and AAS)
oscillations. In addition it is highly instructive to discuss how this depends on external
parameters such as temperature and applied current or voltage (see also Appendix B). In
the preceding discussion we have evaluated the conductance based on the transmission
probability of a single electron wave (see e.g. eq. (5.6)). We thus did assume that the
sti:hcture was 1D. This implies that the width of the ring should be on the order of half a
Fermi wavelength, i.e. ~0.1 nm in a metal and ~10-20 nm in a 2DEG semiconductor. In
real experiments the minimurmn width of the ring is dictated by fabrication capabilities, so
~30 nm (see Appendix A). So from this experimental constraint it is evident that the
single-channel 1D description can be seen as approximate only. The effect of the finite
phase coherence length is not modified. In addition also the basic periodicity of one flux
quantum is not affected, and it even can be shown that this property is very fundamental
helding for a broad variety of conducting systems.

Within the 1D description it is evident that the amplitude of the conductance oscillation
(or fluctuation) will always be < ~e2/h. In the multi-channel case the amplitudes will be
affected, in particular via elastic effects. It is of considerable interest that also in this case
the amplitude of the conductance fluctuation again is ~e2/h. This behaviour is found to be
universal for the quantum diffusive regime, and we discussed it already very briefly at the
end of chapter 2. Effectively it seems as if the transmission of the individual channels
contributing to the total transmission do not behave independently, but are somehow
coupled by a so- called sum rule. Thls isa very fundamental property of mna’om quantum
Systems.

The next aspect that needs consideration is how the amplitude of the oscillations is
-affected by external parameters; in particular we will discuss the role of different energy
scales in the system, namely the temperature and the applied (measuring) voltage. This
will allow us to become acquainted with the role of the Thouless energy in mesoscopic
systems (see chapter 1, section 2b).
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To see this, we have to evaluate how the interference of an electron depends on its
energy. The kinetic energy of the electrons affects their phases via the velocity or the v-
vector acting in the first term of eq. (5.2). From the egs. (1.17) and (1.18) in chapter 1 it is
seen that the rypical change of energy AE that yields a change in phase of 7, -which by
definition is the Thouless energy E1y-, is given by AE—ETh"—'(hIZH)/TL, with 1, being the
time it takes for an electron to travel the (characteristic) size of the system L. So let us
compare the interference of electrons at two energies, E and E'=L+Fy. If we assume that
the electron at energy E leads to constructive interference at the output (i.e. Agy- Ag,=0in
the last term of eq. (5.5)), then for the electron at the energy £’ the additional phase shift
of 1t implies that the term Ag,- Ag,=r, or this electron wave experiences destructive
interference. Thus, we find that the transmission probability T through the ring is energy
dependent, including its zero-flux phase. This has a drastic effect on the conductance of
the ring. The total conductance of the ring follows from the integration over all
contributing electrons (and so over the entire relevant energy range AE), divided by that

range, or A—]‘E- JT(E YdE . If the energy range AE<<Fm, the transmission T(E) does not
AE
depend on energy and consequently this will hold also for the conductance. if however
the’systéin is “fed” by electrons that cover a range AE>Em, we find that part of the
electrons interferes constructively while an other part does so destructively, thus reducing
the overall (flux dependent oscillatory part of the) conductance. Effectively we may
divide the relevant energy interval AE into Ny= AE/Ey energy “slices” which have a
different amplitude with- alternating zero-flux phases. This leads to partial cancellation.
So.in conclusion, once the.energy window of the electrons entering the ring system
surpasses the Thouless energy, the amplitude of the oscillatory part of the resistance

becomes reduced. A quantitative analyses shows that the reduction follows /Eyy, / AE .

The energy interval AE can be controlled by the bias voltage applied across the entrance-
exit leads, i.e. AE=eVius, or by the temperature of the electron reservoirs of the leads
(AE~3kT), and so we envision a bias voltage and a temperature dependence of the AB
oscillation amplitudes.

5.2.b. Experimental results of AB and AAS oscillations.

Now we are ready to discuss a few experiments on the AB and AAS effect. Figure 5.3
shows a typical sample comprising a small, narrow Au ring fabricated by standard
electron-beam lithography and metal evaporation (R.A. Webb et.al, Phys. Rev. Lett. 54,
2696 (1983)). The typical dimensions are 820 nm diameter, 50 nm wirewidth and 40 nm
thickness of the Au film. Figure 5.4 shows the results obtained from the measurement of
the conductance in dependence of an externally applied magnetic field, at a temperature
of 40 mK. The clear, osciilating pattern nicely demonstrates the AB effect in the solid
state in the diffusive transport regime to be real. The Fourier transform of the
conductance oscillations given in Fig. 5.4b shows a clear peak in "frequency” 1/B. Taking
the surface area enclosed by the loop, this fully complies with the A/e AB oscillation
period, i.e. a change of one flux quantum through the loop per oscillation period. Also a
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Figure 5.3. A gold ring with four
leads (two at the top and left, two at
the bottom and right) 1o study
Aharonov-Bohm effects in the
quantum diffusive regime.

véry weak h/2e feature is seen. From more detailed experiments (at large magnetic fields)
it became clear that this is a harmonic of the AB oscillation and not an AAS contribution,
i.e. not due to time-reversed trajectories. From the discussion on the AB and AAS
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Figure 5.4. Conductance oscillations in the ring of fig. 5.3, clearly demonstrating the AB
effect. a: A sample of the data; b: The Fourier transform of the data of a.
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Fig 5.5: Ensemble averaging in mulfi-ring devices. a.: example of a 3-loop :structure; b.:
resistance data for a single ring (N=1) and the device of N=30 rings; ¢. Fourier
transforms of the data shown in b,

osciltlations it became obvious that the first have a phase with a random value 0 or 7t of
the oscillation at zere flux. In contrast, the AAS oscillations, resulting from time reversed
path, always will be at a maximum resistance at zero flux. This has an immediate
consequence on the transport through an ensemble of interconnected rings. For the AB
~oscillations the total resistance will be a sum of the randomly phased AB contributions
and so this will lead to a significant suppression of these h/e oscillations. This does not
hold for the AAS oscillations. Here the zero flux phase is well determined and so the
contributions of all individual rings are added "in phase”. This is exactly what is found
experimentally.

Figure 5.5 provides data obtained from a series of N=30 loops connected in a (1D) array,
compared to a single loop (N=1). Just as an illastration figure 5.5a shows a three-loop
device; the 30-loop structure is made in a comparable way. The measured resistance
versus the applied field clearly shows an oscillatory shape (Fig. 5.5b). Note that in this
case the AAS contribution is larger than the AB part (fig. 5.5b & c), the reason of which
we will not discuss here. However, the A/e contribution is visible in the single ring while
it is fully suppressed in the N=30 ensemble, in accordance with our preceding discussion.

Before closimg this section we want to discuss one more experiment, stressing the role of
the phase coherence length in these type of experiments. Figure 5.6a shows a peculiar
"AB"-configuration, i.e. a long, hollow conducting tube, with the magnetic field directed
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F =iguzre 5.6. AAS oscillations in a metal-coated thin glass fibre. a.: The sample
configuration; b: Resistance oscillations in dependence of the applied field along the
tube.

along the fibre. The tube is made by evaporating a thin metallic layer onto the surface of a
glass fibre of typically 1 mm diameter. The length L of ~1mm largely exceeds the phase
coherence length I This effectively means that we can subdivide the tube along iis
length in ~L/ly phase independent rings, each "slice" forming one member of the
ensemble of ~L/l¢, (>>1) individuals. Because of this large number we anticipate that
strong AAS oscillations should be present. This is confirmed in the experiment (figure
5.6b), which shows the results of a measurement of the conductance along the fibre.
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.5.3 Persistent currents in non superconducting systems

In this section we discuss the phenomenon that a steady state current can exist in a ring
shaped conductor. From classical electrodynarmics it is known that a current can be set up
if a (steady) voltage source or a (time dependent) magnetic field is to generate a-current in
a closed conductor. Instead, in a mesoscopic structure of ring shaped topology a DC
current can arise with a constant, time independent magnetic field. Thus, the current is a
thermodynamic equilibrium property of the system. It arises if the phase of the electron
travelling around the ring is preserved after a full revolution, which gives rise to well
defined eigenstates. These states, which are the quantumstates of the electronic system of
the whole ring, result in a finite circulating current. The value and direction (or sign) of
. this current depend on the shape of the energy spectrum and on the occupation of the
states of the spectrum. In this way it will be affected by the number of electrons residing
i the ring and the magnetic flux enclosed by the ring.

Persistent currents are considerably more familiar then it may seem at first sight.
Electrons orbiting the nucleus/i of an atom or a molecule in steady state are well known
~-and understood. These stable electron orbits or states are purely quantum mechanical in
origin. Effectively these orbiting electrons form persistent currents and lead to a finite
magnetic susceptibility, which can be either dia- or paramagnetic, partially depending on
the number of orbiting electrons. Some of these aspects will be discussed in more detail
in Chapter 11. .
A second example of persistent currents was introduced implicitly in.chapter 4..In.a -
2DEG subiect to a large magnetic field the electrons will enter the Integer Quantum Hall
state. Under this condition edge states will be formed at the crossing of the Landau levels

Figure 5.7. Persistent currents in the quantum Hall regime, associated with electrons
travelling in edge states along the perimeter of the sample.
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and the Fermi energy. Electrons residing in these edge states will travel along the edge of
the 2DEG in a direction determined by the direction of the magnetic field. This results in
a net transport of electrons along the circumference of the 2DEG, i.e. a persistent current.
Fig. 5.7 shows a (circular) section of 2DEG in an energy-position landscape. The (two)
Landau levels result in just as many edge states at the Fermi energy and each edge state
will contribute to the circulating current.

At a magnetic field B electrons travelling along the edve through a local electrostatic field
E have a velocity of approximately v=E/B, and so each electron in an edge state
contributes a current

i=ev/L.=eF/LB (5.8)

with L being the length of the circumference of the 2DEG section. The current due to the
circulating electron generates a magnetic moment M=iS, where S is the area of the 2DEG
involved.

Problem: Estimate the magnetic moment for the case of a single edge state, taking S=1
um? and a typical value of E~104 V/m for the electric field at the edge. (Note: to estimate
the number of electrons involved assume a linear gradient of the electrostatic potential at
the edge). Compare the calculated M with the external field required to establish the IQH
state with one edge state.

Adfter these two examples based on preceding discussions in the next sections we will
introduce persistent currents in normal conducting rings. In the first subsection, 5.3.a, we
start with the basic theory underlying the phenomenon, starting from a ballistic 1-
dimensional ring to see the role of quantum eigenstates. This is generalised by
introducing scatterers (and thus going from ballistic to the diffusive case) and allowing
miultiple mode occupation. Also the mechanism of period halving in multi-ring structures
will be introduced. Next, in subsection 5.3.b. the presently available experimental results
are discussed. We finalise the chapter by briefly discussing the relation of the persistent
current problem and the AB effect.

5.3.a. Theory of persistent currents in rings of normal conductors

In this subsection we introduce the main aspects of the theory of persistent currents. It
will be shown that persistent currents arise because of the existence of well defined
quantum eigenstates in the ring. An electron occupying such an eigenstate has a non-zero
velocity, which results in a stationary circulating current. Most notably, this current is an
equilibrium property of the electron in the ring. The magnitude of the persistent current
depends on the E-k and/or E-B relation, with B and applied magnetic field that pierces
through the opening of the ring. We will see how elastic scatterers in the ring affect the E-
k spectrum, and in this way the size of the circulating current.

Figure 5.8 shows a metallic ring with a circumference of length L=27R, placed in a
magnetic field B such that a flux @ is enclosed by the ring. The width of the ring is taken
to be such as to accommodate just one single mode or subband, i.e. roughly speaking it is
approximately half a Fermi wavelength. In this way the system is 1-dimension (1D). We



Figure 5.8. Narrow isolated metallic
ring with elastic scatters.

assumed that electrons travelling around the ring preserve their phase during at least one
round-trip, i.e. L<ly. The ring may contain a few elastic scatterers, which we initially
assume to be weak. Electrons travelling around the ring will experience the same
conditions again (e.g. the potentials due to the local scatterers) each time they have
completed one round-trip. Stated differently, they will behave as if they are travelling in a
periodic potential, with a period of length L. Fig 5.9 shows this periodicity more
explicitly by "unfolding” the ring into a strip with segments of length L each.

Figure 5.9. The periodic system resulting from cutting, unjolding and repéaring the ring
structure of Fig. 5.8.

The systern we thus obtain is completely identical to the periodic structure experienced by
an electron in a solid state crystal lattice. This allows us to use the same techniques to
evaluate its properties. From quantum mechanics we know that this periodic motion leads
to the formation of eigenstates, with associated eigenvalues for the energy, wavevector
and velocity. To simplify the discussion at this stage, we assume that the scatterers are
absent; we will re-introduce them later again. At zero magnetic field we immediately can
deduce the eigenvalues for the k-vectors:

2r
k, = ip—L— (p=0,1,2,..) : (5.9)
The quantum number p labels the states. As discussed before in section 5.2, applying a
magnetic field will affect the phase of the electron via the vectorpotential (eq. 5.1),
resulting in an additional phase shift A¢ depending on the flux @ enclosed by the ring
(egs. 5.2 and 5.3)

Ap =27 &/ (5.10)



with @, denoting the flux quantum for single electrons, @p= h/e. Evidently this phase
shift will affect the eigenvectors kp, resulting in a modified condition for establishing a
bound state

kp(®)L—A¢: pr (5.11a)
¢ 2n
or kp(®)=( +®—O)—E (5.11b)

From this condition for the quantisation of the momentum we immediately can derive the
velocity and the (kinetic) energy of the states of quantum number p

h 7 0]

Vp((b):mkp((b):‘};;(p-}-gg) (5.12)
h2 h? 4n? ® ,

E ((I)) o p Z—i";;“iz-—(p-}*gg) (5.13)

Fig. 5.10 shows the resulting E-&-diagram, with the quantum number p labelling the
successive parabolas. Note the similarity to the E-k diagram as obtained in the common
solid state case. As anticipated the figure shows periodicity in the number of flux quanta
contained within the area of the ring.
The current carried by the circulating electron can be calculated simply by

dQ -2 evy
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The current carried by such a bound state can also be obtained in a more general way. To
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Figure 5.10. The E-® -diagram for electron states in the 1D ring of Fig. 5.8
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see this we calculate the derivative of the kinetic energy to the flux @

dE, n* 2 ok @ ‘1
= _—= v = .
b m PLd, Lby P L'P (1)

Noting that the two right-hand side expressions of eqgs. (5.14) and (5.15) are equal, we
conclude that the current can be written as

e (5.16)

i, =——X .

P d®
This equation is the well known thermodynamic relation between the magnetic moment
M (=i§) and the derivative of the (Gibbs free) energy to the magnetic field B (= @/},
with § denoting the area enclosed by the circulating current i which generates the
magnetic moment M. Note that i, is the eurrent contributed by a single electron in a
specific state labelled by p. As commonly the magnetic field employed in these
experiments is small, the spin degeneracy will not be lifted and so eq. (5.16) has to be
multiplied by the factor g =2 to obtain the total current per fully occupied level (i.e., two
Zeléctrons, one spin up and one spin down).

Before continuing to show how one obtains the total current resulting from the
contributions of all the electrons in the ring we first want to discuss the effect of the
elastic scatterers as shown in Fig. 5.8. The effect of each scatterer that it introduces a non-
zero localised electrostatic potential in the system. Given the ring shape, this leads to a
periodic potential for the electrons-as shown in the unfolded system of fig. 5.9. From
introductory solid state physics we know that the non-zero value of the periodic potential
results in Bragg reflection of the electron waves and the formation of energy gaps and
bands. This is shown in fig. 5.11. Because of the formation of energy bands a new set of
quantum numbers # is introduced, which enumerates the bands starting from the one that

—?

-2<byg -Py 0 — @ Py 2"1?0

Figure 5.11. The finite potentials of the elastic scatterers in the ring of Fig. 5.8 lead to
the formation of gaps in the parabolic E-® -diagrams of Fig. 5.10.



is-lowest in energy. The size of the gaps can be derived in a simple way from the potential
V{x) along the ring (x represents the position coordinate running along the ring). As
V{x)=V{x+L) is periodic, it can be rewritten as a Fouriersum by (see e.g. Kittel,
Introduction to Solid State Physics)

V(x)= U, exp(ik,x) (5.17)

ky

This allows one to calculate the size of the gaps as
AIZ =2 U], Azg =2 Uz, (5]8)

Se, strong potential variations V{x) generally will lead to an increase in the gaps with a
simultaneous reduction of the width of the bands. Stated differently, an increase in
disorder (or: a reduction of the elastic mean free path) leads to larger gaps and narrower
bands. Equivalently, crossing from the nearly free electron case with its weak scattering

to the tight binding regime with strong scattering leads to an increase in the localisation of

the electrons, and we anticipate that this will be accompanied by a reduction of the
average velocity of the electrons in the states, i.e. the current. We return to this below.

Now all the ingredients to calculate the foral current in the ring are available, by
appropriately summing all individual currents in each band. For the case of the parabola
of the clean (impurity free) case, each state contains two electrons at maximum, due to
spin. Equivalently, for the case of elastic scattering, each band only can accommodate
two electrons. So, we assume 2N electrons in the ring occupying N bands (n=1,2,3,...N).
Referring to fig. 5.11 it is obvious that the maximum current (or, the maximum slope of
Eversus @, see eq. (5.16)) occurs at @=Py/4. For the case of small gaps, i.e. for weak
disorder, the typical maximum current in band # for this value of @ can be obtained from
eqs. (5.11b, (5.13) and (5.16) as

) n €h 1
i, = (-1) gszg((n—l)-l-l/él) {(5.19)

The prefactor (-1)*, indicating the sign of the derivative of £ with respect to @, alternates
for successive bands with quantum numbers 7, a property which is immediately evident
from figure 5.11. Consequently, currents of successive bands largely cancel, yielding a
sum that is approximately equal to the contribution of a single band, say the topmost
band with label N. Thus as an order of magnitude estimate for the total current of N filled
bands at P=dy/4 we find

N
eh 1 Var
[Ipd=l 2 i d~liyl=go——5N =2e—- 5.20
N nzz‘lln IN gs‘m L2 € I ( )

Problem: derive the last "equality” of eq. (5.20)

The argument for the current cancellation of successive bands is independent of the
scattering strength. So, the "equality" I\l ~ lipd provides a way to evaluate the fotal
current for any scattering strength, assuming the bandstructure is known (which is by no



means obvious!) so that the current in the N-th band, liyl, can be evaluated using eq.
{5.16).

From eq. {5.16) one also can understand how the current will be affected by an increase in
the disorder in the ring. Stronger scattering will lead to larger bandgaps (eq. (5.18)) and
consequently to narrower bands. These narrower bands have a smaller slope of energy
“with respect to the flux, resulting in a reduction of the current per band (eq. (5.16)). From
the first part of eq. (5.20) it is then obvious that the total current will be reduced
compared to the nearly-free electron case of small scattering.

Problem: Calculate the total current for a metallic ring of =1 um in the weak scattering
regime. How many electrons and bands are invelved? (Answ: ~ 1 LA)

To obtain a rough estimate of the persistent current in the case of increased scattering we
«do.not need to evaluate the bandstructure of a disordered ring. Effectively an increase of
.the scattering makes the electron transport diffusive by the time the elastic scattering
length [, becomes considerably smaller than the length of the circumference of the ring,
L. For a strip of size L carrying N, modes we found for the conductivity within the
Drude model (see eq. (2.5))

e?' [

Cprude = 8s TNch _E' (5.21)

i.e., it is reduced by a factor [,/L as compared to.the. ballistic case. Note.that the reduction
of the conduction has an elastic, non-dissipative origin and will not-affect the phase -
coherence in the system! The same factor{/L.can.be introduced in eq. {5.19)to obtain an
order of magnitude estimate for the persistent current in the diffusive regime, vielding

I, eh 1

iy = (=" T m F((n -1+1/4) (5.22)

A word of caution is appropriate here. Including the effect of elastic scattering by the
introduction of the prefactor [ /L should be taken as a crude first order guess. In particular
for the case of few channels (so including the 1D case we have been discussing here) its
validity is rather limited!

Now that we have discussed the effect of elastic scattering in some detail, the question
arises on the effect of inelastic processes on the magnitude of the persistent currents. This
problem can be approached largely along the same lines as in the preceding section 5.2 on
the AB effect. Inelastic scattering will reduce the phase coherence length I and time 74,
and consequently will decrease the lifetime of the eigenstates of the ring. As usual this
leads to a broadening of the energy levels of these states. By the time the broadening of
the levels becomes comparable to the typical distance between the bands the
bandstructure will become disrupted and the current will become suppressed
significantly. This suppression will be given by the same factor as before (eq. (3.6a))

L, =i exp(—{i) {(5.23)
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Before continuing the discussion of the theory of persistent currents we first take a small
stdestep to some experimental details. This is in order to estimate the magnitude of the
total current in a ring, and how it has to be measured.

Experimentally, in the case of a ring fabricated by metal evaporation, the typical thickness
of the metallic sheet will be some 30-100 nm (see also Appendix A), containing typically
10°-108 electrons. Assuming diffusive scattering at the substrate-metal interface, [, will be
of the same order of magnitude. Consequently in a ring of L~ 1 \um the persistent current
will be reduced by a factor [/L~10-30 compared to the ballistic case (see eq. (5.22). As
we have found the typical current for the ballistic case to be <~1 pA, we end up with
IIpd<~0.1 A in the diffusive regime: a rather small current! This current not only is rather
small, but in addition it can not be measured in the conventional way by "cutting” the ring
and including a current meter in the circuit. The inclusion of such meter (based on
classical, dissipative phase breaking mechanisms!) will disrupt the quantum eigenstates
of the ring and thus suppress any persistent currents associated with them. The only
method to determine these currents is by measuring the magnetic moment M=iS resulting
from the circulating currents, e.g. by employing a magnetometer like a SQUID. We will
return to it Jater in the chapter when we discuss the experimental results (see also
Appendix B). The matter of experimental accessibility is brought up here to pose the
obvious question: is there a way to increase the total magnetic moment resulting from
persistent currents? Two possibilities may come to one's mind: employing a ring
accommodating more than one channel; or using a number of separate identical rings.

Let us first consider the problem of a single ring containing more than one channel, say M
channels (or modes/subbands) enumerated by m=1, 2, 3, ... In the case of a complete
absence of elastic scattering the M channels will behave independently, with each channel
forming a set of bands. Assume mode m to contain Ny, filled bands, i.e. E N, = Ep and

Ey, +1>Ep.Dueto the complete independence of the modes a multichannel equivalent

of the bandscheme of Fig. 5.10 is results, and each subband will show up as a set of

. parabolas, of course again periodic in @, . However, each set will have its bottom at an
(increasingly larger) subband minimum Eng, which is as usual determined by the
associated quantised perpendicular wavevector k,, (see chapter 2). For each subband m,
containing N, filled bands, the current per state can be calculated from eq. (5.16), while
the total net current per subband is obtained from eq. (5.20). To calculate the total current
we have to sum the contributions of all individual subbands. In doing so we again have to
consider the argument of partial cancellation, this time resulting from the prefactor

(—I)Nm , which will be (rather randomly) positive or negative for each individual channel

with N, filled bands. As a conseguence the resulting sum again will be similar to that
given by eq. (5.20), i.c. of the order ev,,, /L, with v,,,, denoting the velocity of the
highest lying occupied state of the lowest subband, or stated differently, from the state
with the largest kinetic energy or velocity.

So, in conclusion, increasing the width of the ring to accommodate more than one
channel, does not increase the net typical persistent current in the ring, despite the
increase of the number of electrons in the system!
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- Figure 5.12. Part of the energy-flux
bandstructure for a disordered ring
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% M=10 lateral subbands.

Using approximative methods it is possible to calculate the bandstructure of disordered
systems of the nature we have been discussing. Although we will not go into any detail of
such calculation, an example of the complexity of such bandstructure of a multichannel
ring is shown in figure 5.12 (H. Bouchiat et.al, J. Phys. France 50, 2695 (1989)). Here the
limit of weak scattering is taken. The ring contains M=10 subbands.

. Only the flux range 0-&y/2 is shown, as. the current- will be'symmetric around . @;=0 and
periodic in one flux quantum @,. In the.diagram the opening of (small} gaps due to the
weak disorder is clearly visible. Notethat none:of the states.ever crosses another: state:
the gaps effectively make all states to avoid each other! This very general behaviour of
eigenstates in complex systems is called level repulsion, something we will come back to
in Chapter 9. Note also that no longer the maximum slope (and so the maximum current)
occurs at Pp/4: this is a direct consequence of the mixing of the individual subbands by
the elastic scattering.

Now we want to address the second possibility raised with respect to increasing the total
magnetic moment due to persistent currents, i.e. by combining a number of (nominally)
identical rings. Here we will again encounter the effect of period halving, i.e. the
magnetic moment due to the total circulating current shows a periodicity $y/2, similar to
what was found in the AB/AAS effect in a multi-ring configuration in the preceding
section 5.2 (see fig. 5.5). '

Metallic rings of micrometer diameter typically contain at least 109 electrons. If an
ensemble of nominally identical rings is fabricated the number of electrons residing in
one particular ring, however, may differ considerably. Depending on the quality of the
fabrication process, variations up to ~ 1% are realistic, which is equivalent to at least 104
electrons. In addition the details of the bandstructure of each ring will differ as the actual
positions of the scatterers in each individual ring will be different. Noting that the
difference of one single electron may already reverse the direction of the current (see eq.
(5.19)}, it is clear that these much larger variations will have a profound effect. So,
nominally identical rings will differ widely when it comes to thermodynamic equilibrium

0.25 0.5 - In the weak scattering limit; it contains



clectronic properties. Let us look to the consequences for the magnetisation of an
ensemble of rings in a little more detail.

In order to keep the discussion relatively simple we assume an ensemble of three 1D rings
in the weak scattering regime, each of size L. Each of the R=3 rings, indicated by =1, 2
and 3, contains a different number of electrons ¥, and again for simplicity we assume the

. ﬁ fﬁ i5=-dE3/d®
o e L) L
(™ [ ™ ™ [T
J \J QJ KJ \J i,=-dE,/d®

i;=-dE{/d®

Figure 5.13. Persistent currents in an ensemble of 3 rings, containing 1, 2 and 3
electrons respectively; a. the energy diagram showing 3 bands: for the ring containing 3
electrons all bands are occupied, bands 1 and 2 will be filled for the ring with 2
electrons, while only the lowest band is filled for the ring containing a single electron; b.

the derivative of energy versus flux for each of the bands, providing the persistent current
per (filled) band.



first ring to contain N;=1 electron, the second N,=2 and the third N3=3; we do not take
the spin into account, so g=1. Fig. 5.13a shows the resulting bandstructure £-@, drawn
for ring r=3, with the three bands involved. Note that the details of the bandstructure of
the rings 1 and 2 will be different (e.g. the gaps may differ in size), but globally they
will behave similarly. For ring 1 (containing just one electron) only the lowest band is
filled, while for the second ring bands 1 and 2 are occupied. In Fig 5.13b the currents
iz n(=-dE3 ,/dP) for ring 3 are shown, for each individual band n=1, 2 and 3. Note again
that the currents for ring [ and 2 may differ in magnitude because of the difference in
e.g. the size of the gaps, but the global shape of i , (n=1) and i) ,, (n=1,2) will be rather
similar.
The next step is to calculate the tota] current per ring as 1. = Zl}, , forthe 3 rings r=1,2
n
and 3 (=R). This is shown in figure 5.14. This figure also shows the mean value
<Ip>=(I;+Iy+I3)/R of the 3 rings. From the figure it is clearly seen that the mean current
shows a pronounced halving of the period, i.e. a Py/2 periodicity. This is a characteristic
feature resulting from the averaging process; it becomes increasingly pronounced if
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Figure 5.14. The calculated total persistent current for each ring, I, I; and I3, and the
resulting mean value of the currenis in the three rings, <I3>.



Average current < Iy(h) >
= e
On

S
o

] | { | —
0.1 0.2 0.3 0.4

e

Figure 5.15. Mean persistent current for a large ensemble of similar rings. The number
of, filled bands for each ring, N,, is distributed evenly between 150 and 250.

the averaging is performed over larger ensembles of rings (or larger R). Note also that the
magnitede of the mean current is comparable to that of the current of a single ring.

Now we are ready to evaluate the total magnetic moment due to the circulating persistent
currents in all three rings. If S is the area per ring, this moment is given by

M= M+ My+M = S(I+L+H )= S*R*<ip>.

This result leads to two important conclusions. First, the total magnetic moment scales
linearly with the number of rings, which means that it is experimentally useful to employ
a set of rings. Second, the total signal for the set of nominally equal rings shows period
halving, contrary to the case of a single ring where the persistent current shows
oscillations periodic in a full flux quantum.

Figure 5.15 shows the results of a calculation for a set of rings in the limit of weak
disorder; the number of filled bands per individual ring ranges between 150 and 250
[H.Bouchiat et.al.]. Clearly in this much more realistic case the characteristic period
halving which we have found in the simple example is evident, stressing the universality
of this phenomenon.

The suppression of theA/e component in the persistent current (or magnetic moment)
while preserving the s/2e component in averaging over a number of independent rings,
basically has the same origin as the survival of the AAS component for the case of the
multi-ring AB/AAS conductance as discussed around figure 5.5. It originates because the
phase of the half flux quantum component always has a specific behaviour around zero
flux. This symmetry forces the individual contributions to sum “coherently”, while the
one flux quantum contributions add randomly.

Problem: discuss the case that the sizes of the rings contained in the set differ: consider
in particular the effects on the amplitude in dependence of the applied flux.



5.3.b. Experimental results of persistent currents in single and multiple rings

In this subsection we will consider three cases: a single metallic ring in the diffusive
regime, a single semiconductor ring in the (quasi-)ballistic regime, and an experiment on
a set of approximately 107 metallic rings. It should be noted that this sequence is
historically incorrect, as the experiment on the set of rings preceded the single metal and
semiconductor ring cases, basically due to the large experimental difficulties for the
single ring case.

1. Single metallic ring in the diffusive limit.
In 1991 Chandrasekhar et.al. (Phys Rev. Lett. 67, 3578 (1991)) presented their
experimental results obtained on a single gold ring. The ring had a diameter of 2.4 um, a
width of 90 nm and a thickness of 60 nm (Fig 5.16b). A rough estimate based on the
width and thickness indicates that some M=10° transverse modes are occupied in this
device. From resistance measurements on a simultaneously evaporated gold strip the
~¢lastic mean free path is found to be ~70 nm and from weak localisation measurements
(see chapter 2, section 3) on a simultaneously evaporated strip a phase coherence length
1y~ 10 pm (at T=50 mK) is obtained, the last one depending particularly on the density of
“magnetic impurities in the gold. Fig 5.16a shows a (strongly simplified!) diagram of the
set-up for the measurement.
It consists of a SQUID magnetometer, two coils of superconducting wire to pick up the
magnetic moment (one of which contains the ring), and two field coils to generate the
magnetic flux through the ring (see also Appendix B). The coils are configured to form a
so called (first order) magnetic gradiometer, allowing the discrimination between
magnetic signals from the ring relative to those from the environment. Any magnetic
signal induced in the two pick-up coils simultaneously is suppressed as these are counter
wound, while the signal due to the magnetic moment of the ring induced in a single coil is
transferred to the SQUID detector.

Pickup coils : <
To D Field coils g;
input A _
. B T D
coil =
(a1

of SQUID - l [ O-—— Au ring

(a)

Figure 5.16. a. Experimental configuration to measure the magnetic moment resulting
from persistent currents. The field coils generate the flux; the pickup coils sense the
magnetic field resulting from the applied flux gnd the contribution from the magnetic
moment of the ring. This total signal is fed to a SQUID magnetic detector. As the pickup
coils are counter wound, they form a (first order) gradiometer, leaving the (unbalanced)
signal from the ring while suppressing the (balanced) signal from the applied flux. b. An
SEM image of the single Au ring of ~ 2.4 pm.
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Figure 5.17. The first (a, b)
and second order (c)
derivatives of the magnetic
moment of the Au ring. a
shows the raw data directly
derived from the SQUID
detector. Subtracting a
(fitted) second order
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To enhance the sensitivity the measurement is performed by adding an AC modulation to
the flux applied by the field coils, i.e. @= Ppe+ Py =S*Bpc+S*Byc*sin(2n¥fmod™t),
with S*Bpc ~ Dy/10 typically. The signal induced in the SQUID can be synchronously
detected in a Jock-in detector, not only at the modulation frequency fmod, but also at its
harmonics n¥fmod ( n=2,3,4,.. ). Detecting at the n-th harmonic effectively means a
measurement of the a-th order derivative of the total SQUID signal with respect to the
applied flux $*Bj*sin(2n*fmod*t). For more details one should consult Appendix B.

Fig 5.17 shows the results obtained by detecting at finod and 2fmod, in dependence of

the applied DC magnetic field By given in Gauss ( B=1 T=10% Gauss ). Fig 5.17a shows
the total signal obtained at the modulation frequency. It shows a parabolic behaviour
superimposed with weak oscillations. Subtracting a (least square fit) second order
polynomial results i Fig 5.17b, displaying the oscillation more clearly. Note that, despite
extensive signal averaging (a number of independent measurements were combined to
obtain this trace) to enhance the oscillatory signal, the ratio of signal-to-noise is only
~5:11 This stresses the difficulties encountered in this type of experiments. Fig 5.17¢
shows the signal obtained.at the second harmonic 2fmed. To demonstrate the occurrence
of the oscillatory component in the signal shown in Fig. 5.17b its Fourier spectrum is
displayed in Fig. 5.17d. A clear peak at a "frequency” 1/AB=800 T-! is evident, Taking
into account the area of the ring this corresponds to a single flux guantum A/e being added
to the ring per oscillation. This is in full agreement with the theory discussed before.

Problem: check the statement on the period using the given diameter of the ring.



In contrast to the good agreement of the period a serious problem arises if the amplitude
is considered. Without going in all the details of the experiment one finds that the
amplitude of the measured signal is approximately 30-50 times too large as compared to
the estimate based on eq. (5.22). We will return to this.point briefly at the end of this
section.

2. Single serniconductor ring in the quasi-ballistic regime

The ring is.realised in a ZDEG in a GaAs/AlGaAs heterostructure, obtained by dry ion
beam etching (D. Mailly et.al., Phys. Rev. Lett. 70, 2020 (1993)). The bulk 2DEG has a
mobility of ~100m?2/Vs and an electron density of ~3.5%1015 m-2, yielding a Fermi
velocity vp~2.5%103 m/s and an elastic mean free path /,~ 10-um (see chapter 1). With an
effective width of ~160 nm ( taking into account the depletion resulting from the etched

Figure 5.18. Sample layout of the

ring used to measure the persistent
current in a 2DEG semiconductor.

(1) denotes the etched ring with gates
{2) (10 allow AB measurements) and
{3) (to allow suppression of the
persistent current. (5) is (a part of) the
SQUID

walls) approximately M=8 modes will be occupied in the ring. Apart from some details
the experimental approach strongly resembles the preceding one, again employing a
SQUID gradiometer to detect the magnetic moment of the ring. Fig 5.18 shows the
sample configuration, with only the first part of the SQUID put into place. Note the
additional gate structures (2)-and (3) in the sample. The first gate pair allows the
20 .
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connection of the ring to external leads to perform AB measurements to be done. Gate 3
controls the current flow in the ring: with a negative voltage applied to it the persistent
‘current can be suppressed, allowing the measurement of the magnetic moment with and
without the persistent current flowing. Figure 5.19 shows the results obtained.

Two rather weak peaks can be seen in the Fourier spectrum, with the A/e peak being most
pronounced. It is of considerable interest to note that in this case, where the electrons in
the ring behave approximately ballistically, the measured amplitude of the persistent
current of ~5 nA is in geod agreement with the theoretical prediction based on eq. (5.20)
or (5.22). We will discuss this further after presenting our last experiment.

Problem: check this statement on the value of the current.

3. Multiple metallic rings in the diffusive limit.

The third experiment, -which is historically the first of the three we discuss here-,
concerns a set 10 million (nominally) equal copper rings and is due to L.P. Levy et.al.
(Phys. Rev. Lett. 64, 2074 (1990)). Also in this case the set-up largely resembles the one
discussed around figure 5.16a. The result obtained by detecting at the third harmonic
3*fmoq 1s presented in Fig. 5.20. Although only a limited number of data points is

Figure 5.20. Measured magnetic
moment of an ensemble of 107
copper rings, showing persistent
currents. Both the signal at 2f and
3f is shown. As AB=130 Gs
corresponds to | flux quantum
through a ring, period halving

-5 B is evident.
I I U . "R IV TN T
G 20 40 60 80 1500 120
B (Gauss)

available a clear oscillation is visible. N oting that a single flux quantum through a ring
corresponds to 130 Gauss, it is clear that the oscillation shows a period of half a
Jluxquantum, which is nicely in accordance with the prediction given for the multiple-
ring case. Concerning the amplitude the evaluation of the magnitude of the
magnetisation again leads to a size that is considerably Targer than predicted via eq.
(5.22), in this case by a factor of approximately 30!

From the three experiments discussed we conclude that good agreement with theory
exists on the periodicity of the magnetic moment, with & for a single ring and ®/2 for
the case of an ensemble of rings. A much less favourable picture arises for the amplitude
of the persistent currents. For the ballistic, weak elastic scattering case with only a small
number of modes in the ring encountered in the second example of the high-mobility

17



2DEG, where [/L~1 or even larger, agreement with theory is good. However for metallic
rings, with the electrons moving diffusively, the measured amplitudes are much too large,
the discrepancy being at least as large as.one order of magnitude! This serious problem is
not solved at the moment this text is updated (mid 1997). Various additional mechanisms
have been introduced, mostly based on the regulating influence of electron-electron
interaction, but none has been completely successful up to now.

5.4. Final remarks

In the preceding two sections 5.2 and 5.3 we have introduced two phenomena that
originate from the interference of electron waves in ring-shaped solid state structures.
Both these phenomena show a periodic behaviour, with a fundamental period given by
_the change of the flux that penetrates through the area enclosed by the ring by one flux
quantum. Py=h/e. In both cases phase coherence is a crucial requirement for the effect to
_arise, as otherwise interference effects are suppressed.
. In discussing the AB and AAS effects in section 5.2 we described the effect as the
scoherent transmission (and reflection) of electron waves through the ring, allowing such
wave to split at one lead-ring junction and reunite at the other. By taking into account the
phase shift induced by the magnetic field (via the vector potential) a periodic modulation
of the total transmission probability is found, leading to an oscillatory dependence versus
the applied flux of the conductance.

In evaluating the persistent currents in-section 5.3:we took a different view. Here we
‘assumed the ring to form eigenstates, the energies of which were shown to be flux
dependent, again via the vector potential affecting the k-vector and in this way the phase
acquired during one roundtrip. The equilibrium state current transported in a state derives
from the flux dependence of the energy of that particular state.

Basically, also the AB and AAS effect could have been introduced by starting from the
eigenstate picture. In this picture the system is represented by having the states in the
leads couple to the eigenstates of the ring: Pictorially this implies that one has to evaluate
the transmission coefficient for a certain state in the left lead to a certain state in the right
lead via one eigenstate of the ring. After summing over all (occupied) states in the input
and output leads one finds the total transmission in going from left to right, i.e. the total
conductance. Evidently, while the eigenstates of the ring depend on the flux through its
central area, the overall coupling will depend on it, and this will again be periodic in the
flux quantum. One may denote this as resonant “tunnelling” through the eigenstates of
the ring.

General references to the subject:

1. "The Feynman Lectures on Physics”, (Addison-Wesley, 1964), Vol 2, pp 12-15
2. The Aharonov-Bohm effect: Physics Today, January 1986, p 17
3. Persistent Currents: Physics Today, April 1992, p 17
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6. Transport in normal-superconductor systems

Keywords: superconductor; energy gap; S-N interface; Andreev reflection;
phasecoherence; S-N-S systems;

6.1 Introducticn

This chapter describes the transport of electrons in systems containing normal conductors
as well as superconductors. In particular it concentrates on effects in close proximity to
the normal superconductor interface. We will see which lenght- and timescales are of
importance and how these affect the electronic properties of the system.

To understand the physical mechanisms leading to the effects introduced here only a
limited knowledge of the properties of a superconductor is required. Just three aspects are
needed for our discussion: the development of an energygap in the energyspectrum of the
normal electrons; the occurrence of Cooperpairs consisting of pairs of electrons; and the
formation of a macroscopic quantum state which is occupied by these Cooperpairs,
described by a single macroscopic wavefunction.

In a normal conductor, either a (semi-) metal or a (degenerate) semiconductor, the
partially filled energybands lead to the existence of a finite density of states (I20OS) at and
around the Fermi energy. The availability of unoccupied energystates close to the Fermi
energy provides the phasespace required for electrons to scatter, in this way allowing
electronic transport in the solid state.

These main features of conductors can be completely understood assuming the electrons
residing in the conduction band to behave independently. The first interaction which may
be considered affecting this independent electron picture is the Coulomb or electron-
electron (e-e) mteraction. Obviously this interaction is repulsive. Under certain conditions
amore complicated interaction may occur additionally. Without stressing the details, this
process acts employing phonons as an intermediate. One electron moving through the
solid deforms the crystal lattice formed by the ions (quantummechanically speaking: it
emits a phonon) via the Coulomb interactions. A second electron moving through the
same region of space will experience the deformed lattice, as this results in a local change
of the electrostatic potential generated by all nearby ions (in quantum terms: it absorbs a
phonen). Under certain conditions this phonon mediated interaction of the two electrons
resulting from the lattice deformation is found to be-attractive. If this (indirect) attractive
interaction 1s stronger than the {direct) Coulomb repulsion, the net interaction will be
attractive. Below a certain critical temperature 7, this attractive interaction may result in
the formation of electron pairs, as such a state is energetically more favourable.

These new composite particles, called Cooperpairs (CP), consist of two electrons of
opposite k vector and opposite spin, so the effective momentum A=0.



Cooperpairs assemble in a peculair way. They all form one single quantum state,
characterised by a single wavefunction ¥{7)=| ()| exp(ig(r)). As a consequence
Cooperpairs are strongly correlated and coherent: they can not move independently and
their phases ¢ are strongly coupled. They are said to form a condensate, with all
Cooperpairs having exactly the same energy Er. Clearly, these integer spin particles no
longer obey Fermi Dirac statistics, but found to be bosons.

The formation of this condensed state at E occupied by the electronpairs reduces the
density of states (DOS) of the normal single electrons to zero for electrons near the Fermi
energy. Given the finite strenght of the electron-phonon interaction, a finite range of
energy around £p will be affected. In the energyspectrum of the normal electrons this
results in a gap symmetrically around the Fermi energy, with a width denoted by 24. The
size of the gap depends on temperature and magnetic field. Reducing 7 further below 7.
increases the size of the gap, reaching its maximum at 7=0K. Increasing the magnetic ﬁeld
will reduce the gapand at a (materlal dependent) value A, it drops to zero, i.e. the
superconductmg state is suppressed completely. For many superconductors the width of
the gap at zero temperature and magnetic field A(0) and the critical temperature 7, are
related by 24(0)~3.5kg T, with kg being Boltzmanns constant. Typical gaps are ~<1 meV
with associated T, ~<10K. Note that in general 24<<£F (semiconductors: Ep~10-100
meV; metals: EF~5 eV). As our discussion will be largely limited to 7=0, we will denote
the gap at 7=0 simply by 24.

Fig. 6.1 summarises the results from the preceeding discussion.
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Figure 6.1. The energy spectrum and the density-of-states p(E) of electrons; g. in a
normal metal or a semiconductor, N: b. ina superconductor, S; CP denotes the
condensate of Cooper pairs at the Fermi energy.

6.2 Superconductor-Normal (S-N) interfaces and Andreev reflection.

The question arises how the transport of electrons will be affected if a superconductor (S)
will be coupled to a normal (N) material. Fig. 6.2 shows the resulting configuration.



Evidently electrons from the normal region N impinging on the N-S§ interface with
anenergy E=e+E; will experience the change in the density of single electron states in the
superconductor S. In particular electrons with an energy | /<A will find no states at all

N : S

Figure 6.2. The energy spectrum of a superconductor connected to a normal conductor.

available within the superconductor and so at first sight no transport can take place.

In 1964 Andreev studying this system showed that transport can cccur assuming a more
complicated transmission process which involves 4 particles. An electron in N (Figure 6.2)
with energy Er (i.e. £=0) incident on the interface enters S, drawing a second electron of
opposite momentum (and spin) from the N side. The removal of this second electron from
N leaves a hole (with positive charge and negative effective mass) in N at the interface.
This hole being fully complementary to the second electron, will have its momentum
vector opposite to this (second) electron, and so in the same direction as the k-vector of
the initial electron. As the hole has a negative effective mass, its velocity will be opposite
to that of the incoming electron, and so it will start to frace back the path of this electron:
it is retroreflected. Figure 6.3 shows the process in more detail.

Assume the incoming probe electron has a positive energy e=FE, ;-Ep<4 and a momentum
k=k, . ;. During the Andreev reflection proces at the interface three quantities need to be
conserved: energy, charge and momentum.

= The sum of the electron energies £, ; and E,, ,, and the hole energy £, before the AR
event has to be equal to the sum of the energy of the Cooper pair 2E5 and the hole £;

Bk
E,=E, =Ep+e=—2 (6.1a)
im, |
hv 2 hzkz
E,=Ep—¢= ki yp =it (6.1b)
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Figure 6.3. The proces of Andreev reflection at the inferface of a normal metal N and a -
superconductor S. The incident electron e at energy & relative to the Fermi energy is
converted into a (refroreflected) hole h and a Cooper pair CP.

and E371+Ee>2 +Eh:3EF“g:ECP +Eh ) (610)

Note. that the-energy of electron 1 is just as.much above the Fermi energy as the hole
energy is below it.

= The charge of the incident electron 1, -e, has to match the sum of the charges of thé;
reflected hole, e, and the Cooper pair charge 2(-e):

~e =e+2(—e) (6.2)

= The Cooper pair formed in § combines the incoming electron 1 with wavevector &, 5 ;
(=k, 5 ;1in S) with a second electron 2 from N. To allow the formation of the CP this
second electron should have a wavevector opposite to k, 7, 1.€. k, g 7= - k, 3y ;. As the
hole in N immediately results from the extraction of the second electron from N into S, the
sum of their momenta should be identical zero, or k= - &, ¢ ».

Now we have to remind ourselves that the conservation of energy made £ =Fj+2¢, with
O<e<d<<tp, and so eq. (6.1) yields |k, y ;1> k| for electron 1 and the reflected hole in
N. So, effectively the reflected hole and the incident electron will have nearly equal
momenta (both insize and direction), with the small difference determined by the excess

energy €. In summary:

kh = TR N2 T RS2 < ke,S,l' = ke,N,l = ke (6-3)

The difference in momentum Ak==£k,-k, is taken up by the Cooper pair. From the momenta
we immediatedly can derive the velocities. Taking into account that the effective mass of
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the hole is negative, i.e. m,= - m,, we obtain for the velocities of the two particles in the N
region:

VEE -V, (6.4)

In figure 6.4 the process of Andreev reflection 1s shown in real space, including the
velocities of the various particles involved. It again stresses the peculiar retroreflective
backiracing of the hole along the path of the original incoming electron. It should be kept
in mind that this backtracing is only exact if &=0 or Ak=Fk,-k,=0. This difference in

Figure 6.4. Normal and Andreev reflection at an N-S interface. Note the opposite
direction of the velocity and momentum vector of the retroreflected hole. The small
difference in the paths of the incident electron and Andreev reflected hole is a
consequence of the difference in k-vector following eq. (6.5).

momenta Ak can be expressed in the energy difference s of the electron relative to the
Fermi energy:

B
Ak = AE(—kg)
ml
As the energy difference between the electron and hole state AE=2g¢, it immediately
follows that

p= 2 26 (6.5)

h kF hVF
From this expression we can derive over what distance the incoming electron and the
retroreflected hole maintain their relative phase. If this difference in phase becomes larger
than A¢=x the initial in-phase condition is changed into out-of-phase. This will happen
after travelling a distance
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For the maximum excess energy =4 where Andreev reflection occurs, a new lengthscale
&arcan be defined by

th,_N
44

Sve = (6.6a)

This length is called the phasecoherence length, in this particular case defined for the case
of ballistic transport in the N region, i.e. the "clean" case. To evaluate the coherence
length in the diffusive case, we have to realise that the time associated with the dephasing

process is given by 7y = Evc/vp=h/4A. From this we immediately obtain the
phasecoherence length for the diffusive case (D is the diffusion coefficient, see chapter 4)

| A I

From the description of the Andreevprocess it is clear that the incoming electron
effectively "drags" a second electron charge into the superconductor. This means that the
total charge: traversing the plane of the interface. is'twice as large as that of the incident
electron alone, i.e. the current is. effectively doubled. ‘So'ideal Andreev reflection doubles
the conductance of an N-§ System compared to the case that the S-part is in the normal
state (e.g. by applying a magnetic field).

The description given above assumes that at the N-8§ interface ideal Andreev reflection
occurs: the incident electron is totally converted into a hole and vice versa. If the interface
shows a finite transmission probability 7 for the incoming particle a fraction of the wave
will be reflected maintaining the original particle character, i.e. electron as electron and
hole as hole. This normal reflection of course will reduce the fraction of the wave being
Andreev reflected. Asa consequence the conductance with S in the superconducting state
will be less than twice the conductance with S in the normal state. This can be described
more precisely. If the transmission probability of the n-th mode is given by 7, then we
know that, with both'metals in the normat state, the conductance Gy for M modes being
transmitted is given by the common Landauer expression

26‘2 M

=]

If superconductivity is not suppressed the resulting conductance (7yys can be calculated. A
rather complicated caleulation vields for the conductance
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From this expression we can see two things. First, if all modes have unity transmission
probability 7,,, we immediately see that Gys=2Gyp; 1. the doubling mentioned before.
Figure 6.5 shows the case for a ballistic point contact system with all 7,=1, except the
topmost (M-th) mode which is transmitted only partially. Both 2Gyy (eq. (6.72)) as well
as Gy (eq. 6.7b)) are shown in dependence of the the width of the point contact. Note
that the doubling only holds at the plateaux and not in the intermediate transition regions
where Tj,<1.
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I Figure 6.5. The conductance
1_* Gy of a point contact at an
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The second case to consider is if the N-S interface is non-ideal, showing only partial

transmission. If all modes have T,<<1i, eq. (6.7b) shows that Gyg o 7% and so

Gyy<<Gys 1.e. the conductance in the superconducting state is reduced compared to that
in the normal state. Note that in this case the conductance goes like the square of the
transmissions T, in contrast to the normal case given by eq. (6.7 a). This is an immediate
consequence of the two particles (=electrons) that have to cross the interface
simultaneously in the case of Andreev reflection.

In chapter 4 we discussed transport in the diffusive regime in disordered systems. If the
phasecoherence length [ in such system is much larger than the elastic scattering length [,
it was found that the conduction electrons could experience quantum interference, leading
to an increased probability for backscattering via closed time-reversed trajectories. This
coherent backscattering effect, called weak localisation (WL}, manifested itselfin a
ceduction of the conductance. This reduction could be suppressed again by applying a
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Figure 6.6. A disordered normal conductor N 2 of length L>> [, and a superconductor S,
connected by a barrier with transmission T B

__magnetic field, such that the time-reversal symmetry is broken for the closed trajectories
~of length ~ly. This field is thus given by

B~ ®y/I[J=h/e3 (6.8)

_ Now we may ask what would happen if a superconductor is put sufficiently close to the
 disordered normal area. We will show that two distinct phenomena atise, depending on
the (single electron) transmission probability of the interface, 7 5 Although we will not
endeavour to give a formal derivation we intuitively can appreciate what will happen, We
-assume that phase coherence is preserved up-to the'N-§ interface: Figure 6.6:shows the
resulting system. First we will discuss the case of transmission 7} ~1, followed by.the low
transmission case 7}, <<1. : .

Assume that the length L of the disordered region is smaller than the phase-coherence
1er1gth-l¢ , and take the transmission at the interface T, p =1, i.e. unity Andreev reflection.
Consequently each electron travelling along the time-reversed trajectories that lead to WL
and impinging on the N-$ interface will become accompanied by an Andreev hole (figure
6.7). Take a closed trajectory starting in (and returning to) some position O in N, with
part of the trajectory running through S. This trajectory now can be travelled along in
fourdifferent ways: by an electron which eithers runs "clockwise (CW)* or
"counterclockwise (CCW)", but also by the Andreev hole which also may take it in the
two (CW or CCW) directions. At zero excess energy the hole will stay in phase with the
electron irrespective of the length of the trajectory (eq. (6.5)). Consequently, in addition to
the electron taking the time-reversed CW and CCW paths (leading to the "common" WL}
the phasecoherent Andreev hole can follow the same path (also CW and CCW). This will
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Figure 6.7. Enhanced weak localisation (EWL) in a N-S system, with transport in the
normal material in the diffusive regime. The incoming electron can follow the closed
trajectory in four ways: CW and CCW as an electron, and CW an CCW as the AR hole.

give an-additional contribution to the coherent backscattering of roughly the same size as
obtained for the normal state, in this way (approximately) doubling the common weak
localisation. This effect is called Enhanced Weak Localisation (EWL). Evidently the
precise size of the enhancement will depend on the value of the transmission at the N-S
interface T}, the the ratio /,/L and the number of transmitted channels (or the width ).

Figure 6.8 shows the results of a numerical simulation performed by Beenakker et.al. The
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topmost curves (dash-dotted) show the results for 7° 5=1, both in dependence of a finite
bias voltage (left panel) as well as for an applied magnetic field (right panel). For both
conductors in the normal state (open dots) the conductance Gy shows (right panel) the
characteristic reduction at zero magnetic field due to WL, this is suppressed by a finite
flux, visible as a (small) rise of Gupy- Ifin the superconducting state (filled dots) the
reduction of the conductance Gy is considerably larger, demonstrating EWL. Note that
the enhanced fraction of the WL can be suppressed by bot? a finite magnetic field (or flux)
as well as a finite bias voltage, in contrast to the "common" WL which only is affected by
the field. We can understand this immediately, realising that WL is suppressed by breaking
time reversal symmetry. In a normal system only the magnetic field can do so. In the case
of Andreev reflection the finite bias leads to a finite difference in energy € and so in &-
vector between the electron and Andreev hole (eq. (6.5)). This introduces an additional
phaseshift after travelling a certain distance and so it will lead to suppression of the
coherent backscattering resulting from the electron-hole interference, i.e. the enhanced
Ppart. We can roughly estimate the voltage V. for suppression of EWL simply as follows.
- “The total pathlenght travelled by the electron (or hole) during the phasecoherence time Ty
= [4%/D is given by Lpawm™= Ty v With € =eV,,, eq. (6.5) for Ak, and the condition for
~suppression Lpath -A k~m, we find

eV, n—"
2
213

A more accurate-calculation shows that the factor of 2 in the denominator should be
deleted.

(6.9)

Now let us proceed to the case that the transmission through the barrier is relatively small
(Tp<<1). The small transmission means that an electron incident on the N-S interface will
have a rather large probability to become reflected as an ordinary electron, reentering the
N area (figure 6.9). As L>>1,, the reflected particle will experience many elastic

Figure 6.9. Semi-classical
picture of- multiple Andreev
reflection at the N-S interface
induced by the strong elastic
scattering in the normal area,
leading to reflectionless
tunnelling.
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scattering events in N and so it will have a considerable chance to return to the interface.
Figure 6.9 gives a semi-classical picture of this effect, due to van Wees (Phys. Rev. Lett.
69, 510 (1992)). An incoming electron travelling along trajectory 1 will be reflected at a.
The major fraction of the electron wave will continue as an electron along path 2, but a
small fraction will become Andreev reflected and will travel backwards along path 1 as a
hole. After a number of elastic scatterings in N-along path 2 (part of the) the electron(-
wave) will again approach the N-S interface and become reflected at . A (large) electron
part will continue along path 3, but an AR hole part will travel back along path 2. Once
arriving at a this hole wave will be reflected in the normal way, and continue along the
initial path 1. Note that the "total" hole wave equals the sum of the direct contribution
from the AR at g and the AR part created at 5. If the incoming electron has zero excess
energy, the hole and electron will have equal wavevector. This implies that the phase
increment of the electronwave along path 2 exactly canceéls the phase decrement of the
hole along this path, or the two hole contributions returning along trajectory 1 are exactly
in phase. In this way the strong elastic scattering in N, leading to multiple impingement of
the particle on the interface leads to an increase of the probability for Andreev reflection.
This increase will evidently lead to an increase of the conductance Gyg beyond the
"classical” value. This effect is called Reflectionless Tunnelling (RT), because it seems as
if the dependence of the conductance on the square of the transmission 7 (see eq. (6.7b)
and the discussion immediately following it) is violated, or, stated differently, the hole
seems to traverse the interface with approximately unity probability.

Note that at zero magnetic field and bias voltage (between the reservoir and S) a// hole
waves returning to the first point of incidence, a, will be in phase. Evidently, this phase
can be affected by the magnetic field (shown as the flux @ penetrating the closed
trajectory 2 with the superconductor S acting as a "phase short circuit") as usual, yielding
approximately the same "critical" field B,, as before (eq. 6.8). In addition, just as for the
preceeding case of EWL, also here a finite bias voltage will break the phase conjugation
between electron and hole, given by eq. (6.9).

In figure 6.8 also the results for reflectionless tunneling are shown obtained from a more
realistic, fully quantummechanical calculation. The lower traces (dotted lines) are obtained
for a (electron) tunnelling probability T;,=0.2. The open dots (for the normal state
conductance Gyy) only show the common WL, which is suppressed at a finite flux (see
right panel). The filled dots for the superconducting case Gy clearly show the strong
increase of the conductance, at zero bias and magnetic field.

Before continuing with more complicated NS systems we will discuss two very recent
experiments, which show enhanced weak localisation and reflectionless tunneling. Figure
6.10 shows results obtained on a Nb-InGaAs S-N system, i.e. the normal conductor 1s a
semiconductor (A. Kastalsky et.al., Phys. Rev. Lett. 67, 3026 (1991)).-A crucial
requirement for all these experiments is that the contact should have a large transmission
coefficient 7. To establish this, 2 meticulous cleaning of the (InGaAs) surface by etching
is essential before evaporating the superconducting metal (Nb). The normalised differential
conductance (1/GyJdl/dV, measured in dependence of the bias voltage ¥, shows two
features. At all temperatures below the critical temperature of the superconductor Nb
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(=92 K) a broad dip develops, resulting from the reduction of the density-of-states of
single particles at the Fermi energy. If the temperature is reduced further to below ~1.5 K

V {mV)

Figure 6.10. Reflectionless
tunneling in an N-§ system
comprising Nb as the
superconductor and InGads
as the N region. The strong
increase of the conductance
at low temperatures (T<1.5 K)
and at zero bias is a clear
demonstration of the effect.

a peak starts to emerge. This increase of the conductance at small bias voltages (<~ 0.3
mV) is a manifestation of the effect of reflectionless tunneling.

The second experiment of quantum interference in disordered N-S systems is presented in
figure 6.11. In this case the contact is made of Sn, diffused into a GaAs-AlGaAs
heterostructure containing a 2DEG. The diffusion process leads to strong local doping by
the Sn atoms of valence 4 replacing the Ga atoms of valence 3. The heavely doped,
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Figure 6.11. Enhanced weak
localisation found in a Sn contact
made to a 2DEG in a Gads-AlGaAs
heterostructure. The solid curve
shows the conductance dip at 10 mK
and zero magnetic field. At higher
temperature and larger bias voltage
(>0.3mV7} it is suppressed.

disordered region forms the actual contact between the superconductor and the 2DEG.
The system thus formed largely resembles the model as given in figure 6.6. In figure 6.11



the differential conductance (in units of e2/4) is shown in dependence of bias voltage, at
zero magnetic field and at three different temperatures. Apart form the "classical" dip, also
seen in the preceding experiment, at temperatures 7<~0.7 K an additional peakshaped
reduction of the conductance starts to develop. This feature is suppressed at bias voltages
>~0.3 mV, a value similar to that found in the first experiment. It is a manisfestation of
the effect of enhanced weak localisation. Note that the enhanced fraction in the
conductance approximately equals 2e?/%.

6.3 S-N-S systems; multiple coherent Andreev reflection

Now that we have understood the process of Andreev reflection it is interesting to see
what effect the introduction of a second S-N interface has on the transport properties. For
the purpose of simplicity we will limit ourselves largely to the quasi-1D ballistic case. We
will show that, provided the distance between the two interfaces is sufficiently small, a
dissipationless (= super-)current can flow between the two superconductors through the N
region, the value of which is determined by the phasedifference between the two -
superconductors.

Fig. 6.12 shows the position-energy diagram of the system we want to discuss. Taking the
two superconductors S, and S, to be the same, we assume that the macroscopic
wavefunctions describing the condensates have phases ¢ and ¢ , respectively. An electron
(e) at an excess energy e=£-Ey and travelling to the right will experience Andreev
reflection at the rightmost N-S, interface, converting into a Cooperpair (CP;) in
superconductor S, and a reflected hole (h) which will travel at an energy -€ backwards
towards S;. This hole, incident on S, will be backconverted into an electron by AR,
simultanouesly breaking up Cooperpair CP; in S1. The electron, travelling again at an
energy +&, will interfere with the original electron. This whole process has two
consequences. First, it results in the transfer of one CP from S1 to S2. Secondly this
multiple AR process constitutes a periodic motion. Quantummechanically this motion will
be quantised, i.e. it will form bound states with associated eigen energies €. Let us look
to these states in more detail.

A state will exist if the electron, after performing one e ->h ->e cycle, returns to its
"starting position" with the same phase + M*2n. To calculate the total phase difference



Figure 6.12. An §-N-§ system with Andreev reflection taking place at both interfaces. The
resulting coherent multiple electron-hole-electron transformation leads 1o a bound state
_.in the normal region. The state has its electron part above the Fermi energy and its hole

" part below.

the electron acquires in one roundtrip we have to take into account that at the S-N
interface the Andreev reflected particle receives an extra phaseshift. This is given by

O¢ = £g — arccos(g/A) ' (6.10) -
where ¢g-equals the phase of the: superconductor.: Although we will not derive this
statement, it is-an-immediate consequence-of the required continuity of the wavefunction
and its derivative at the interface. The sign of gg depends on the nature of the particle, i.e.
+ for an (incoming) electron and - for a hole.
Take L to denote the length of the normal region between the two superconductors S; and
S,. If we take e<<, the arccos-term can be approximated by -7, and we can write down
the condition for an eigenstate directly, yielding

LKL (d—d))-n=M2nx (6.11a)
with A4=0, 1, 2, ... The +/- sign distinguishes between states of electrons moving to the left
or the right. Rewriting this expression and defining ¢=¢,;-¢,, leads to

26 (M+1/2)27+ ¢
So, 4k and &y depend on Ag (including its sign) as well as on the quantum number A/, If

one takes into account the finite size of the gap relative to the energies of the confined
states, than eqs (6.11) have to be modified, and (the second half of) (6.11b) reads

kE—kf=Ak= (6.11b)

263, _ M2zt ¢+2arccos(el, / A)
FLVF 2L
Fig 6.13 shows these eigenstates &y, at zero and at 2 finite phasedifference ¢.

(6.11¢)
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Fi'gure 6.13. Bound states in the N region. The dotted lines are the (degenerate) states at
zero phasedifference. The dashed lines indicate the states at non-zero ¢ with the arrows
denoting the left- and righigoing states for electrons (E>Ey) and holes (E<Ep).

Note that for a given state M the momentum £, of the right moving electron differs from
k, of the left moving electron by an amount that is linearly dependent on the
phasedifference between the two superconductors ¢. This implies that the current carried
by the + branch and the - branch will be different as well, and so each state will contribute
a ﬁet current. Given the similarity in the dependence of the energy versus the phase for all
states M, also the total net current will depend linearly on the phasedifference.

To estimate the total current we first have to evaluate the current carried per state M
(either + or -). This simply is given by the number of electrons per state, g, divided by
the time it takes for one electron to make one roundtrip, i.e.

Vv
If\t/[ = Bni€ / Tround = gf\/IQEEL* (6 12)

From the Pauli principle it is clear that the number of electrons per state simply equals the
spin degeneracy factor: g3, ~g,=2.

Assume that the lenght L of the normal area is relatively large (i.e. L>>&y). From eq.
(6.9b) we immediately can deduce that

Evrr— Sy 2(1/2)65(9=0) (6.13)

for the low lying states (A is small). On increasing the phase to ¢=x equation (6.9b) also
shows that the lowest lying left moving electron state wiil attain an eigenenergy &y
($=m 0. This implies that on a further increase of the phase the left moving electron state
should enter the filled Fermi sea, a region only accessable for hole states (see figure 6.13),
at the same moment requiring the associated right moving hole state to enter the filled
hole sea above the Fermi energy. Evidently this is not possible, and the system responds to
the phasedifference ¢z by establishing a right moving electron state above the Fermi

- energy and the (AR) associated left moving hole state below it. This has two major



consequences. First, because of the change of direction of the A7=0 state the current
transported by it (eq. (6.12)) will jump from -evg/L to +evg /L, i.e. by an amount
oy=2evp /L (6.14)
As all other states will just continue their decent (- states) or increase (+ states) the fofal
current will jump by the same amount. Secondly from figure 6.13 we immediately can see
that all states at ¢>n can be renumbered as
Es* (B)=eser* (8-27) |
and (6.15)
ear (B =ers i~ (927
i.e. as states with a different quantum number M but with a phase —w<@<z. This shows
that the net current that flows is periodic in the phase with periodicity 27
From this discussion we have now reached the following conclusion. Due to the
phasecoherent multiple Andreev reflection in the S-N-S system a net current flows
between the superconductors, with a magnitude and sign determined by the
phasedifference between the two superconductors. This implies that the established
current 18 a supercurrent, with a maximum or critical value given by eq. (6.14), i.e.
L I.(0)y=zevp/L (6.16a)
" Equation (6.16a) is derived assuming the length of the normal part to be long. Reducing L

to less than the phasecoherence lenght of the normal material £,; will only leave a single
bound state in the system (M=0).

Problem: check this statement, using equation (6.9¢)

If we insert the value for the ballistic phasecoherence length (eq. (6.6a)) into (6.16a) we
directly obtain the critical current for the short junction as

7,(0) ;% (6.16b)

Equations (6.16a and b) thus give the value for the supercurrent for a long and a short 1D
S-N-S junction respectively, at zero temperature. Including the effect of a non zero
temperature on the supercurrent can be approximately done as follows. Once k7~ds"-
=&\ ~Epf , the + and - brach will become mixed. As the difference between such two
states determines the net current, the mixing will lead to a reduction of the critical current
approximately like

kT L
—) =1L (O)exp(——— 6.17
55*‘(¢:ﬂ)) ¢(0)exp( e‘(T)) (6.17)
with &T') = Avy /247, denoting the thermal length. In addition to the reduction of the
critical current the jump of the supercurrent at ¢=n will become smeared out, as the
mixing occurs over an energy interval of the order of a few times k7, i.e. it will be
effective in a range of phase differences around ¢=r.
Figure 6.14 summarises the general behaviour of the supercurrent as a function of the
phasedifference.

L(T)= I, (0)exp(-
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. Figure 6.14. The supercurrent

I : : ;
in an S-N-S system in

dependence of the difference
in phase between the two
superconductors, at T=0
(solid line) and at a non-zero
temperature (dashed line).

Note that the smearing of the current transients around ¢=(2K+1)x with K=0, +-1, +-2, ..,
results in an approximately sinusoidal behaviour of the supercurrent, I($)=],. sin ¢.

All results obtained are limited to the single channel 1D case in the ballistic regime. If
more channels are present, say N, we simply can add the net currents for each channel. As
each channel contributes the same amount of supercurrent we find (for the case of a short
junction)

()= N, % (6.18)

or'the supercurrent is quantised, with its vatue directly determined by the the number of
conducting channels. Remember that this number also determines the conductance of the
system if it 1s in the normal state, as given by the common Landauer expression,

G, =N_..2e%/h. So, in case the N region is a quantum point contact, the conductance in the
normal state and the supercurrent in the superconducting state should behave in a similar
way. Note that, in contrast to the universal value of the steps 2¢2/ in the quantised
conductance, no such universality holds for the size of the steps in the supercurrent.

Combining eq. (6.18) for the multichannel critical current of a short junction with the
normal state resistance R,=1/(3, yields for the product

LR =24 (6.19)
e -

Before closing the chapter we want to discuss some experimental aspects. S-N-S systems
have been investigated aiready for a long time, with a strong emphasis on conventional
metals taken for the N region. In many experiments supercurrents were found and studied
in dependence of temperature and magnetic field as well as the thickness of the normal
layer, both in the ballistic and the diffusive regime. Fewer expertments have been done
with a semiconductor as the N material. In the majority of these cases the N region was in
the diffusive limit, a regime that we have not discussed above.

Up to this moment no experimental result exists that firmly confirms the prediction of the
quantisation of the supercurrent as given by eq. (6.18). There is however a recent



experiment in a fully metallic system that points in the correct direction. Figure 6.15 shows
the main parts of the set up of this so called break junction experiment (C.J. Muller et.al,
Phys. Rev. Lett. 69, 140 (1992)). Employing the elastic bending of a strip, the
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Figure 6.15. A break junction experiment. a.shows the experimental sei-up. The thin wire
(or filament) with a weak central spot is.glued onto the bending beam. By applying a

- voltage o the piezo elements the amount of bending can. be controlled. In thisway (b.)
the weak spot breaks and the separation of the two sides of the (broken) wire can be
varied.

end points of two wires glued onto the strip can be made to have a controllably variable
contact. The bending of the strip is obtained by employing a piezo element as a pushing
rod against the elastic strip. The gap between the two. wires can be controlled to a pm
(=10"12m) scale, i.e. the contact can be manipulated on the scale of the size of single
atoms. As a consequence the conductance, determined by the number of contacting atoms
as the number of channels ¥, may increase stepwise. In the most ideal case each step
could correspond to a single atom subsequently (dis-)connecting the wire ends, and so the
step in the conductance should be 2¢2/7.

Figure 6.16 shows the experimental results obtained for a Nb wire. The lowest panel
shows the voltage driving the piezo element that controls the bending state of the strip,
and so the separation of the wire ends. As anticipated, a larger voltage resulting in an
increase in contact gap, leads to an increase of the resistance with the wire in the normal
state (second panel from the top). The typical steps in the resistance of AR~20-60€} at
R~600 £2 are equivalent to steps in the conductance |AG|={AR| /R2~(2-6)e?/h, i.e. roughly
of the right order of magnitude. Note that the resistance varies ~ 50% over the bending
range. With the system in the superconducting state the supercurrent is measured, the
results of which are shown in the figure in the third panel from the top. Again the current
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25 Figure 6.16. Results of a

break junction experiment
on a broken Nb wire in the
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700 1 state. The lowest panel shows
the (time sweep of the) voltage
600 applied to the piezo that
S0 controls the contact gap of the
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IR, shows the critical current
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contact in the normal state.
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roughly varies some 50% over the full range. Calculating the / Ry, product (third panel
from the top) shows an average value of ~1.7 mV, with variations of only ~7% total, 1.e.
much less than those of the current or resistance. Note that the product approximately
agrees with the value of the gap of niobium of ~1.5meV.

Tt should be emphasised that these results do not rigidly confirm the prediction of the
quantisation of the supercurrent as the spread in resistance and current steps is much too
large. Further experiments, of this type and by using quantum point contacts in
semiconductor systems, are needed, and work is progressing in this direction.

General references to the subject:

1. "Andreev reflection and the Josephson effect in a quantum point contact”, H. v. Houten
and C.W.J. Beenakker, Physica B175, 187-197 (1991)
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7. Coulomb interaction and charging effects

Key words: capacitance; charging energy; Coulomb blockade; tunnelling; quantum
resistance; single electron transport; Josephson junction; Josephson energy; single
Cooperpair transport.

7.1. Introduction

Itis known for already a few millennia that under certain conditions matter may become
charged. In this state the charged piece of material will exercise a force on a nearby
iject. Near the end of the 19 century it became clear that this force or interaction
resulted from the existence of particles carrying a well defined charge, which became
known as electrons. In honour of one of the persons who made crucial contributions to
our present day understanding of this force and the particles generating it, this
mechanism is denoted as Coulomb interaction.

In the preceding chapters we have neglected any influence of the Coulomb interaction
between electrons. In metallic systems this approximation is found:to be remarkably -
successful, reflected in the applicability of the free electron model to a broad variety of
solid state problems. In this chapter we will study effects resulting from the electrostatic
interaction of electrons, both mutually and with an external electrostatic potential. We
will see that in small structures that are (nearly) isolated from its leads, the electrostatic
energy of a single (additional) electron, -called the charging energy-, may lead to a
blockage for the transport of electrons through this structure. This so called Coulomb
blockade manifests itself at temperatures such that the charging energy exceeds the
thermal energy (see section 1.2.b). In addition to the role of the ratio of these two
energies also the degree of isolation of the structure, or "localisation” of the charge on it,
will be found to be crucial for these phenomena.

In section 7.2 we will see how the single electron charging energy affects the electron
transport, both through metallic junction-type structures and semiconductor guantum dot
structures. It will become clear that employing the charging energy allows the controlled
manipulation of single electrons, both to study the effect as such as well as employing it
for intriguing applications like charge detection and accurate current generation. In
section 7.3 metallic junctions in the superconducting state will be discussed and we will
see that the "unit charge" to be considered is that of a Cooperpair, i.e. two times the
electron charge.

71.2. Charging effects in normal-state systems

In this section we will introduce the effects resulting from the addition of a single
electron onto a small conducting object. In subsection 1.d. of chapter | the phenomenon
has been discussed in a very brief and rudimentary way, and it is the present aim to
underpin it more thoroughly. Notifying the capacitance of the small object or island, we
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will-see that the energy related to the addition of the smallest unit of charge, -i.e. one
electron-, leads to such energy requirements that under certain conditions these can not
be fulfilled by the sources available in the circuit. This then leads to the impediment of
charge flow through the island: the Coulomb blockade. We concentrate on normal metal
{or semiconductor) bodies and how the electron transport through it is behaving.

7.2.a. Dimensions and capacitances of conducting bodies

From elementary electrodynamics we know that an isolated conducting body suspended
in a dielectric environment (including free space) shows a linear relation between the
charge Q residing on it and its potential ¢ relative to infinity (commonly taken to be the
zero of potential). The factor of proportionality is the capacitance C of the body, with
C=(/9. The associated electrostatic energy is simply given by E=02/2C. Apart from the
dielectric constant of the environment, the capacitance of the body is completely
determined by the geometry of the system, i.e. by sizes and distances. For the sake of
completeness three examples of the capacitance of commonly encountered configurations
are given. For a sphere of diameter d in infinite space with a dielectric constant =g,
{with £O=8.854188*10‘12 F/m) the capacitance is given by

Squeezing one dimension of the sphere to form a disc with diameter d yields a
capacitance (again in infinite space)

' Cige= £ 4d (7.1b)

If on the other hand the disc of area §=7 d2/4 is brought near to a large piane conductor |
at zero potential, such that the two planes (disc and conductor) are in parallel at a
distance &, the capacitance is (approximately!) given by the usual “flat plate” expression

Cdisc-plate= € Sta = € md2/4a (7.1¢)

It is important to note that reducing the typical dimension d of the isolated body leads to
a decrease of the capacitance of the body, i.e. a body of small size has a small
capacitance.

7.2.b. Conditions for single electron charging

In large bodies containing many (free) conduction electrons, the charge seems to behave
as a fluid, acting as a continuous variable. We know, however, that nature only provides
charge in quantised units g=-lel, in this way only providing total charges O=Ne, with N
being integer. As a consequence the electrostatic energy due to the addition of the
minimum amount of charge -lel is given by

Ec=e22C (7.2)

This important energy scale is called the (single electron) charging energy. As we have
seen that reducing the dimensions of a body leads to a decrease of its capacitance, from
eq. (7.2) it immediately becomes clear that this also leads to an increase of the charging
energy. From this it can be anticipated that whenever this energy scale becomes
dominant, it will start affect the transport properties through the body. Comparing it to



the thermal energy, leads to the first condition for charging effects to become effective,
given by '

Ec>>kT (7.3)

This leads to the conclusion that in order to study these phenomena small systems at low
temperatures are required.

To investigate the effect of the charging energy we need a structure which allows us to
feed current through it. This means that it should be somehow connected to leads. Fig.
7.1 shows three examples of devices which have shown single electron charging effects.
Each circuit contains a conducting central section with two leads connected to it. Without
providing arguments for it at this moment, it is crucial for the occurrence of charging’
effects that these leads have a large resistance: we will return to this condition shortly.
Fig.//.1a displays a so called metallic double junction device: a central metallic island
(e.g-made out of Al) evaporated onto an insulating substrate (e.g. oxidised Si), connected
to two metallic leads. Before attaching the leads, the central section is oxidised to form
an'_.;_.gxtremely thin (a few monolayers) insulating cover. In this way tunnelbarriers are
formed between the leads and the central island. Such a tunnelbarrier forms the high
resistance in the leads. A typical size of a tunnelbarrier junction is 100*100 nmZ2,
shoWing a capacitance of ~ 10713 F (or 1 fF). The central island with typical dimensions
of 1000*100 nm? leads to an additional capacitance of some 0.1 fF. Fig 7.1b shows a
second example: a Scanning Tunnelling Microscope (STM) tip, pointing to a small
metal globule embedded in-an insulating matrix on‘top of a conducting substrate -
(compare to figure 1.6). Now the tip-to-globule and the globule-to-substrate insulators
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form the tunnelbarriers. With a metallic globule of ~10nm, eq. {7.1a) leads to a typical
capacitance C~10-18 F. Effectively the total capacitance will be larger due to the relative

dielectric constant of the environment and the proximity of the conducting substrate and
the STM tip.

Problem: Estimate below what temperature charging effects may become effective with
such a 10nm globule.

Fig 7.1c shows a quantum dot made in a GaAs-AlGaAs heterostructure containing a
high-mobility 2DEG at the interface between the two constituting semiconductors (sce
figure 1.13 and Appendix A). From the six gates on the surface which all together form
the dot, two pairs are used to form two tunnelbarriers for the high resistance leads; the
remaining two gates are employed to complete the dot as such. The capacitance of the
system is now mostly determined by that of the central island. With a typical size of 300
nm diameter, eq. (7.1b) yields C~0.1 fF, or a charging energy equivalent to 7~10K.

Now that we have encountered some actual structures, we want to discuss the
requirements for the lead resistance, in particular why this should be large. In a piece of
bulk metal the free conduction electrons behave nearly like a liquid. This liquid-like state
is an immediate consequence of the Bloch states of the electrons, extending far through
the metal crystal. The extended nature of these electron states makes it a rather
meaningless question to ask how many electrons there are within a small given volume
somewhere inside the large piece of bulk metal. This suggests that the amount of charge
residing in a given volume is well-defined only if this volume is rather well separated
Sfrom its environment, i.e. it should be connected by leads transmitting the electrons only
Weaﬁly. To quantify this more precisely, figure 7.2 schematically shows a typical
structure as discussed in figure 7.1. The central island with a capacitance Cy is connected
to two electron reservoirs by resistors Ry and R; respectively. As we have seen the typical
energy it takes for a single electron to be put onto the island is the charging energy E .
In order for the charge at the central island to be well-defined, the typical time for the
charge to leak away to any of the two reservoirs should be sufficiently large. More
precisely, it is required that the {quantum mechanical} energy uncertainty associated with
this leak-out time should be small compared to the charging energy E¢.
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Figure 7.2. Schematic diagram of a single electron charging circuit. The central island,

with total capacitance Cy; is connected fo two electron reservoirs by large resistors R
and Ro.
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The leak-out time is given by the RC time
Tre =CsR;p=C5 /Gy (7.4a)

with Gy2=Gj+Gp=1/Rj + I/R}, i.e. the total conductance for electrons to leave the
island. The energy uncertainty associated with this time is given by

SE =1/ Tpe (7.4b)

For the charge to be well-defined and localised at the island we thus should meet the
condition

SE < Ep=¢*/2Cy , (7.5)

Combining eq. (7.4) and (7.5) immediately yields a condition for the total “leakage”
conductance of the island to the leads

G <et/oh=me?Ih=221h (7.6)

This is the second condition for the occurrence of single electron charging effects. Note
thatthis condition is equivalent to the requirement that the total transmission through the
barriers is less than one (see eq. {(4.12)). Or, stated differently, the transmission needs to
be so small that guantum fluctuations of the charge through the tunnelbarrier are
effectively suppressed to less than a unit charge lel.

7.2.c. Tunnelling through a single tunnelbarrier or.tunneljunction, and single electron
charging effects.

Now we concentrate on a single tunnelbarrier junction, as shown in figure 7.3. As shown,
the barrier is represented by the potential energy rise in the range x=0-d between two
conducting regions, i.e. electron reservoirs (e.g. see section 3.2). As the potential energy
in the middle of the structure is larger than the maximum kinetic (=Fermi) energy of the
electrons in the reservoirs, the electrons are classically not allowed to traverse this barrier
region. Penetrating the barrier is only possible via the quanturn mechanical mechanism of
tunnelling. Let us consider the mechanism of tunnelling in more detail. In doing so we
will "derive" a simple expression for the tunnel rate, or the number of tunnel events per
second, and show how this depends on the energy difference before and after tunnelling
(1.e. between the initial and final state} and on the transmission of the barrier.

As tunnelling is a quantum effect, the tunnelling rate I for a single junction is derived
starting from the Hamiltonian of the system consisting of the two metal reservoirs and
the interconnecting barrier. We assume that the exchange of electrons between the two
reservoirs via the barrier is moderate. In quantum mechanical language this means that
the coupling between the two reservoirsis weak, and this allows us to describe the total
system of two reservoirs and barrier by a Hamiltonian H=H j+H>+H;. Here H; and H»
denote the Hamiltonians of the electrons in the reservoirs, taken as if there was no
coupling between the two, and Hy describes the exchange of electrons via tunnelling.
Writing the Hamiltonian in this way implies that we assume that perturbation theory is
applicable. In that case we can use the celebrated Fermi Golden Rule to evaluate the
transition probability or rate I between the i(-nitial) and f{inal) state of the system

I'(i = f):%”k PHHAY S S(E; - Ef) (7.7)
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The delta function 5(EI--Ef) enforces energy conservation in the (non dissepative!)
tunnelling process. The current resulting from this rate is simply given by /=lell’.

The tunnelling matrix element 4 E)=<'FilH;| ¥r> denotes the overlap between the
wavefunctions before and after tunnelling (i.e. from reservoir 1 to 2) and so it represents
the transmission coefficient of the barrier, at energy Fi=E:.

Before continuing to evaluate the transition probability (7.7) it is very important to
understand and appreciate the conditions for the validity of the perturbation approach,
and the consequential limitations for the applicability of Fermi’s Golden Rule. It assumes
the coupling between the two metallic electron reservoirs to be so weak that the states ¥,
and ¥ themselves are not affected by it. This also implies that eq. (7.7) only describes
the probability for a single transition, from the initial to the final state, without allowing
the particle to tunnel back to the initial state. In contrast, if the coupling becomes strong
the two separate states restricted to reservoir 1 and 2 respectively merge into states that
extends all the way throughout the whole metal-insulator-metal system. This extension
implies that the particlé can “cross” the “insulator” many times. It is this multi-passing
(while preserving its phase: it is a single quantum state!) which makes Fermi’s Golden
Rule not applicable any more.

Now let us return to the derivation of the tunnel rates. Eq. (7.7) holds for each single pair
of states. If we assume that all tunnelling events between all individual initial and final
states behave independently (which is by no means obvious!), we can obtain the total rate
by simply summing all individual centributions. In a metal the density-of-states p is large
(see section 1.2.b) and so the sum can be replaced by an integral. So, to calculate the total
rate we have to multiply (7.7) by the number of occupied initial states in the considered
range of energy, i.e. by pj(E)*f(E}, with pj(E) being the DOS in electrode 1 and f{E)
denoting the Fermi function describing the effect of the temperature on the occupation of
states. In exactly the same way also the number of empry final states has to be taken into
account by multiplying by p2{E'}*(I-f(E’)), where the prime ' denotes that the two
reservoirs may be displaced in energy relative to each other. In figure 7.3 the
displacement eV was taken to result from an externally applied bias voltage. However,



just as well it may result from the energy difference associated with the tunnelling of an
electron, and so somehow with the charging energy. We will return to that below. Now
we can write the total rate of tunnelling from reservoir 1 to 2 as

o =
Ty == [la(EW py(E - E)F(E = Epy(E— Ex)i= f(E = E;)}E (7.8)

In a normal metal #(E) and p(E) are (approximately) independent of energy, provided the
energy difference |Ej-Ept <<Efgp,; - Hence, the integral only depends on the overlap of
the two Fermi functions f{E), and so on the energy change AU=FE7 -E that is acquired in
the tunnelling process, Without going through all the (relatively simple) algebraic details,
eq. (7.8) can now be rewritten as

AU I

Ty, =—G
27 2 7 exp(AU 1 kT) -1

(7.9)

Here Gy=(e2/h)*p] *pp *ir)212 is the conductance of the tunnelling barrier. Compare
this expression to the more simple expression for the ballistic case G=( e2/h) *Nep. with
Nip being the number of completely transmitted 1D channels ( i.e. l¢ 212=I). This can be
understood as now only individual states in the leads 1 and 2 can "talk to each other", or
' p1 *po2 just counts the number of corresponding states in the leads, i.e. it represents Ny,
It should be stressed again that eq. (7.9) only holds for weak coupling between the
electrodes, i.e. Gy<<e?/h. Deviations will also occur:if the density~of-states-becomes
comparable to other energy scales, like k7. We will come back to this aspectin the
discussion of semiconductor structures, where the confinement leads to-such 0D

splittings.
At zero temperature (7.9) can be simplified further to
_A_ij G, for AU<0
€
I= (7.10)
0 for AU>0

From the preceding expressions we can derive in a quantitative way the currents resulting
from tunnel processes through single and multiple junction systems, provided the energy
difference and the transmittance of the barrier(s) are known.

In practice two types of barriers can be made. In metal systems an oxide barrier can be
fabricated which has a height of typically a few eV (i.e. >>¢/2C); in this case the
transmission and conductance of these barriers is nearly independent for bias voltages in
the range determined by the typical charging energies of a few mV. In contrast, in
semiconductors a tunnelbarrier induced by gates (see section 4.2) is rather low (~10-100
meV) and broad (tens of nm’s), leading to a significant dependence of its transmission on
the bias.

Let us now consider the single junction as shown in figure 7.3, of such a size that the
energy will be affected by its capacitance. We will discuss two limiting cases. First the
junction is connected to a voltage source (of a very low internal resistance), and secondly
we will discuss the case that a carrent source (which has a very large internal resistance)
feeds the junction.
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Wesstart with the application of a voltage source. If the barrier of resistance R=1/G, has a
capacitance C, the application of this bias voltage V or electrochemical potential
difference Au=eV across the device results in the build up of charges +Q and -0 at the
two-sides of the barrier.

What values can this charge take, and does it “suffer” from the quantised nature of
charge? In the macroscopic metallic leads ending at the barrier the electrons are in
extended states, i.e. they can move freely. Consequently the accumulated charges +Q and
-Q effectively result from a shift in the average positions of the electrons on the two sides
of the barrier. This shift can be infinitesimally small and so it leads to a continuously
variable polarisation charge, which is linearly dependent on the difference in
electrochemical potential. In particular it follows the common dependence O=CV. In
contrast, with the tunnelresistance Ry >> hi2el (i.e. fulfilling our second condition, eq.
(1.6)), any charge that would tunnel will be well-quantised in units e.

Now we simply can derive the current that flows through the junction. Inserting the
energy difference AU=-lelV into eq. (7.10) one finds /=lelI=V(G=V/R,, which is in
agreement with Ohm’s law.

Secendly, in order to study the opposite limit, we connect a current source to the junction
(figure 7.4a). This allows us to study the time dependent behaviour of the charge on a
single junction. Such a source has an infinitely large internal resistance Ry, and forces a
constant current f through the junction, irrespective of the processes occurring in it. If a
single electron with a charge -lef tunnels, the charge changes from Q to Q-lel. The
electrostatic energy of the system changes from Ujp;147 before tunnelling to Ugy g after
the &vent, with

(e’ 0 _ 1d Il
5C T Ty BRGLY

At T=0 tunnelling will occur only if AU<0, 1.e. whenever the system may enter a lower
energy state, and this condition yields
O>le2 or  V=0/Cslel2C (7.12)

If R;is infinite (i.e., a perfect capacitor) evidently no tunnel events can take place and so

AU =U g = Uitial =
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Figure 7.4. A tunneljunction of capacitance C and tunnel resistance R, connected to a
current source {a.). Panel b. is the circuit equivalent using a voltage source and large
series resistance R. In panel c. the typical shape of the resulting I-V characteristic is

shown, demonstrating the suppressed current at small bias due to Coulomb blockade.
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the constant current would imply a linear increase of the charge Q with time. However if
Ry is finite, tunnelling is allowed whenever the condition of eq. (7.12) holds. Fig 7.5
depicts the resulting behaviour of the charge @ versus time r. Note that the total charge O
oscillates between approximately -e/2 and +e/2, and so the voltage between -¢/2C and
+e/2C, i.e. during half of the period of the oscillation the polarity of the voltage over the
junction is reversed as compared to what one would assume intuitively! In addition the
sawtooth oscillatory behaviour of the charge versus time (at a sufficiently small current)
makes the average voltage across the junction to be approximately zero. The oscillatory
behaviour of the charge occurs at an average period of At=e/I. This results in Single
Electron Tunnelling (SET) oscillations at a frequency fopr=1/At=l/e.

. The important conclusion is that the Coulomb interaction of the electrons enforces that
the electrons flow through the junction is a time correlated way: the finite charging
energy effectively regulates the traversal of electrons through the system from completely
random to highly sequential.

Thé condition of eq. (7.12) defines, at zero temperature, the earliest moment in time that
tunnelling becomes energetically allowed. The actual moment the event will take place is
governed by the RC-leakage time of the junction, as this limits the rate at which the
charge can be changed. This can be seen easily by inserting eq. (7.11) into eq. (7.12), and
taking the a linear increase of the charge with time, following O=/[el, with I being the
externally applied current. This also shows that the probability for tunnelling increases
with time once the condition (7.12) is fulfilled. As the leakage of the charge is a
classically statistical process (it is governed by the probability just mentioned),
consecutive time intervals between tunnelling events will vary: This is-indicated in figure
7.5 by the dotted lines. Due to these fluctuations the Fourier spectrum of the SET
oscillation will not just show a sharp peak at the SET frequency I/e, but it will be
broadened. This becomes particularly important if Tp is no longer small compared to
the SET period Az, or [~e/RC.

A non-zero temperature will induce additional fluctuations in the moments in time at
which tunnelling occurs. This can be simply seen by introducing an additional energy -
term in eq. (7.12) which is allowed to fluctuate between ~ -kT and +£7. From this it is
also evident that by the time this thermal excitation kT becomes comparable to ¢2/2C the

Figure 7.5. The time dependence of the charge on the tunneljunction during SET
oscillations. The dashed lines indicate the condition for tunnelling AU=0 (eq. 7.12). The
actual tunnelling event {dotted line) lags in time in a statistical way on a time scale TR¢.
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time correlation in the tunnelling process will be broken and SET oscillations become
suppressed.

The current source depicted in figure 7.4a can be schematically represented by a voltage
source and a large series resistor Ry (compared to the relevant scale of resistance defined
by our second condition hi2e2, eq. (7.6)), figure 7.4b. From eq. (7.12) we can see that, to
allow tunnelling, the voltage across the junction has to be larger than ¢/2C. This
immediately imposes a lower limit on the voltage V of the source to allow a finite tunnel
current to flow. So, only for voltages 1VI>lel’2C the current I will be non-zero, while for
smaller 1V1 the current will be zero, as shown schematically in figure 7.4¢. This is the
famous Coulomb blockade of single electron tunnelling.

Now that we have discussed the behaviour of a single junction driven by a constant
current, 1.e. from a source of very large source resistance, we also want to consider the
opposite limit of connecting a voltage source to the junction. The resulting circuit can be
envisioned simply by replacing the current source of figure 7.4a by a voltage source. This
is equivalent to taking the source resistance in figure 7.4b to be small or R~0. Evidently,
now the voltage across the junction is fixed by the source keeping also the charge
constant at Q=CV. Because the source rigidly fixes the charge on the tunnel capacitor,
any tunnelling charge is instanfaneously compensated by the voltage source, and so the
transport through the junction is only determined by its conductance G;=1/R, for all
values of the applied voltage V. So, connecting the junction to a low-resistance source
suppresses the Coulomb blockade.

From these two limiting cases of large and small resistance (or, more generally:
impedance) we reach the important conclusion that charging effects are strongly
determined by the resistance or impedance of the environment (i.e. leads and source). In
particular these effects are most prominent if this impedance is large.

Before continuing with some more of the theory it is worthwhile to step back and
consider the experimental implications following from the requirement of a high-
resistance environment. It requires a resistor of resistance R~100 k&) or more, with the
additional requirement that the capacitance of the resistor (which is intricately connected
to the geometric size of the resistor)) has to be considerably smaller than the capacitance
of the junction, as it otherwise will increase to total capacitance of the system and thus
reduce the charging effects (eq. (7.3)). From eqs. 7.1 we derive that this can only be
realised if the size of the resistor is kept small, typically <1 ym. The combination of such
a large-value resistor with a small size is by no means obvious, both from a technological
point of view (see Appendix A) as well as based on more fundamental aspects (requiring
the resistor to be made of a material of very large resistivity, while still being metallic
(see the discussion following eq. (2.5))!

7.2.d. Single electron charging in systems containing tunneljunctions and capacitors.

For single-electron charging effects to occur we require that the charge is well localised
at a small metallic conductor. This requires that the tunneljunction is connected to a high
impedance “environment”, or to inhibit the flow of electrons through the connecting
element all together. In the first case one can employ a second junction as the "load"” for
the first one. Evidently this argument holds also vice-versa: the first junction acts as a
high resistance for the second junction as well. In the second case a (common) capacitor
can be taken as the connecting load. We will start discussing the second case, and show
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that this logically leads to the first. In particular we concentrate on the resulting energy
balances in the circuit.

Fig 7.6a shows the diagram for the circuit comprising the series connection of a
tunneljunction (parameters R and C;) and the capacitor of capacitance C,. The reason for
the two subscript names r and g will become clear once we: transform our present circuit
to the double junction variety. In addition a voltage source of potential Vy'is connected to
the capacitor Cg. We want to derive the energy of the total system (i.e. capacitors and
voltage source). More specifically, we are interested in an expression for the energy that
allows us to evaluate the energy differences that are associated with the tunnelling of
electrons in the system, i.e. in this specific case from the zero-voltage (or ground) lead
through the tunneljunction onto the island formed by it and the capacitor. Basically, this
is the free energy U of the system for the exchange of electrons with its environment.

Q[’ CD Rt

Ci., Ry - Ca Ry
—

Figure 7.6. Series circuit comprising a tunneljunctions and a capacitor (a.); the charges
on the two capacitive elements as well as the potential of the central island, @y, are
indicated. b. The free energy of the system of a. in dependence of the applied voltage V,,
showing a periodic behaviour with respect to the addition (or removal) of one electron
charge lel to the island charge Qu, as shown in c. In d. the diagram of the double
Junction circuit is shown, for V=0 this circuit can be redrawn to circuit a.
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The energy is built up from three different contributions, two of these being electrostatic
in nature and one being electrochemically, resulting from the work done by the voltage
source. Evidently, as we are studying single-electron charging effects, all capacitors are
small, making the charging energy EC=€2/2CE=€2/2(Cg+Cr) the relevant energy scale
following eq. (7.3). This implies that at the island formed by the two capacitors the total
charge has to be due to an integer number of electrons, i.e. On=-0g+0:=Nlel.

Let us first assume that no net charge sits at the island, or On=0 and N=0. This implies
Q¢=0:. The application of the voltage V to the circuit effectively charges the two
capacitors in series yielding the effective capacitance Ci=CyCy/Cs. Thus the first term of
the energy equals

1% v . B 2
g 8 cyv: c.c,v?

U= [vdo= jcvay =——£ = ;g'g. (7.13a)
0 0 L

Now we allow charge (say, N electrons) to tunnel from the island to zero potential
through the junction C,. The resulting charges on the two capacitors are denoted by O,
and;,CNr, and the total net charge on the island becomes On=-Ong+On=Nel. This added
(or removed) island charge leads to the other two contributions to the energy.

The isolated charge On=Mlel sitting at the total capacitance Cs leads to the
straightforward electrostatic contribution

Ok

7.13
e (7.13b)

2 Up=
1.e. the second energy term.
In addition, the removal of the electrons from the island not only affects the total charge
of the island, but evidently also the charges present at the two constituting capacitors.
The additional charge at the capacitor connected to the voltage source is denoted by Ong.
It can be straighforwardly shown to be Ong=(Cy/Cs)Qn, and so the work done by the
source to transfer this charge from the + to the - terminal (=ground) is the third
contribution to the energy,

Us3=0 = _gV_g Q (7.13c)

3T ENgYe T T OV 3¢
As mentioned before we are interested in effects on the energy resulting from tunnelling
events, i.e. if the charge on the island changes by a unit lel. This implies that the On=0
term of eq. (7.13c) can be suppressed. Thus summing and rearranging the terms of eqs.
7.13b & ¢ yields

—c TGV, (CpV )2
B 2Cs 2Cs

While also the last term of this expression does not depend on Qy we may suppress it,
thus arriving at our final expression for the free energy

2
[ _ (NI CyV,)
2Cy

Note that in this expression CgV, acts as a continuously variable charge added to the net
integer charge On=Nlel on the island, without actually changing Ox: it only affects the

(1.14)

(7.15)
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energy of the system via a polarisation charge and a consequential redistribution of the
total charge Qn over Cyand C,.
Figure 7.6b schematically shows the parabolic dependence of eq. (7.15), with each
parabola being associated with an integer “island filling number” N=...,-2,-1,0, 1, 2, ...
From this diagram it is clear that, by varying the control voltage V,, each parabola can be
traced, provided the charge at the island is kept fixed. It is, however, quite clear that for
each value V, the free energy (7.15) is at its minimum for only. one unique island charge
On. So we anticipate that, if the system is allowed to stay at the lowest energy, i.e. the
ground state, (see below) the number of electrons at the island will change one by one at
increasing (or decreasing) control voltage, each time we cross the next lying parabola.
Figure 7.6¢ shows this stepwise change of the island charge in dependence of the voltage,
with each step having a size AQ=lel; a similar behaviour is shown in the top panel of
figure 7.7.
Evidently also the potential of the island will be affected by the charge that is
accumulated on it, as well as by the control voltage. It is simple to show that the
electrostatic potential of the island containing N (excess) electrons and subject to the
external potential from the gate via the coupling capacitor C ¢» behaves like
- . NleltV,C, 6

QU( v g ) . CE (7 )
So, we see that the circuit of figure 7.6a allow us.to control the number of electrons on an
isolated conductor that is weakly connected to leads to the level of a single electron and
this can be done in a very precise and predictable way, provided that we meet the
conditions imposed by eqgs. (7.3) and (7.6). Stressing this quite outstanding capability this
circuit, comprising one tunneljunction in series with a capacitor, is called a single
electron box.

It is very simple to extend this simple two-terminal circuit (basically consisting of the
ground lead and the lead to which the control voltage is connected) to a three-terminal
variety. Figure 7.6d shows the resulting diagram. It includes two series connected
tunneljunctions of capacitances Cy and C5 , the island with a capacitance C,. to ground ,
and a capacitive coupling C'g that connects to the control voltage V.

The energy of the resulting circuit can be obtained in a stralghtforward manner from eq.
(7.14), which effectively comprised a term due to the integer charge at the island added
to the contribution related to the work performed by the (external) voltage source(s)
while reaching the charged state, or

QN

_ QN QN
20y

U@y, Vy,Vi==+ 2OV = =L (CV, +CV)+Uy  (117)
2Cs ' Cx

sources

with (¢ being the charges transported through the sources V;. While now the control
voltages (connected via true capacitors) and the bias voltages (connected via
tunneljunctions) are include on an equal footing, this expression allows us to study linear
(Vbias very small) well as non-linear (Vipias~Ec/lel) properties like I-V characteristics.
Concentrating on the double junction circuit of figure 7.6d we will discuss these two
cases now, and see how the current that flows through the two junctions and the bias
source is affected by the bias source voltage V and the control or gate voltage V.

A. The small-bias linear regime ([Vi<<Ec/lel}
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From eq. (7.10) we derive that, at zero temperature, tunnelling of particles onto or out of
the island will be possible whenever this will lead to a decrease of the total energy U, i.e.

/_\UEU(QNilel,Vg)—U(QN,Vg)SO (7.18)

Using eq. (7.15) this condition is equivalent to IC,Vo+Nell>e/2. Consequently the
system is in a stable charge state only if

-(N+1/2leI<Cng<-(N+]/2)iel (7.1%)
with  Qpn=-Nlel

Equation (7.19) states that, at a given gate voltage, the system will adjust the net charge
at the island such that this stable state is established. In figure 7.6b these condition points
are indicated by the dashed vertical lines, i.e. they occur at the crossing of two
neighbouring parabolas that differ by one unit charge. Note the periodicity of the control
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voltage AVg-—-e/Cg. In case the system is in an unstable state (either because too many or
too few electrons reside at the island to meet the condition (7.19)), a number of tunnel
events will occur to reach the stable state, after which no further exchange of particles
with the reservoirs will occur.
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In general the system now contains a fixed number of electrons at the island, and no
further transport is allowed, i.e. I=0: the double junctions system is in the Coulomb
blockade state. However, if Vg matches the condition U(Qy %e,V,)=U (On» Vg), the

degeneracy of the energies of the two states (i.e. AU=0) differing by one unit charge lei
implies that the system does not have any “preference” for containing Nor N +1
electrons. Thus electrons are allowed to enter and leave the island, i.e. electron transport
may take place. E.g. for V, g=-(N- 1/2)le§/C at a small bias voltage the system will evolve
in time via the sequence of charge states Q =-Nlel, -(N+1)lel, O, =-Nel, -(N+1)lel, . he
sequential addition and leave of single electrons to the island leads to a non-zero current
flowing due to the (small) bias voltage V, i.e. the conductance G=I/V is non-zero at the
points. This is seen in the middle panel of figure 7.7. The sequence of peaks and valleys
in dependence of the control voltage V, is denoted as Coulomb blockade oscillations.
The behaviour of the potential of the island, following from eq. (7.16), is shown in the
lewest panel of the same figure. Note that (at zero temperature) only one electron at a
time can be added to the island: the repulsive Coulomb interaction prevents more
particles to sit on the island, in this way again forcing the electronic transport to become
correlated in time (compare to figure 7.5).

Problem: discuss the time dependence of the potential of the island, ¢, when the
conductance is at its maximum and a current [ is transported.

For the present case of small bias the degeneracy condition U(Qy te, Vo) =U(Qy, Ve)

for tunnelling can be interpreted also in a different and more fundamental way. From
thermodynamics we know that in a system where particle exchange is allowed,
thermodynamic equilibrium will be reached whenever the electrochemical potential
throughout the system is constant. So, in the case that the tunnelling degeneracy
condition AU=0 holds transport is allowed and particles are exchanged throughout the
systern, including towards the particle reservoirs (or leads) connected to the island, With
the leads at electrochemical potentials 4, and M, respectively (with g, - =-lelV is small
and L., i, = EF), this implies the following equivalent

U(Qn % e.V,) =U(Qn.Vy) = fy.fty = 1O, V,) (7.20)

This is a very important and general result. Rephrased in words is states that tunnelling in
a charging system occuirs whenever the electrochemical potentials of all the states
involved are aligned.

Note that this condition for alignment of the electrochemical potentials implies that
Coulomb blockade is suppressed, as particle exchange is the main consequence of the
alignment.

We now want to discuss a few experimental results representative for the linear regime at
low temperature, i.e. leV,kT<<eZ/Cy, The first one concerns a quantum dot in a 2DEG,
for which Fig 7.8 shows a typical example. By applying negative gate voltages the
electrons are confined to the 7 “white” areas delimited by the gates A-E. The two tunnel
barriers are formed by the two gate pairs A,F and C,D, while the island is formed in the
centre by these gates as well as the two middle gates indicated by B and E. Note that the
voltages on the gates are chosen such as to close the long, narrow channels between the
gates A,B, C,B as well as between F,E and D,E by depleting the 2DEG in between. The
conductance of the barriers can be adjusted independently by changing either V A OT
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1} Figure 7.8. Gate pattern on the
surface of a GaAs heterostructure
Negative voltages on the gates
suppresses the electron density
underneath the gates, leaving

a finite value in the areas
delimited by the dashed lines.

Gate pairs A,F and C,D) induce the
tunnel barriers, while gates B E
close the dot and control the

um energy and the total charge Op.
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VC’D. The gates B,E are used to control the electrostatic energy of the electrons residing
on the island (or dot), thus acting as the control capacitance Cy. Dots of this type have
typical sizes of a few 100 nm contain a few hundreds of electrons and-have a capacitance
C~100 aF (1aF=10"18F), leading to a charging energy E.~1meV~10K. Figure 7.9 shows
the current through a similar device, in dependence of the voltage V__ on gate E. With
the applied bias voltage V=50 IV the vertical scale represents the conductance through
thedevice. It nicely displays the Coulomb blockade oscillations in accordance with the
theoretical curves shown in Fig. 7.7b. At this stage we will not discuss the mechanism
leading to the strong "wavy" modulation of the size of the successive peaks.

Problem: discuss possible mechanisms leading to the general trend in figure 7.9 of the
increase in conductance with increasing (i.e. less negative) gate voltage.

The:second example of an experiment concerns a single electron box (see just below eq.
(7.16) in a metallic junction system. Fig 7.10 shows the diagram of the system, basically
comprising two coupled single-electron charging circuits. The first part, which is the
actual system of interest, act as the electron box: it contains two metallic junctions and
two capacitors Cy and C, coupled to the central island b. Note that, while both junctions
are connected to the zero potential, they effectively act as a single junction, of the type
shown in figure 7.6a. The aim of the experiment is to measure the potential ¢(N, U} of the

T T T
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T

Figure 7.9. Coulomb
blockade oscillations in
the current through a
quantum dot of figure 7.9
at a constant bias voltage
V=30 1V, in dependence
k of the voltage the middle

o ‘ UJU\JUJ \JU bU gate E, at a temperature
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Figure 7.10. A circuit containing two capacitively coupled single-electron tunnelling
devices, realised by using AI-AlOx tunneljunctions. It comprises one SET device (m, C’}
used as an electrometer to measure the potential and its associated charge located at the
island of the second SET structure (b, C), called electron box. The coupling of the
potential of the electron box island b is-realised by capacitor C.. a. shows the basic
circuit diagram,; b. shows a drawing of the actual structure.

central island & in dependence of the voltage U on gate 2 (figure 7.102). To this purpose
the second double junction with island m acts as an (extremely sensitive) charge detector
or electrometer. It consists of the junctions indicated by C72 and the gate C,. The precise
operation of this electrometer (in the non-linear regime) will be discussed below.

Cc acts as the coupling between the two central islands b and m. In this way the potential
@V, U) of the central island b affects the potential of island m, which in turn controls the
Coulomb blockade of this second circuit, i.e. it determines the current J through the
electrometer single-electron device. Some characteristic values of the A/AIOx-based
structure are: the junctions € and C'have an AlOx barrier with a size of ~50%50 nmz;'
C=C"=600 aF and C=C,=C,=70 aF, and the junction resistances are ~600 kOhm, i.e.
>>h/2e2 (=25 kOhm). Fig 7.11 shows the experimental result obtained at a temperature
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Figure 7.11. The electrostatic
potential ¢(N,U) induced by

the gate voltage U. The gradual
increase results from the
continuous polarisation charge at
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of ~20 mK. Comparing this curve with the theoretical one (Fig 7.7¢) demonstrates good
agreement, nicely showing the sawtooth shape. The linear ramp is associated with the
condition of a fixed number of charges and the steep drop demonstrates the switching of
this net charge with one unit. The finite slope of the steep drop is a consequence of the
finite temperature.

B. The finite bias non-linear regime.

Now we want to continue with the theory and concentrate on charging effects in the
double junction circuit of figure 7.6d in the non-linear regime, i.e. kT<<e2/2C y<leVl.
Using eq. (7.17) one immediately can calculate the free energy differences associated
with the tannelling of electrons onto or from the island. For reasons of simplicity we
modify the circuit of fig 7.6d such as to make it more symmetric, by applying the bias
voltage Vin a symmetric manner, i.e. the left and right lead are positioned at potentials
Vi=V/2 and Vo=-V/2. The tunnelling of a unit of charge through junction 1 yields

€
AUCN,N+D=U g = Uniian :C_E((N+1/2)e+cgvg ~Vy(Cy+C, 12)) (7.21)

This event increases the island charge from N to N+!. In the same way we can obtain
three more energy differences for tunnelling of one unit charge lel out via junction 1 (N
=>N-1), the addition of lel via junction 2 (N=>N+1), and the loss of it via the same
junction (N=> N-1). Equating the four differences to zero defines the conditions for the
various tunnelling events. ,

These conditions can be represented graphically by four lines in the (V.Vg)-plane. Figure
7.12 shows this so called stability diagram of the double junction device. Inside the array
of diamonds along the V, axis symmetrically around V=0 the net charge Q) is stable,
indicated by the integers ...,-1,0,1,2,..., and the system is blocked. In accordance with
intuition, the range of gate voltage V, over which the blockade is maintained decreases
with an increase of the bias IV1. Outside the diamonds the Coulomb blockade is overcome
by the bias voltage V and tunnelling can take place. To investigate this process in more
detail one can quantitatively evaluate the tunnel currents, using the expressions derived
for the tunnelling rate through a single junction (egs. (7.9) and (7.10)). For the double
junction case four I's have to be evaluated using the energy differences AU(k,N,N') given
in eq. (7.21) and in the text immediately following it. From these rates one immediately

Figure 7.12. Stability
diagram for the double
Junction circuit of fig. 7.6d.
Cr=C2 G=C+Co+ Gy
and Cp=0.
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Figure 7.13. I-V curve of a
metallic double junction device.
The characteristics of the
Junctions are R=350 k£2 and
C=0.3 fF. The solid and dashed
curves are experimental results

. ! .- , ( - Q- maximum and minimum

o ¢.2 0.4 Coulomb blockade respectively.
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obtains the overall tunnel rate I{I=>island=>2) from electrode 1 via the central island
into electrode 2.

Fig. 7.13 shows an experimental I-V-curve for a metallic double junction circuit,
obtained at 20mK for gate voltages V =0 (maximum Coulomb blockade) and V -e/ZC
(minimum CB), compared to a numencal evaluation using eq. (7.21). Note the qu1te
good agreement between the simulation and the experiment. Deviations, in particular at
higher current levels, are likely to-be due to the increase of the effective electron
temperature at the central island.

In the preceding discussion we-have assumed that the two junctions are identical in
resistance Ry and capacitance C, i.e. the RC-leakage time 7=R;Cj is the same for both
junctions. If these 7's differ strongly the evaluation of the rate equations shows that the I-
V characteristic develops a sequence of steps, which is called a Coulomb staircase.
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Figure 7.14. The Coulomb staircase. a shows the calculated I-V curves for the ratios
{R}/R2,C1ICs} equal to {25,10})(solid), {25,1}(dashed) and {25,0.1 }(dotted).
b. shows an experimental result obtained by STM on an In droplet at 4.2K .
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Figure 7.14a shows this behaviour for the case of three ratios of the R and C parameters
{RJ/R;C1/C2}. 1t clearly shows that the staircase becomes more prominent with
incréasingly different time constants of the two junctions. Figure 7.14b shows an
experimental result obtained from a scanning tunnelling STM experiment on a small In
droplet at 4.2K, showing a magnificent Coulomb staircase. Employing the same
formalism based on the rate equations (7.9) and (7.10) and the energy differences in the
double junction circuit we also can understand the operation of the electrometer used in
the electron box experiment of figure 7.10. This electrometer (i.e., the circuit at the right)
simply is a double junction device operating in the non-linear regime. Looking again to
figure 7.13 it is obvious that, if the device is biased at a constant current, the resulting
voltage across the device will be modulated by the potential of the electron box island
that couples to the electrometer device via capacitor Cc. E.g. biased at =50 pA it will
lead to approximately 0.22 mV at maximum Coulomb blockade and 0.10 mV at the
minimum. Fig. 7.15 shows this modulation for a similar device operating at 30 pA
current bias, Note from the very low noise level on the V signal that this charge detector
has a sensitivity far better than a unit charge. More detailed measurements show values
approaching 0.0001lel (for 1 sec. detection time), making the SET electrometer at least
three orders of magnitude more sensitive than any other existing charge detector!

7.2.e. Single-electron charging in islands with a discrete energy spectrum, or Quantum
Dots

In the preceding sections charging effects have been discussed under the constraint that
the electrons behave largely classically, i.e. neglecting their wave nature. This is fully
adequate if the central 1sland contains a large number of free electrons (note: this
concerns the total number of electrons, which needs to be clearly distinguished from the
number of excess electrons, associated with Qpj!!). In this case the confinement of the
electrons in the island will not lead to well-determined zero-dimensional (0D) single
electron states ("particle in a box", see subsection 1.2b), as the typical 0D energy splitting -
between levels will be much smaller than the width of each level (determined by the
phase coherence time and the leakage time through the barriers out of the island into the
connecting reservoirs). The strong overlap of the levels leads to an effectively continuous
density-of-states (DOS). This is the typical case for metallic systems, containing a
million or more electrons.
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In the case of a semiconductor island the reduced electron density and associated large
Fermi wavelength may lead to the opposite regime where the confinement results in well-
determined OD eigenstates for the electrons, with eigenenergies Fj. The fact that the
properties of the island are determined by the quantum nature of the electrons has lead to
the common use of denoting these islands as Quantum Dots (QD’s).

The discrete DOS has a number of effects on the charging phenomena discussed before.
In particular it leads to deviations from the e/C; periodicity in V, of the Coulomb
blockade oscillations, and the phenomenon of resonant tunnelling through the device. In
addition in the non-linear regime of large bias voltage the Coulomb oscillations become
multiply split, with the structure in the split peaks providing a method to obtain a good
quantitative estimate of the 0D level splitting. These aspects will be discussed in the next
paragraphs.

A, The small bias linear regime (leVi<Fe. Eop)

We denote the OD energy levels of the quantum dot by Ej, enumerated by p=1,2,...,
starting from the lowest level. The free energy for the metallic case, given by eq. (7.15),
has been derived under the assumption of a large, continuous DOS throughout the whole
structure (island and leads). Assuming that the leads have a continuous DOS, the total
free energy of the system with a discrete DOS in the island is obtained as the sum of the
energies of all occupied OD states added to the free energy of eq. (7.15) or (7.17). For the
small bias case (eq. (7.15)) this yields

(Qy +C,V )™

F(N,V)=UN,V)+ X Egp= 2Cs

M
+ 2 E, (7.22)
p

with the summation running up to the highest occupied state Epy. Note again that N
denotes the excess charge in the dot, while M counts the fotal number of electrons inside
the dot, the majority of which is electrostatically compensated by the positively charged
ionised background donors and/or an external gate potential (see chapter 2).

In the case of removal (or addition) of an electron from the island the ¢hange in energy -
now not only originates from the electrostatic contribution (7.15), but in addition the
difference in 0D energy AEqp has to be taken into account. Assuming the N-th electron to
occupy state p, (and similarly state p-1 is occupied by the N-1-th electron) the energy
degeneracy condition (eq. (7.18)) AUN,N-1)=0 at a given V; to be replaced by

AF(V N N-1)=F(N)-F(N-1)=AU(N,N- I)+(EN—EN_1)=AU(N,N—1)+AEODzO (7.23)

Here we have rewritten £,=>Ej, etc. Note that for the case of a metal En=Ex.(=FF), and
so (7.23) reduces to the former result AU=0 of eq. (7.18). The degeneracy condition
(7.23) leads to suppression of the Coulomb barrier, allowing particles to exchange freely
throughout the system, thus leading to a maximum in the conductance through the dot.
Following the introduction of egs. (7.18) and (7.19) we have seen that for the classical
metallic system the (excess) charge Oy is stable for a gate voltage interval given by
AVg=el(C,, ie. it is independent of the number N of electrons residing on the island. Thus,
the peaks in the Coulomb blockade oscillations in the conductance show a regular pattern
spaced at this fixed voltage interval (see figure 7.7b). This no longer holds for the case of
the quantum dot. In general in a quantum dot the spacing between the various energy
levels will depend on the specific states we are dealing with, 1.e. (Ens1-En)2A(EN-FNa1)
with the first difference associated with N+1 and N electrons and the second with N and
N-1. This implies that the required change in gate voltage to go from the degeneracy
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condition {N+1,N} to {N,N-1} differs from that in going from {N,N-1} to {N-1 N-2}.
Consequentially the peak spacing in the Coulomb blockade oscillation pattern will not be
constant. Figure 7.17a shows this behaviour.

As discussed at the end of section 7.2.d we know that the thermodynamical consequence
of the free exchange of electrons dictates that the electrochemical potentials of the
quantum dot and the reservoirs have to align, thus yielding

HN, V)=thi=l, (7.24).

Using this notion of alignment allows a significant simplification of pictorially
presenting the transport of electrons through a single quantum dot. We will return to this
point when discussing figure 7.16.

The electrostatic potential ¢(N,Vy) of the dot will be given again by eq. (7.16). It is clear
that the occurrence of 0D energy levels in the dot determines the chemical (or kinetic)
energy of the system. As the electrochemical potential is defined as the sum of the
electrostatic potential and the kinetic (or chemical) energy; 0D levels will affect the
electrochemical potential (N, V), leaving the potential @(N,V,) unaffected. More
precisely, the addition of a single electron to the dot at fixed gate voltage yields changes
in @ and U given by

Ap=p(N+D)-@(N)=e2/Cs (7.253)
AU+ D-pi(NY=Exep1-Ext €2/ C = Aoyt €2/Cs (7.25b)

From eq. (7.25b) it is obvious that the change in [ due to the change of the number of
electrons on the dot is always larger than the change of the electrostatic potential ¢. In
contrast in a metal the very large DOS makes Eny=Fn and so in this case we do not
need to discriminate between the behaviour of ¢ and u.

Fig. 7.16 shows the potential landscape of a dot, assuming the difference of
electrochemical potentials of the leads Au=gi -1t (=eVhiag) is very small (compared to Ec

@ 0 n ® 1 [ (©
/// = / . /// L (N / Puiely //
% [ %/Z /2 _{_ Sl _ %fﬁ j _

Figure 7.16. Schematic energy landscape representing a quantum dot. The
electrochemical and the electrostatic potential are indicated for the cases of Coulomb
blockade {a) and transport condition without (b) and with (c) the N+ 1th electron inside
the dot.
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and AEgp). The position of the electrochemical potential of the dot, (), is shown in
dependence of the (not shown) gate voltage, with the potential increasing with more
negative gate voltage. In a. the system is blocked as u(N)<u1 , and g(N+1 )>JuI , By
making V less negative, ((N+1) can be aligned with u 12 enforemg the energy
degeneracy condition for N and N+/ electrons, and so sequential single electron transport
can take place leading to a finite conduction, as shown in b, (with N electrons in the dot)
and c. (containing N+1 electrons).

Fig 7.17 shows the behaviour of the conductance G, the electrochemical potential p(N)
and the electrostatic potential energy e () of the Coulomb island, in dependence of the
gate voltage V . In 7.17a the by now familiar Coulomb blockade oscillations are
displayed. At zero temperature and infinitely weak coupling to the leads the width of the
peaks approaches zero (provided no intrinsic life-time limiting mechanisms exist for the
eleetrons in the QD!). From the behaviour of u and @ (7.17b and ¢.) two new aspects
become apparent. From the requirement of the alignment of u(¥) and I, , for the peak
conductance (compare a. and b.) and the different values of consequetive 0D energy level
-sphttmgs AEy na we immediately conclude that the intervals AV, between the peaks in
the conductance also will become unequal, in contrast to the metalhc case (compare to
F1g 7.71). So, the variation in gate voltage intervals directly reflects the fluctuations in
the 0D level splitting. Stated differently, from the variations in gate voltage intervals we
are able to directly obtain the energy spectrum of the electrons contained in the QD. This
also leads to the second point. From eq. (7.25b) we see that the electrostatic potential
@(N) jumps by e2/C at the addition of one electron (i.e. at the point of degeneracy),
leading to the saw-tooth shape of fig 7.17c. However, it also has to compensate for the
additional contribution of the 0D splitting. This leads to the overall decrease of the
potential ¢ with gate voltage.

(a)

Y

Figure 7.17.

&m B+ Coulomb blockade

..oscillations in a quantum
dot. a. Oscillations of the
conductance versus gate
voltage. b. Saw-tooth
oscillations of the
electrochemical potential
¢. Saw-tooth-like
oscillations of the
electrostatic potential
showing the effect of
discrete 0D dot states.
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Before turning to some experimental results, we want to regard the various energy scales
in the problem from a slightly different perspective. To do so, we may look to a quantum
dot as a system with a well-determined number of electrons that is quantum mechanically
bound to it. Based on similarity we may redefine such a system as an artificial atom,
even though the precise way of binding the electrons is not the same: via an attractive
Coulombic force from a charged nucleus in a real atom, versus a repulsive Coulombic
force from a gate in a QD. Despite this difference, which will affect the details of the
binding potential, the similarity is striking. It is for this reason that also the addition
energy for adding (or removing) of a single electron to (or from) the QD can be seen as
the equivalent of the ionisation energy of an atom. Just as well, the level splitting AEgp is
equrvalence to the excitation energy. However, the most striking feature for these
artificial atoms is that the variation of the gate voltage provides one with the unique
opportunity to in situ control the atomic number of the atom!

Fig. 7.18 shows an attractive experimental result demonstrating the effect of 0D states on
the properties of Coulomb blockade oscillations. It is obtained on a small quantum dot in
a 2DEG in a GaAs-AlGaAs-InGaAs-AlGaAs-GaAs heterostructure (S. Tarucha et.al,
Phys Rev. Leit. 77, 3613 (1996)). In contrast to the type of semiconductor structures
discussed up to now this QD is of a vertical nature. Shown in 7.184a, it is obtained by wet
and dry etching, with the collar-shaped gate electrode formed via metal evaporation (for
more details, see Appendix A). This particular configuration allows one to reduce the
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Figure 7.18. Single-electron Coulomb oscillations in a small quantum dot. In a. the
structure of the dot is presented, showing the source and drain leads, and the actual dot
formed approximately midways inside the collar-shaped side gate. In b. the CB
oscillations in dependence of the (collar) gate voltage are shown. As indicated, for
voltages Vo <-1.7V no electrons are contained in the QD, with the first electron entering
at Vy=1.7V. Note the sirong variation in the gate voltage intervals between the
sequential conductance (or current) peaks, imaging the variation in 0D level splittings.
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number of electrons contained in the QD down to N=0.

Clearly the peaks shown in figure 7.18b are not equally spaced in V,. This demonstrates
that, in addition to a “simple” charging contribution, varying 0D level splittings occur in
the electronic spectrum. At first sight it may seem that the intervals AV, vary
stochasticaily. However, a closer look shows that the intervals behave in a more regular
way. In particular, the intervals supporting N=2, 6 and 12 electrons are evidently larger
than average, showing that for these occupation numbers, a larger level splitting occurs,
thus demonstrating an enhanced stability for these conditions. This is what is well known
in atomic physics as the occurrence of a shell structure, where a closed shell
configuration for the electrons shows an increased stability. The result of figure 7.18b is
the first evidence that a similar effect occurs in a quantum dot artificial atom as well. To
generalise it even further, it should be noted that similar stability considerations hold for
atomic nuclei as well. We will return to these aspects in chapter 9 on clusters.

B: The finite bias non-linear regime

Figure 7.18b clearly demonstrates the effect of 0D confinement on the transport through
the QD. In the final part of this section we want to investigate these 0D states in more
detail, employing the bias voltage to perform some type of spectroscopy.

In the preceding part we have assumed the bias voltage Vi, =(tt;-t2)/e to be small
compared to Ec/e or AEpp/e. The natural question to pose is how the conductance
G=dI/dV,, will develop if the bias exceeds any of these energy scales. Forthe case of (the
largest of the two,) Ec we have seen (see discussion related to Fig. 7.14) that increasing
the bias voltage may lead to the Coulomb staircase. Taking the derivative of figure 7.14a
shows that peaks in d//dV}, will arise at the positions of the current steps, at bias voltages
~Ec/e. The step in current reflects that an additional path (or channel) becomes available
for the electrons to tunnel through the system, i.e. 2, 3, 4,... (note: still an integer
number!) electrons at a time are allowed to traverse the Coulomb island. In addition, this
step in the current (and peak in G) occurs whenever the bias voltage exceeds the relevant
energy, in this case the charging energy. In this respect the bias voltage acts as a measure
for the energy involved, i.e. it allows spectroscopy to be done.

Let us now discuss the effect of the 0D splitting. Figure 7.19 shows the potential
landscape of a guantum dot. The narrowly spaced lines (two sets, drawn as solid and
dotted respectively) represent the OD levels, with the mutual spacing (solid-to-solid or

™ N

Figure 7.19. Potential landscape
of a quantum dot, showing the
the charging energy E¢ and
filied (closed dots) and empty
0D states of the dot.
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dotted-to-dotted) representing the 0D splittings. In addition, the two sets are displaced to
one:another by the charging energy Ec. Note that in our (highly simplified!) picture each
individual state given by () is built up from the straightforward summation of the
electrostatic energy with the OD confinement energy and so each charging state "carries”
the same "ladder" of 0D states with it! As discussed before, the u(N)'s form the addition
spectrum (1.e. resulting from the successive addition of single electrons) while the 0D
ladder forms the excitation spectrum of the dot (i.e. keeping the number of electrons, and
so the Coulomb contribution, constant). Evidently this is a considerable simplification, as
a change of the occupation of 0D states (e.g., the electron being excited from Ey to Ensi)
will lead to a redistribution of the charge over the dot because of the different
eigenfunctions associated with two distinct OD states, yielding a change in the Coulomb
contribution. This, selfconsistently, will modify the energy spectrum as such.

Figure 7.20 explains how electron transport through the dot takes place under the
condition of non-negligible bias voltage. Similar to figure 7.19 we assume the 0D
splitting to be smaller than the charging energy Ec. The bias voltage Vy=-(-11;)/e is
taken as AE < eV, < 2AE . In the top part of figure 7.20 the gradually changing gate

voltage pushes up the electrochemical potential of the dot via (N, V). In the leftmost
case (a) the system is (Coulomb) blocked: the state f(N) lies below the lowest of the two
reservoir electrochemical potentials, u. (as well as g(N+1)>>u,). Note that in the ground
state all 0D states Ey are occupied, as represented by the filled dots in the figure. In
particular the OD state Enyy, 1., the first excited state beyond those occupied in the
groﬁhd state, will be empty, even though it seems energetically accessable as it is situated

(a) (b) (c) (d) (e)

N N--N-1 N-1

~
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“Figure 7.20. Large-bias spectroscopy

of the 0D states in a quantum dot, at

a bias voltage >~ 0D splitting.

a. Development of the conductance

in dependence of the (de-)alignment of
1 0D states with the electrochemical
potentials of the leads, driven by

the gate voltage. b. The resulting
splitting of the Coulomb peak due to
successive availability of 0,2,1,2,and 1
g channel(s) for conductance.
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between (4 and . remember however that adding an electron will push the whole ladder
upward by the charging energy, shifting the fofal energy of the state when occupied to
well beyond .

Making V, more negative (b) shifts the whole ladder upward; which will make L(Ny>p,
and so conduction will start. Note that in this case rwo parallel channels are available for
the electron to traverse the dot: either the groundstate level u(NYy associated with the 0D
state Ex; or the first excited state En.y which is just one 0D levelspacing higher in
energy. It is crucial to note that never the two states can be occupied simultaneously due
to the Coulomb interaction, and so still electrons are tunnelling sequentially in time!

It is interesting to note that the electron entering the excited state may chose from two
possible ways to exit: either directly from this excited state or after relaxing to the
groundstate. In the first case the tunnelling is said to be resonant and the phase of the
electron will be preserved during the whole process, making it a single coherent quantum
event. In.the second case the electron loses energy while residing in the dot and the
tunnelling is sequential: the phase will be lost and the entrance and exit tunnel process
will not be coupled. Whatever the detailed mechanism, case (b) will lead to a strong
increase in the current.

Continuing to case {(c) the OD spectral ladder is shifted upward so far as to bring the first
excited state beyond g, which will close this channel for transport and so only the
groundstate channel is left to contribute. This will lead to a reduction of the total current
carrying capacity of the systemn, i.e. a drop.

The next case (d) is somehow complementary. to case (b): Now thetwo-occupied states
(in the groundstate) Ey (associated with u(N}) and Ey.;.act as the channels for
conductance. In this case only one electron can leave the dot at a time, for exactly the
same reasons as given at (b). Evidently the availability of two channels increases the
current again.

Case (e) brings us back to our starting condition, except that the dot contains one particle
less, i.e. a Coulomb blockade with N-1 electrons. The current will be zero.

Figure 7.20b summarises the behaviour of the current in dependence of the gate voltage
for the five cases discussed above. It clearly shows the resulting split of the Coulomb
blockade peak into two. In this case we did assume the bias voltage to meet the condition
AE<eVy,<2AE. Following exactly similar arguments we can show that the CB peak will
split in three if 2AE <eVy<3AE, in four for biases up to 4AE, etc,

1{nA)

Figure 7.21 Splitted Coulomb
blockade oscillations at bias
voltages comparable to the 0D

energy splitting. The lower trace
A Nl isarsmall bias (100 uV), the
R XE CEED 07 0§75 middle trace is at 400 1V and
v, . the topmost trace is obtained at
700 uv.



In figure 7.21 we show experimental results obtained on a'small lateral quantum dot of
the type shown in figure 7.8. The figure contains three traces, the topmost two being
offset vertically for clarity. The lowest trace shows the common small bias (V;, =100 ©V)
Coulomb blockade oscillations, limited in gate voltage range to two peaks. At 400 uV
(the middle trace) the peaks are clearly split in doublets. Increasing the bias to 700 uV
transforms each CB peak into triplets. These results clearly demonstrate the applicability
of the picture discussed above. Quantitatively it allows us-to derive the typical OD level
splitting of this quantum dot to be ~300 peV.

7.2.8. AC properties of double junction SET circuits: the single electron turnstile

Up to now we have limited ourselves to how single electron circuits behave under
stationary DC conditions for the gate voltage and the bias voltage. In the last section of
this chapter we want to discuss how SET systems behave if AC voltages are applied. In
particular we will see how such an AC voltage applied to the gate affects electron
transport in an extension of the familiar double junction system.

From the stability diagram of Fig. 7.12 we have seen that, at a given bias voltage V, the
gate voltage either leads to Coulomb blockade with a given net charge on the island, or to
a finite current. An interesting additional possibility arises if the more complicated four-
Junction circuit of Fig. 7.22a is considered. Following similar arguments as before the
associated stability diagram can be obtained. The most remarkable feature apparent from
the diagram (Fig 7.22b) is the occurrence of so called bi-stable areas, these being the
diamond-shaped figures filled with the dashed pattern. The net charge O, residing on the
central island coupled to the gate now depends on the history of V, (in figure 7.22a given
as U) i.e. it shows hysteresis. The fiat loop-shaped trajectory of V, shown in the figure
clarifies this behaviour. Starting at the far left of the Vg-cycle, the island contains zero
charge (n=0). Increasing V; makes us to traverse the hysteretic area from the left without
changing the net charge. Only when V, increases such that we leave the bistable area at
the right, entering the n=1 range, a single charge tunnels from the -V/2 source onto the

b)

q,=Cv/4

Figure 7.22. A four metallic junction circuit used as a single electron turnstile. a.
represents the circuit diagram; b. shows the resulting stability diagram; note the hatched
areas where the charge on the central island depends on the history of the gate voltage,
i.e. it shows hysteresis.
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the central island. Reducing V, again into the bistable area keeps the.charge at Qy=1e,
demonstrating the hysteretic behaviour of the circuit. Only leaving the dashed area at the
left makes one electron to tunnel out of the island towards the V/2 source, returning the
island to the n=0-state. Note that during this single cycle of Vg a single electron is-
transferred through the circuit. This is the basis for the operation of this device as a so
called single electron turnstile.

Given this one-to-one correspondence between a single cycle and a single electron
traversing the circuit, driving the gate by a potential periodic in time at a frequency £ will
result in a current given by

I=e*f (7.26)

Figure 7.23 shows this remarkable effect obtained experimentally in a four-junction
device made of Al-AlOx metallic junctions of a tunnel resistance Ri~350 kOhm and
C~0.5 {F, at T=15 mK (B.J. Geerligs et.al, Phys. Rev. Lett. 64,2691 (1990)). With the
AC gate voltage amplitude chosen as shown in figure 7.22b clear plateaux in the [-V
characteristics are found for frequencies f between 1 and 40 MHz. In addition

Figure 7.23 Turnstile operation
of a four-junction SET device
driven at 5 different frequencies.
Frequency ranges from 4 MHz
(curve a) to 20 MHz (curve )

in steps of 4 MHz. The dotted
curve results at zero AC voltage
to the gate.

I [pA]

0.2 0 0.2
v [mv]

to the case of no AC modulation (dotted line), fig 7.23 shows results for frequencies of 4,
8, 12, 16 and 20 MHz. Nice plateaux are found at current values in accordance with eq.
(7.26) to within 0.3%. The uncertainty is determined largely by the measurement of the
(very small!) currents involved and the non-ideal flatness of the plateaux.

Question: discuss a few mechanisms that may lead to deviations of the plateaux.

This result presented here, with the system being driven at frequencies far into the MHz
regime, can be described fully assuming quasi static behaviour, i.e. the system just
continues to be in the ground state throughout the whole AC cycle. This assumption
holds as long as the photons associated with the AC radiation of energy Ef=hf do not
affect the tunnel rates. More precisely, the photon energy should not exceed the energy of
the photons already existing in the electron reservoirs at temperature 7. From this we can
define the crossover between the quasi-static regime and the (so called) photon assisted
regime by Af~kT. We will not discuss this recently emerged field in any further details.
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With this short note we want to close this chapter. Many aspects have not been discussed
and-can be found in the extensive literature covering this field. Apart from providing a
much more detailed and thorough insight in this field, this also addresses the question of
potential applicability of SET devices and circuits. We have seen already that the double
Jjunction circuit provides an unprecedented charge detection sensitivity, reaching at least
3 orders of magnitude lower than any existing charge detector, Work to employ this
feature to study local charge fluctuations on surfaces is in progress. -

From a "digital" point of view, e.g. the electron box experiment shows that a single
electron can be moved in and out the island in a controlled way, raising the question
whether these structures can be used as digital logic based on the concept of "one bit, one
electron”.

In addition the single-electron turnstile (and other variants to it) are seriously considered
to be used a new and independent manner of establishing the “standard” of current. From
various theoretical considerations it seems not unlikely that the intrinsic accuracy of the
process should be well beyond 1 part in 10°, or 0.0001%. Work to experimentally verify
these predictions is in progress on a worldwide scale.
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7.3 Chargine effects in superconducting systems

In the preceding section we have discussed the effects induced by the Coulomb
interaction of single particles (i.e. electrons) on the transport properties of small
systems in the normal state. In this section we will concentrate on Coulomb effects in
metallic systems, with the metal being in the superconducting state. As discussed in
chapter 6 the superconducting state is characterised by two key properties: the
relevant charge carriers in a superconductor are paired electrons called Cooper pairs,
and secondly the sea of Cooper pairs is condensed into a macroscopic quantum state
described by a single wavefunction. As we will show that the phase of this
wavefunction and the charge due to the Cooper pairs are conjugate quantum variables
it is evident that current (determined by the position-derivative of the phase) and

* ¢hiarge are no longer independent. This has major consequences for the properties of
the system.

7.3.a. Some basic properties of Josephson junctions

Figure 7.24 shows the typical configuration of a metallic junction made by
evaporation methods, with the barrier formed by a very thin insulator like an oxide

electrode

Fa SRy
Bottom el ect l‘Od e Figure 7.25. Metallic tunnel junction,
with an oxide barrier.

(e.g. of the lower metal electrode). At a temperature 7< T the metal will become
superconductive, resulting in the formation of Cooper pairs, i.e. pairs of electrons
coupled by the (effectively) attractive force operating via electron-phonon interaction.
The Cooper pairs (CP) inside the two superconducting metallic electrodes of the
junction condense into a macroscopic quantum state with all CP's at the same energy
Er, the Fermi energy of the electrons. This Cooperpair condensate can be described

by a wavefunction ¥ =| ¥lexp(ip ), withe representing the phase of the macroscopic
wavefunction. This phase will be constant throughout the metal if the current and the
magnetic field are both zero. If B 0 the phase will be affected via the vectorpotential
A (see chapter 5) and it has to be replaced like

9>y =¢;-2n2—;jA.d1 (7.27)

Note that the relevant quantum of charge now is the Cooper pair charge 2e, and so
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the flux quantum in this case equals @p=h/2e, i.e. twice as small as in the case of
electrons (see chapter 5).

For charging effect to be of importance we have seen that the coupling between the
two bulk electrodes via the barrier has to be weak. Following the same reasoning as
which leads to eq. (7.6) for the non-superconducting case, but now taking the 2e
"unit" of charge this leads to the condition for the conductance of the barrier

G<(2e)2/h=4e2/h (7.28)

From the discussion of charging effects in normal (i.e. non-superconducting) systems
in section 7.2 we have seen that this "large environmental impedance" was realised by
inserting an additional junction in the leads. This route is also taken in the
superconducting case. So, nearly all experiments are performed-in circuits contammcr
at least two junctions. The resulting circuit, now containing an island, allows the
control of the electrostatic energy by adding an external gate electrode, also
completely analogues to the case of normal state junctions.

In a piece of bulk superconductor the supercurrent density jg is related to the gradient
of the phase of the wavefunction

Js =const-Vy (7.29)

Neglecting charging effects for the moment, the same relation holds for the
supercurrent flowing through the junction coupling the two bulk superconductors and
the phasedifference Ay between the two bulk condensate wavefunctions

I=Tphy (7.30)

Because the phase is only defined modulo 27 the relation given by (7.30) only holds
for small phasedifferences. For iarge values it has to be replaced by

=1, sin(Ay) (7.31)

with 7, denoting the critical current of the junction. This the first of the two famous
Josephson equations. From the calculation based on 1D multiple coherent Andreev
reflection presented in chapter 6 we found

Ip=(U/4m) (4/e)G, (7.322)

with 24 being the gap of the superconductor and G, denoting the normai state
conductance of the tunnel junction. More general calculations (Ambegaokar &
Baratoff) have shown

Iy=(n/2) (Ale)G, (7.32b)

which differs from (7:32a) only by its prefactor: If a finite difference in voltage (or
electrochemical potential) A¥ is applied to the junction, B.D. Josephson showed that
the phase difference starts to evolve in time at a rate given by

—(Ay) = 2—;AV 27D, AV (733)

This expression forms the second Josephson equation. These two equations (7.31)
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and (7.33) describe the current flow through a superconducting junction or Josephson
Junction (JI).

Before continouing we want to introduce some simplifation in the notation. As
(nearly) always only the difference in voltage and phase will be of importance, we will
replace Ay by yand AV by V.

In egs. (7.7) and (7.8) we discussed that the rate of particle tunneling (and so the
tunnel conductance) through a barrier is determined by the DOS at each side of the
barrier and the transmission coefficient of the barrier as such. From this argument we
can infer the general shape of the current-voltage characteristic of a single JJ, and this
is shown in figure 7.26. In a. the case of zero bias voltage is shown, governed by the
first Josephson equation (7.31). Here a supercurrent flows, which is linearly
dependent on the difference in phase of the two wavefunctions associated with the
~two superconducting electrodes. Forcing 7>/, will lead to a finite voltage difference
--due to the time evolution of the phase difference (eq. (7.33)), pictorially shown in
_figure 7.26b. The current which will flow is determined solely by the tunneling of
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Figure 7.26. The [-V-characteristic of an S-I-§ tunnel junction. a. Energy-position
diagram at V=0, b. af V<24, ¢. at Vyae>24/%. d I-V-curve (experimental,
for Al) for a number of femperatures T<T,.



single electrons (here usually called quasi-particles for reasons we will not go into).
As the temperature is assumed to be very low and the number of these particles
(electrons) decreases exponentially versus 24/%7, a very small tunneling current
results which is approximately linearly dependent on the bias, Effectively this leads to
a very high so called sub-gap resistance. Increasing the bias further (figure 7.26¢) to
beyond the superconducting gap ZA/% will allow particles to tunnel from occupied
states below the gap in the left reservoir to empty states above it at the right. This will
result in a strong increase of the current, which will depend linearly on the bias
voltage. Figure 7.26d shows the resulting I-V characteristic for the full range of bias
voltages.

7.3.b. Charging effects in Josephson junctions

In real junctions two additional elements have to be included to model the Josephson
junction correctly, i.c. the capacitance C of the junction and the resistance R, this last

Figure 7.27. Equivalent circuit
diagram of the Resistively and
Capacitively Shunted Josephson
(RCSJ} junction model.

The "cross" represents the bare
Josephson tunnel junction.

one being the sub-gap resistance mentioned above. Figure 7.27 shows the resulting
circuit modelling the complete JJ. Given its components it is known as the Resistively
and Capacitively Shunted Junction or RCSJ model.

The total current flowing through the circuit now simply follows as

I:J'S+K+(,’i‘i—1;i (7.34)
R dr
By using the two Josephson relations, egs. (7.31) and (7.33), this can be
straightforwardly rewritten as

2d%y

dt?
Inspecting this second order differential equation more carefully, immediately makes
one to recognise it as the classical equation of motion of a "particle” moving along a
(generalised) 1-dimensional coordinate y. With this in mind the various terms in eq.
(7.35) thus can be interpreted directly as:
first term: the (generalised) force resulting in the acceleration d2/di? of the "particle",

second term: the drag force, governed by the "velocity" dy/df,
last term: the force due to the gradient of the 1D "potential energy" landscape (i.e.

'Jd;/

(-—-—) ( ) i(Igsz'n;fmf):o (7.35)
2e Ze 7 '
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dU/dy) within which the "particle” moves.
This leads to the following results

"particle mass" M=C( ;w )2 ' (7.36a)
<4

potential energy Ully)==E;4 cos(;f)—{-;—)fy (7.36b)
e

with £y denoting the strength of the superconducting coupling in the junction, called
the Josephson coupling energy, which is given by

E J= --h*f 0 (737)
. 2Ze _
Note that, in accordance with intuition, the second (or friction) term of (7.35), shows
that the movement of the particle is damped via dissipation ("heating") in the resistor
R, with a large resistance (or small conductance) resulting in low damping.
Because the (co-)sinusoidal energy-phase relation given by eq. (7.36b) and shown in
figure 7.28, somehow resembles an old-fashioned washboard, it is referred to as the
"washboard potential” throughout the literature. So in short, one can visualise the
tunneling of "electrons" through a Josephson junction with a finite capacitance as the
motion in 1D "#"'-space of a "phantom particle™ along a washboard-shaped potential
energy landscape.

Figure 7.28. Tilted washboard
potential, a model for the currentflow in
a Josephson junction. The amplitude of
the potential oscillations is determined
by the critical current, while the tilt is
governed by the fotal current.

The washboard is tilted by the current 7 flowing through the system (second term of
eq. (7.36b)). At zero current the particle will sit in a minimum of the potential, i.e. in
one of the valleys. As long as the tilting angle (due to the current) is such that the
particle is in a local minimum of the potential, the "ball will not start to run", i.e. the
phase will be stationary (apart from thermal and/or quantum fluctuations), only a
supercurrent will flow and no voltage will be built up across the junction. However, if
the tilt becomes so large that the gradient of the potential becomes negative
everywhere (or, no local minimum will exist anymore), the particle will start to roll
down the hill, leading to a time evolution of the phase (dy/df becomes non-zero) and



an associated generation of a finite voltage. Consequently, also a finite charge will
build up on the (capacitor of the) junction!

7.3.c. Hamiltonian for the Josephson junction

The preceding discussion leads us to the very important conclusion that in a JJ the
charge O=CV and phase y are dependent variables, coupled by the second Josephson
relation V=(h/2e)dy/dt. This has far-reaching consequences, which we will discuss
now.

To that purpose we have to describe the system in a more quantummechanical way. In
order to do so we introduce the Hamilton operator for the system. To construct it we
need the kinetic and potential energies. The potential energy is given by U{Z,) of eq.
(7.36b). The kinetic energy immediately follows if we memorise that the particle has a

mass C(h/ 2e ) while its velocity is given by the time rate of change of the position
coordinate v, yielding

1
2
From the second Josephson equation (7.33) and realising that V=0/C, we
immediately find

I,k 5 d
Epin = MVZZEC(Z)‘?(%)Z (7.38a)

2
or, the kinetic energy is given by the electrostatic energy of the junction due to the
charge accumulating on the capacitor.

For simplicity we assume from now on that the (subgap) resistor R is very large,
leading to a negligable contribution of the resistive (or in-phase) part to the total
current. With this assumption we now can "derive" the Hamiltonian by defining the
total energy as the sum of the kinetic and potential energy. This yields

o°
H=%5—w—[y—F;cos 7.39
20 g Eacosy (7.39)

More specifically we can define the two governing operators for position and
momentum by

generalised position: 4 (7.40a)

and

generalised momentum: P=Mv=M ar . C V—h— = Qi (7.40b)
dt 2e Ze
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7.3.d. Energy band diagram and Bloch oscillations

Let us concentrate first on the case E->>E ; (>kT), i.e. strong charging effects; in the
- next subsection we will discuss the intermediate regime E~~E; (k7). The case

E >>E~ (>kT) will not be discussed here as charging effects will not be important.
The properties of the resulting system can be found in textbooks on Josephson
junctions in general.

In the strong charging case the total current / will be small and so H approximately
only contains the periodic term E j.cos(y) in addition to the charge term. Note that
this Josephson coupling term is still small relative to the charging term Q%/2C and so
in the Hamiltonian in can be taken into account as a perturbation term. Suppressing
the very small term containing / all together, the resulting Hamiltonian formally
resembles a very familiar case, i.c. the Hamiltonian describing the behaviour of
. electron waves in a crystalline lattice (see any textbook on Solid State physics). In
that case the solutions of the Schroedinger equation describe Bloch states. The £-k
relation found for these states is parabolic in case of zero periodic potential. We also
know that a finite value of the periodic potential acts as a perfurbation on the pure
“states, and it leads to Bragg reflections of the electron waves in real space, and to
bands and gaps in the energy spectrum. The size of the gaps (linearly) depends on the
strength of the periodic potential.

These standard textbook results can be "translated" immediately to our present case,
reminding ourselves that

k=Mv/h=P/h=0/2e=Ncp (7.41)

i.e. the solid state E-k- relations will be transposed to E-N- (or £-Q-) curves in the
present case.

In the unperturbed case (£ =0) we immediately obtain the familiar parabolic E-QO
relation, as shown in figure 7.29. Adding a finite £ ; will switch on the perturbation
resulting in the opening of energy gaps in the spectrum at O=(2n+1)e (or N=(n+1/2)),

E A
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Figure 7.29: The E-Q bandstructure for
a Josephson junction in the charging
| | _ limit. The dotted curve is for the
- ¢ e q unperturbed case E =0, the solid curve

is for a finite E ;.



a-direct consequence of the "Bragg reflection in y-space™ by the time the charge -
approaches any of these particular values. Note that the size of the gaps is given by
E ;. More specifically, if the "particle moving along" the Q axis (e.g.) to the right
approaches the Brillouin zone boundary, Bragg reflection will start to reflect the
"particle" towards O'=0Q-2e. This can be rephrased by saying that while time
progresses the state increasingly develops into a mixture of the pure states O=e-de
and O=-e-Se. Physically speaking, it represents the tunneling of a single Cooper pair
of charge 2e through the barrier of the junction, making the charge (on one junction
electrode) to change from e to -e.

Just as for the solid state equivalent we can choose to confine ourselves to the
reduced zone scheme, i.e. |OJi<e. Now we have to realise ourselves that Cooper pairs
all are degenerate in energy, i.e. they have no means to dissipate any excess energy
("they do not have a kinetic energy degree-of-freedom"). This means that tunneling
only occurs if the change in energy AU associated with the tunneling event equals
zero, i.e. only at O=e or -¢. This implies zero current if the voltage across the junction
is such that |Ql<e. This is the Coulomb blockade for Cooper pairs, with a voltage
range which, for a given capacitance, is twice as large as compared to the normal-
state case.

If the junction is driven by an external current source at a constant current / the Bloch
state will evolve in time starting (e.g.) at =0, progressing to O=e, become reflected
(=2e tunnels through) towards -e, continuing again to 0=0, etc. So the charge
oscillates at a frequency given by

1N . (7.42)

This is called a Bloch oscillation, running at half the frequency of the SET equivalent
discussed 1n section 7.2.

For the SET case it was argued in connection with figure 7.5 that the tunneling of
single electrons is a stochastic process with the Coulomb interaction acting as a
regulator, in this way leading to correlation in the transfer of sequential electrons. In
the present case of Cooper pair tunneling the tunneling process itself 13 already
regulated by the phase difference between the two superconductors. The Coulomb
interaction in this way just enhances the correlations in the CP tunneling.

The occurrence of Bloch oscillations have indeed been verified experimentally and we
will discuss its effect on the current-voltage characteristic of an array of Josephson
junctions.

In order to discuss this experiment we have to evaluate the shape of the /-¥
characteristic resulting from the Bloch mechanism. We assume that a constant current
is fed through the array: typically this will be in the pA range, i.e. the tunnelrate equals
tens of MHz. The voltage we measure in this experiment effectively is the #ime-
averaged or mean value <V>=<0>/C, as our current and voltage detectors usually
will be limited to a few kIlz only. Let us return to the bandstructure shown in figure
7.29. If the current source only can provide voltages below the charging value
Ve=(Ocp/2)/C=e/C then the Coulomb blockade will suppress the flow of current. In
the energy diagram this corresponds to the charge state to "sit" at a "fixed" position
on the E-O-curve at a charge between 0 and e, Only in case external influences such
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as noise or thermal excitations are present these may allow the tunnelling process to
occur, a process which usually follows an exponential behaviour. So, close to the
origin (Z,=0) a finite voltage will sustain only an exponentially small current. As
soon as the voltage approaches V- the tunneling rate of Cooper pairs will increase
rapidly. This will make the charge to evolve along the £-Q-curve, starting the Bloch
oscillation to run as discussed before, Evidently this implies that both positive and
negative charged states (between -¢ and +e) will occur sequentially in time. This
implies that the average value of the charge during one Bloch cycle will be (close to)
zero, and so the mean voltage <> which is measured.
In the actual experiment (L.J. Geerligs et.al, Phys. Rev. Lett. 65, 3037 (1990)) the I-
V-curve (with I being the averaged value <V, as discussed!) of Al-AlOx-Al
junctions is measured. The junctions are positioned in a rectangular 2D array of 190
junctions long and 60 junctions wide. Biased by a constant current source (feeding the
/190 junction rows in series) the voltage over the central 95 junction rows is measured,
ie. at each side of the 95 junctions some 47 junction (rows) act as the high impedance
_environment. The characteristics of the junctions are R=35 kQ, Ec=09 K, and
Eq/E ~4. Figure 7.30 shows the experimental curve measured at a temperature of

1
0.5
£l
B ) Figure 7.30. The I-V curve
of a (2D array of) Josephson
0.5} Junctions with the charging
‘,/ energy E-E ~4. The
y / characteristic shape resuliing
-1 -0.5 from Bloch oscillations

v [mV] is called the Bloch nose.

~20 mK. It very clearly shows the small current branch starting from zero current and
voltage, increasing to ~ 0.5 mV, followed by a reduction of the voltage at higher
currents (~ 0.1 nA). Increasing the current further results in an increase of the voltage
again. We have not discussed the mechanism underlying this, but it results from the
finite probability for the Bloch state to continue in the next higher energy band of the
diagram of figure 7.29. This effect is called Zener tunneling. The rather peculiar shape
of the current-voltage characteristic goes by the nick-name of Bloch nose.

7.3.e. Uncertainty relation of superconducting phase and particle number

In subsection 7.3.c. we discussed the coupling of O and #, which implies
quantummechanically that the associated operators P and yare non-commuting. The
immediate consequence is that the (expectation values of the) quantities y and P can
not be determined infinitely sharp simultaneously, but their uncertainties are
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connected via Heisenberg's uncertainty relation

5y.8P = 5. é(me IEY; - (7.433)
e
or
5(—2Q— ).0y= Npp. 6y 1 (7.43b)
e

i.e. the combined uncertainty in the number of Cooper pairs Nop and the
phase(-difference) y across the junction will be larger than 1.

This immediately leads to two limiting cases or regimes. Either the charge is well
defined and the phase may fluctuate beyond 27, or vice versa the phase will be ngidly
determined while the charge may change beyond 2e. This is the same as stating that
either the (superconducting) Josephson coupling represented by K ;is much smaller
than the charging energy £, or vice versa. This can be understood directly, as a
(relatively) large charging energy implies a small probability for the process of adding
(or removing) one charged particle from a junction electrode, i.e. &0 will be small.
Now we want to concentrate on the transition region £y ~E~. More specifically we
want to study the region where the energy scale ratio £~ /E; can be taken from <1 to
>1, but not too much. From eq. (7.43b) we immediately deduce that the fluctuations
in-the number and phase will be of a comparable amplitude. This can be shownin a
more schematic way,

Ey<Ee O (and N) well-determined  [[}i]ii [
il Coulomb || Super-
|| blockade ||| current
E;>Eq ¥ well-determmmed | i

To study this region more carefully one should be able to control one of the two
energy scales, while keeping the other fixed. As E~1/C is determined by the
geometry of the junction circuit, this is very difficult to vary in situ during the
experiment, and so only £;remains as a possibility to be made adjustable.

As areminder, E£; =( h/2e)l 0, 1.e. varying E; implies varying the critical current of
the junction. Figure 7.31 shows how this is accomplished by employing two
Josephson junctions arranged in a so-called SQUID (= Superconducting QUantum
Interferometer Device) configuration. With a magnetic flux threading the loop that
contains the two junctions (figure 7.31a) the resulting vector potential (see eq. (7.27))
will induce an additional phase difference in the condensate wavefunction around the
loop. As the total phase around the loop is of course fixed at O (or n*2r) this implies
that the phase difference across each junction will become flux dependent, and so also
the critical current of the two-junction circuit will become modulated by the
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- Fi igure 7.31. SQUID configuration employed as a device providing a tunable critical
- current (and E3). a. the basic diagram of the superconducting double junction
-~ structure in a loop geometry, with a magnetic flux & threading the area of the loop.

b. the critical current in dependence of the flux through the loop for the case of
-equal junctions.

phase due to the applied flux, as shown in figure 7.31b. More details can be found in
textbooks on Josephson junctions and SQUIDs. If the parameters of the junctions are
chosen such that

E-<Ej at &/ @y=integer

E-~>E; at &/ @y=half-integer
then the transition region E~~E can be covered properly.
In a recent experiment this so-called "Heisenberg switch" experiment has been
performed (W. Elion et.al, Nature 371, 594 (1994)). Figure 7.32 shows the circuit
diagram of the experiment. For this purpose the (superconducting) central island is
connected to two Josephson junctions, which allows a measurement of the critical
current of the structure. In addition also the "variable junction” just discussed is

reservoir

SQUID X X

I
Il

= . Figure 7.32. Schematic
circuit diagram of the
Heisenberg switch
experiment. The SQUID
acts as a variable E -coupling
of the island to the Cooperpair

@ reservoir.
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connected to the island, allowing a controlled coupling of the island to a large
(Cooper pair) particle reservoir. Let us concentrate on the two cases of an integer and
a half integer number of fluxquanta threading the loop, i.e. the cases of strong and
weak coupling to the particle reservoir. In the strong coupling case (at integer flux)
the number of CP's on the island is allowed to vary rather strongly. This implies that
the transport of CP's becomes more easy and so the critical current measured through
the two junction connected to the current source is large. In contrast, at half-integer
flux, the coupling of the island to the reservoir is weak, and so the number of CP's on
the island is rather well determined. This implies that transport via the island is
suppressed, or the critical current will be at its minimum. This is exactly what is found

in the experiment (figure 7.33).

[super (”{5‘)

R Y

Flux (®g)

Figure 7.33.

The supercurrent in the
Heisenberg circuit of
figure 7.32, showing

the oscillating pattern
resulting from ithe
controlled adjustment of
the uncertainty in the
number of Cooperpairs.

7.3.f Some closing remarks on charging in Josephson junctions

In this section we only have hinted upon some of the more simple notions that are of
importance in this area. Many aspects have not been discussed, mainly as these would
require a much more rigid and formal (guantummechanical) approach. In particular
the whole field of 2D junction arrays and the associated notion of vortices has been
disregarded. Also potential applications of Josephson junction devices operating in the
charging regime, e.g. as highly sensitive radiation detectors, have to be mentioned.
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9. Thermodynamic properties of clusters

Key words: metallic clusters, energy spectra, level repulsion, shell structure, magnetisation

9.1, Introduction

In chapter 1 we have seen that single atoms may coalesce into small groups: these globules of
atoms are called clusters. Under certain conditions the atoms forming the cluster'may arrange in
a non-random way and the resulting structure shows considerable symmetry. The degree of
symmetry is governed by the underlying properties of the constituting atoms, and by the number
of particles contained in the cluster.

Note that, given their structure, clusters can just as well be denoted as macromolecules.

In this chapter we will see that the (degree of) symmetry strongly determines the energy
spectrum of the free conduction electrons in the cluster. As this spectrum largely determines the
thermodynamics of the electronic system of the cluster, the symmetry evidently will have a
strong effect on properties such as the specific heat and the magnetic and electrostatic
polarisability (or magnetic and electrostatic moment) arising in a cluster.

We will discuss some of these aspects. We will limit ourselves (nearly exclusively) to systems
containing free electrons, i.e. of a metallic-nature. At various places.one will find connections
with properties of quantum dots in semiconductors as these were discussed in chapter 7 and 8.

Clusters of atoms can be made in a variety of ways, depending on the particular requirements
set to the cluster. In particular the degree of coupling to any (solid) environment strongly affects
the formation and so the characteristic properties of the cluster. Cluster sizes range from a few
atoms to one thousand or more. Here we want to present three methods of cluster growth.

One of the "cleanest" and historically most renown methods employs an atomic beam
"evaporator": the atoms of concern are evaporated and injected via a supersonic speed inert gas
beam into a chamber kept at low pressure. The rapid expansion leads to strong cooling and the
interaction between the atoms makes them to coalesce and condense into the cluster. As a broad
range of atomic number clusters results, we require a mass separation stage behind this growth
chamber in oreder to narrow the mass range of the clusters. The attractive feature of this
method is that clusters are formed under nearly ideal conditions with a2 minimum of unwanted
interactions with the environment. The less attractive aspect is the short lifetime of the cluster:
once it hits the wall of the chamber it merges with many-other clusters-and-residues, and is lost.
The second method of fabrication is of a chemical nature, using metallic colloids. In a sequence
of chemical reactions, the addition of one reagent to a prepared solution first starts the
formation of the bare clusters. Once these reach a particular size they rapidly start to attract
long organic molecules (that are also suspended in the initial solution) which adhere to the
cluster surface. This immediately inhibits the further growth of the metal cluster, resulting in a
stable compound structure of metallic core plus organic cover of so-called ligands.



Figure 9.1. Fullerene or
Ceg-clusters on a Au surface.
This first-ever image is
obtained by scanning the
tunneling microscopy (STM).

The stability of the compound clusters results from the repelling interaction of the ligands. The
stable nature of this type of cluster allows it to be investigated for extended periods of time,
however with the complicating aspect of the organic cover which seriously affects the
(electronic) properties of the metal core of interest.

A third method is based on the controlled growth on a suitable substrate. In this case the choice
of parameters like the type of substrate, the growth temperature and the metal vapour pressure
provides ample control on the growth rate and size, and the resulting shape of the cluster (or
nato crystal),

Infigure 9.1 a STM image is presented of one of the most reknown macromolecules or clusters
around for the last 5 years: the Cg fullerene or Buckeyball. Built as a (~ 2nm diameter) empty
baseball of penta- and hexagons of (a total of 60) C-atoms (figure 9.1a), it show a beautiful
symmetry. Figure 9.1b shows (the first) scanning tunneling microscope image (see Chapter 10)
of a number of fullerenes on a Au surface (Y. Zhang et.al; see: Nature 356, 383 (1992)).

From the preceding part it will be obvious that clusters are commonly made in rather large
quantities. This is also needed as measuring the effects of interest, like the magnetisation or the
heat capacity, would be very difficult to be done on a single structure. However, the control of
the parameters is usually not so tight that truly single-sized clusters are formed. So, in the
majority of cases cluster properties have to be derived from large ensembles of individuals, and
s0 statistical methods are needed. The only exception is tunneling spectroscopy or {S)TM (see
section 9.5).

ks - - - e . we o

9.2. Symmetry. enerev spectra. shell structure and magic numbers

1

In this section we will concentrate on the mechanisms that govern the general properties of the
energy spectra of electrons in a cluster of atoms. In particular the role of symmetry will be
discussed.



In a confined system like an atom, molecule, quantum dot or cluster, electrons moving in
the potential of the background ion(s) can not do so completely randomly because of -
quantum interference. In chapter 2 we introduced the phase coherence length /;, of the
travelling particle, i.e. the distance the electron can cover before it loses information about
the phase it initially started with. If the characteristic dimension of the confined system is
sufficiently small compared to /, the electron reflecting at one boundary of the system,
will (partially) revisit the area/region it came from. As it will maintain a well defined phase
difference relative to its initial traversal of this area, the total resulting probability for the
electron to be found at this position in space will require the summation of all partial
waves including their phase, and so it will give rise to interference effects. In general, i.e.
for a randomly chosen energy (and so wavelength) of the electron under discussion, the
particle will retrace former areas with a random phase, and so summing the contributions
of all scattered partial waves at a particular position in space (i.e. calculating the resulting
interference) will result in a negligible total amplitude of the wave function. The
interference is said to be desfructive in nature.

Ifthe eléctron waves happen to be able to retrace former paths a few times with the
proper phase, the resulting interference will be constructive and it will lead to a "standing
wave" pattern. Such a standing wave represents a 0-dimensional (0D) eigensiate ¥, of the
system, and, as it only will arise at very special values of the energy of the electron, this
associated energy is called the eigenenergy E | of the state. So in summary

periodic motion in a corifined system <==> eigenstates and eigenenergies

Note that this reasoning is at the basis of the formation of the-energy spectra of atoms and
molecules; but also at-that of the frequency.spectra-of musical instruments, bridges, etc.
provided we replace "electron wave" by "elastic displacement”.

Before proceeding to see what the effect of the shape of the confined system is on these
states, let us first consider the role of the phasecoherence. In an atom or molecule in the
ground state the electrons are residing in (closed) atomic or molecular orbitals, and they
will continue to do-so indefinitely, i.e. .the phase coherence time is very long. In a quantumn
dot and a cluster the situation may be different. The electrons inside the system may
couple to other states, e.g. the phonons residing in the ion lattice forming the background
potential. For the phonon example the coupling will induce inelastic scattering events,
which modify the energy of the electron and so the phase. The time the electron can stay
in the pure state will how become finite, and this finite phase coherence time 7,

immediately leads to a finite energy width 6F =~ i/ 7, associated with the state,

determined by the uncertainty relation.

A similar effect on the energy states results if the confinement is not complete, i.e. if the
electrons can "leak away" from the confining volume: This is the case if the cluster or dot
is connected to leads, e.g. to allow transport measurements (see chapter 7). Now the
coupling of the electron wave to the leads will reduce the fraction of the wave that
ultimately can retrace its previous path and so it will léad to a finite lifetime of the state
and a finite energy width.

Tt is rather instructive to "derive" a rough estimate of the relationship between this finite
width, and the leakage rate and 0D energy state splitting AE=FE,, , ;-E,,. Assume a system



of characteristic size L, connected to the external world via leads with a transmission
probability 7 (or a total conductance 7.e4/h). The velocity of the state of energy ,, will be

IdE 14E 1E,,-E
p =222 = =1 ,, (9.1a)
ndk hak Kk, -k

For the two states. {n+1} and {n} the difference in k-vector will be typically Ak~n/L.

The typical time to perform one roundirip in the system will be 7, ~L/v; and the time it
takes for the electron wave to leak away will be approximately

Tleak ~ Tper /T . ) . (9. Ib)

This leakage time now effectively acts as the phase coherence time. Taking these results
together yields for the energy width due to coupling

Emw—— 2 = TAE | (9.2)

This simple expression provides a rough estimate for the effect of wave leakage.

Now that we understand the effect of inelastic contributions, what will be the effect of
elastic events? Elastic events only affect the path the wave will take, and so a different
energy and wavelength will be required to set up the resonance or standing wave
condition. Stated differently, elastic scattering effectively work out in exacrly the same
way as the reflection at the boundary of the system: just as the boundary conditions
determine the eigenfunctions, so do elastic scatterers as these lead to changes of the shape
of the spatial potential of the confined system.

To evaluate the effect on the energy spectrum resulting from a change of the confining
potential we simply can use the "particle-in-the-box", taking a 3D rectangular shape.
Limiting ourselves to the simple independent electron case, the three directions are- -
mutually decoupled (or orthogonal) and the eigenenergies are a simple sum of the three
contributions resulting from the A-quantisation in the three directions in space. Figure 9.2
shows the energies for two symmetry cases. In figure 9.2a a fully symmetric cubic box is
chosen (L, =L=I,) while figure 9.2b shows the case L,<L,<L,. The most obvious
conclusion we can draw from this simple example is that the highly symmetric case shows
a considerably more simple and less dense spectrum. Concerning the density, this of
course is only an appearent effect, as there are not fewer states available in the symmetric
system below a certain energy, but each state is strongly degenerate due to the large
degree of symmetry.-This<s-a very general feature-of energy-spectra for independent
particles: the larger the degree of symmetry, the larger the typical level splitting.

This immediately allows us to conclude on what will happen if disorder (like elastic
scatterers) is introduced in an initially regular system. The disorder evidently reduces the
symmetry and so it will lead to a more complicated and denser spectrum, with less
degeneracy per individual state. The ultimate case will be that all (orbital or path)
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Figure 9.2. Energy spectra for a particle in a rectangular box with hard walls and of
(x,y,z)-sizes a, b and c; numbers next 1o each-eigenenergy indicet the associated quantum
mumbers inx, y and z. a cubic symmetry, a=b=c; b block symmetry, a, b, ¢ all different.

degeneracies will become lifted. In the simple single electron pict‘tire this will result in two
electrons per state due to spin at zero magnetic field, becoming lowered to a single
electron per state if also-the spin degeneracy is lified (e.g., by a magnetic field).

9 3 Shell structures and magic numbers

As discussed very briefly in chapter 1 atoms in clusters may arrange in such a way that a
clear preference for certain group sizes results. This becomes visible in mass spectroscopic
data which show an increased abundance of clusters containing particular numbers of
atoms, and these numbers are denoted magic. To understand this phenomenon, which has
its counterpart in the build-up sequence of the electron clouds around an atom as well as
on the arrangement of nucleons inside the atomic core, a rather simple approach can be
taken. Assume that at the formation of the cluster each atom provides one electron to the
"eonduction electron sea”, leaving a positive background charge of the ions onto which
the electrons are bound.

Figure 9.3 shows the calulated energy spectra for particles in two different confining
potentials (W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)). The leftmost picture of figure
9.3a. is for a 3D parabolic potential leading to harmonic oscillator behaviour. The single
particle levels are nicely equidistant-in energy, rumbered-by-the single quantum number
w=0,1,2,3, ... noted just above each level. Also, in parentheses, the degree of
degeneracy is given due to the symmetry of the system, which is 2-fold at »=0, 6-fold at
n=1, etc. Summing these degeneracies one finds the series of numbers 2, 8, 20, 40, 70,
etc...

Let us see next what happens if the rectangular confining potential is employed. The
rightmost picture in figure 9.3a shows the resulting level structure for a 3D square well
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confinement. The spectrum becomes much more complicated, and requires two quantum
numbers {n,/} to be enumerated: in the figure these are shown directly above each
individual level. Again the degeneracy of each level is given in parentheses and the total
number of particles that can be put in the given number of levels is given at the right, as 2,
8,718, 20, 34, etc. Note the clustering of the levels, with larger "gaps" above particle
numbers 2, 8, 20, 34, 40, 58, 92, ....; the magic number sequence.

Now, what do these levels imply? The total energy of the system can be evaluated simply
as

Epor = ZgnEn (9.3)
n .

with g,, denoting the degeneracy of the n-th level £,. Evidently the energy differences at
the addition of one atom (+electrons) after the other will show a step whenever the n-th
level becomes completely filled and the next (i.e. (n+1)-st level) has to become occupied.
Such an extra large difference in energy will occur in going from the filling numbers 2->3,
8->9, 20->21, 40->41, etc. With this fact in mind jt is not difficult to see that a cluster of
size 2, 8, 20, 40, ... will be significantly more stable than those at 3, 9, 21, 41, ... :
Rephrasing this "stability" argument one can say that it implies a stronger binding of the
particle to the cluster, and so a larger energy will be required to ionise the system,
whenever the cluster size matches one of the magic numbers. So, we anticipate that the
ionisation energy should show a step-wise increase at each magic number size. Similarly
we understand the preference for clusters to grow in sizes containing magic numbers of
particles.
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Figure 9.4. Experimental results showing the increased stability of clusters of magic
sumber size. a. the ionisation energy of K clusters of different size, measured in the UV
range; b. the relative abundance of Na cluster masses, obtained from a mass
speciromerer

- Figure 9.4-shows that indeed: this stability argument:shows up: experimentally. In figure
9.4a (M.L. Cohen et:al, J. Chem. Phys. 91,3141 (1987)) the ionisation-energies of an
ensemble of K clusters, fabricated in an atomic beam evaporator system, is shown. A clear
structure is manifest at the magic numbers like 8, 18/20, 40, 58 and 92. In figure 9.4b the
picture shown in chapter 1 is taken again (. Pederson.et.al, Nature 353, 733 (1991)),
displaying very clear evidence for an increased abundance of the magic number cluster
sizes in the mass spectrum. '

6 4 Energy level repulsion and statistics in quantum-confined systems

The question we want to address now is: what degree of (in-)dependence is there between
the eigenstates and eigenenergies of systems with elastic scattering. One obvious effect of
such scattering will be that the pure states of the "clean” (Le. scattering-free) system will
become mixed whenever the elastic scattering is introduced. To appreciate how this
affects the energy level structure-we-assume-that-the mixing-is-not too strong, which
allows the use of perturbation methods. Assume that the pure, clean system has '
eigenstates ¥ and eigenenergies Ej 9. The scattering can be formally described by a
Hamiltonian H. It effectively mixes the pure, unperturbed states ¥ o to form the
perturbed states ¥ via the matrix elements

Hy=<%0| Hs| %> (0.4)
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Using second order perturbation theory we immediately obtain the new, shifted
eigenenergy of the perturbed i-th. eigenstate

Ef =Ei,0 +‘Hff +Z& (95)
Jrih0 T EJ 0
' From this expression we see that the largest contribution to the shift of an eigenstate 1s
due to states that mix apreciably (1.e. Hj; relatively large) and with a small energy
difference while unperturbed (i.e. £ O-E .0 small). Rephrasing this, it means that the
largest shifts will be found whenever rhe unperturbed eigenenergies of two states are
(nearly) degenerate. This 1mphes that levels tend to prevenr to cross one another, a
phenomena called level repulsion. Figure 9.5 shows in'a very schematic way how the
perturbation modifies the unperturbed energy level diagram. At the position of the original
crossings the level repulsion leads to energy gaps.

Energy ———»

T T —

a. b.

Figure 9.5. Level repulsion resulting from perturbation action. a. the unperturbed groups
of energy levels and how the perturbation opens an energy gap at the position of the
crossing in the unperturbed state; b. the resulting level diagram with the gaps.

This phenomenon is not as unfamiliar as it may seem at first sight: it is this mechanism
which opens the gaps in the £E-k spectrum in the solid state due to Bragg reflection of the
electron waves at the periodic potential of the lattice (1.¢., eleastic scattering); we have
~also seen it to occur in the (calculated)evel diagram for-the persistent currents in chapter
5 for a ring with elastic scatterers. Note again that strong scattering leads to strong level
repulsion and so to narrow bands and wide gaps, a conclusion we have formulated in
chapter 5 before.

From the preceding discussion we can conclude that the phenomenon of level repulsion no
longer allows energy levels to behave independently: leve! repulsion leads to correlation
between individual energy levels. This interdependence evidently should have
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‘consequences for the statistical distribution of levels in (complex)-spectra. Wigner (1951)
and Dyson (1962) were the first that became aware of this consequence. Let us
concentrate on this a little more.
Assume that we have a relatively large system. The calculation of the exact energy
spectrum will be very complicated (as all interactions have to be included) and is
commonly far beyond the capacity of present day computers. However, for a mumber of
properties of clusters it suffices to evaluate the statistical properties of the energy levels
and the resulting density-of-states. '
To that purpose we define the probability P(A) which characterises the level density
fluctuations across the total spectrum. More precisely, P(4)dA is the probability to find
the nearest (or neighbour) level at an energy (4,4+dA) away. This can-be evaluated over
the energy range of the complete spectrum or over a part of it (but it should contain a
_Teasonably large number of levels to guarantee statistical significance). For the following
 discussion it is convenient to choose the average 0D level spacing or splitting & as the
"unit of energy difference”; typically we will have S=g (Ep/N) with N being the number of
electrons in the cluster (see chapter 2 and 7). If no level repulsion would occur the levels
will be distributed approximately randomly relative to each other and so they will show a
Poisson-distribution

R(4)=sem(—) ©.6)

Figure 9.6. (solid curve) shows this probability distribution; note thelarge probability to
find levels in close proximity from one another, and the rather small chance for large level-
to-level energy differences.

However, if the system does show repulsion, it is evident that we should have a small
likelihood for the occurrence of levels being closely spaced. This is shown (only
schetchy!) in the same figure by the dashed curve, where at small energy spacings the
probability is small. Note that, in agreement with intuition, the curve reaches its maximum
at approximately the average level spacing, i.e. at A~4.

Figure 9.6. The probability

distribution of the energy level
~ " spacings A for a random
(Poisson) case (solid curve) and
Jor the case of level repulsion

w20, s 30 L0 (dashed).
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The exact expression for the probability distribution function depends on the symmetry of
the system, and so on the Hamiltonian describing it. Without discussing the details behind
it, we just present in figure 9.7 the three probability distributions for three distinct classes

of systems characterised by a particular symmetry. These are:

04

Symmetry Allowed transformations  Distribution function

time invers. + int. spin

--—-orthogonal  R(4)=¢ —g—exp( -h( -3— )2 ) (9.7a)
time invers. + space rot.
L . . 4 9 A
no time-inversion unitary P(A)=cof E) exp{—by( 3 ' (9.7b)
.. . . 44 A9
time inversion symplectic B(A ):03(?;—) exp(~by( g;) yi (9.7¢)

Note that from the déetermination of the level distribution some of the underlying
symmeiry of the system should become apearent. On the other hand the differences
between the curves is not very large, so to reach a statistical significant distinction requires
the measurement of a large number of level-differences!

As we have been stréssing, these level distribufion properties are of 4 Very géneral
character, allowing it to be applied to any "large" coherent system of particles described
by a Hamiltonian of certain symmetry. To underline the universality of this approach we
show three examples: one from level statistics of the spectrum of a nucleus, the second for
the case of an atomic (i.e. the electronic cloud) spectrum; the third refers to resonant
frequencies in microwave cavity. Figure 9.8a shows the result obtained on the level
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distribution of four zero-spin nuclei of U234 and U236 (J, A. Harvey et.al, Phys. Rev. 109,
471 (1958)). Despite the rather large spread of the experimental results, the similarity to
the orthogonal distribution Py(4) is striking! (note: $/D in this figure corresponds to our
notation 4/4).

In figure 9.8b the results for the level spacing statistics of the electronic (odd parity levels)
spectrum of atomic Hf is shown (N. Rosenzweig et.al., Phys. Rev. 120, 1698 (1960)).
Again, without going through all the details it is quite evident that 2 good qualitative
agreement is obtained for the shape of this distribution.

With the aim to stress the universality of the level repulsion phenomenon, a completely
different system is taken as the third exemple (F.J. Stockmann et.al., Phys. Rev. Lett. 64,
2215 (1990)). It comprises the distribution of resonant frequencies {in the microwave
region) of a closed (2D) cavity (figure 9.9a) Each'negative going peak is associated with
one eigenmode of the structur. With typical sizes much larger than the longest wavelength
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Figure 9.9. Resonance frequency distribution of a so-called stadium billiard cavity.
a..The spectrum of the reflection coefficient of the cavity (the inset shows the shape of the
cavity). b. Histogram of the energy level spacings.

used in the measurement, the statistics of the resonance frequencies {= eigenfrequencies
associated with the standing wave modes) is determined (Fig 9.9b). The quite striking
level-repulsion shape is obvious.

Before continuing with the next section one remark should be made. From the preceding
discussion it is now clear that a variety of properties in small coherent systems is governed
by:the electronic energy level distribution and their occupancy. This holds particularly for
those quantities that are defined by the ground state of the system. However, also effects
involving the occupation of low-lying excited states, like electronic transport, are
determined by the properties of the electronic energy spectrum. Clearly for all these
aspects not the actual values of the individual matrix elements involved in the description
are of importance but only their mean value and statistics, including the symmetry. This is
on the bases of a widely applied method called Random Matrix Theory (RMT). It allows
the calculation of mean values of a range of quantities (like the magnetic moment or the
conductance) of ensembles of systems, and so of the typical value of that particular
quantity of one individual member of the ensemble. By the same token it provides
quantitative information on the statistics of the particular quantity as well.

9.5 Thermodynamic quantities—parity effects -~ e e .

Quantities such as the magnetic susceptibility and moment, and the heat capacity (or
specific heat) are determined by the thermodynamical properties of the system. To
evaluate these quantities it suffices to calculate the free energy F and take the appropriate
derivative. In this section we will describe how this problem should be approached.
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The mentioned quantities are given by

M=-= 9.8
P (9.82)
XLl FF (9.8b)
VB ¥V B
Cor =2 - 938
V=7 (9.8¢)

with ¥ denoting the volume of the cluster. Note that eq. (9.8a) has been used before: to
calculate the orbital magnetic moment due to the circulating persistent current in a metal
“ting (see chapter 5) it was applied to the energy levels resulting from the electron waves
““encircling the loop in a phase-coherent way. To obtain the total moment we had to sum
“-the contributions of all the individual filled states, i.e. for-all the energy bands below the
Fermi energy of the ring. Note that the moment evaluated in this way is due to the orbital
" motion of the conduction electrons: no effect of the spin was taken into account. One
important consequence of the summation over all the individual electron states was the
large degree of cancellation and the effect resulting from the parify of the electron
number; the addition of oneelectromn to-the ring completely alters the: total c1rculat1ng
current (and so the magnetic moment) even:including a change of sign. =

Tn the present case of the clusterit is evident that a'similar orbital contribution'may-arise,
although the different sizes of the various orbits that are allowed in the cluster as ‘
compared to the rather restricted paths in a ring configuration will introduce modifications
in terms of the magnetic field dependence. Given the considerable similarity to the.
persistent current case we will not rediscuss it here for clusters, and concentrate on the
effect of the spin of the electrons. It should be noted that the total magnetic moment (as
well as other thermodynamic quantities) is a sum of a variety of contributions, such as due
to the nuclei and the electrons bound to the constituting atoms (ions) of the cluster.

From statistical mechanics we know that in order to calculate the free energy F(N,7.B),
with its dependence on the electron number ¥, the temperature 7" and the magnetic field B,
we have to evaluate the partition function (or "toestandssom")

Z(N,T,B)=1+ ) exp(—) myE; /kT) (9.9)
AR . - . e

with £, denoting the eigenenergies with degeneracy (or occupat1on) . The free energy
follows 1mmedlately form the partition function :

F=-kThZ (9.10)

Intuitively one may feel that the strongest effects due to the confinement will occur
whenever the temperature is low, i.e., such that the average level spacing
&=g,(Ep/N)>~kT. This implies that only the states closely to the Fermi energy will become
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Figure 9.10 The electronic level structure diagrams jfor.the two cases of clusters with an
even (a., left) and odd (b. right) number of electrons. For finite magnetic field (vight) the
lowest five excited states are given from left to right, in addition to the ground state
(leftmost configuration) '

affected by the finite temperature. In order to demonstrate the approach of such a
problem, we simplify matters as much as possible and assume only three levels to be of
importance (figure 9.10), with only the lowest two being occupied at zero temperature. At
zero magnetic field the levels, at distances A' and A ( ~6), are shown at the left of the
figure, assuming an even (odd) number of electrons (and so spins) for the left (right) part
ofit. With a small magnetic field B applied each level will split symmetrically around the
zero field level, at a distance + and - (1/2)gupB (g 1s the Landee factor which is ~ 1.00 for
free electrons) for up-spin and down-spin respectively. We assume the magnetic field such
that gupB <A',A. The leftmost configuration is the ground state with 4 spins for the even
case and 3 for the odd case. The other five configurations (going from left to right in the
two figures a and b) represent increasingly higher excited states.

From figure 9.10 we can derive qualitatively that the electron number parity (even or odd)
has a dramatic effect pn the magnetic susceptibility. In the even case at a small magnetic
field and temperature, gupB, kT<< §, the two spin states of the central level will be
occupied, but no higher states will become excited. Consequently no spin flips can be
induced by the magnetic field and so the magnetic moment (as well as the susceptibility)
will be (exponentially) small. For the odd case at small field gugB<k7<<{ the electron is
trapped in a two-fold spin"degenerate stafe where it very €asily can flip from the up- to the
down-state. This implies a strong polarisation of the spins for a very small field already,
i.e. a large susceptibility. As the electron behaves more or less as a free electron it is likely
to follow the standard Curie law: X =up2/k7’

Now let us consider an ensemble of clusters. Taking the centre level as the zero of energy,
the partition function eq. (9.9) can be calculated straightforwardly. The result thus
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Figure 9.11. The cluster heat capacity as a function of temperature. An average of half
odd and half even clusters is taken. b Expansion of a close to zero femperature.

«.0obtained holds for a single particular cluster containing N electrons and with two
=particular level splittings A' and A. Now we have to realise that, experimentally, one
commonly investigates a sample containing a large ensemble of clusters with a variety of
shapes, and some distribution in number of electrons per cluster. This implies the need to
average over different level distributions, in accordance with the symmetry rules presented
.. above; i.e by-selecting the appropriate level distribution function P (4)-from-eqs::(9.7)
.. and:integrating-over all- possible-level configurations weighted by the distribution function.
~This yields the level-averaged value <in Z>. Now we can take the appropriate derivative
to obtain the magnetic moment etc., following eq. (9.8): The details of the calculation can
be found in Halperin (1986), and we only show the results. For the specific heat one finds
a power-law behaviour versus temperature, which doesnot.differ in its exponent for the
odd and even case. They do, however, differ for the different symmetries. In figure 9.11
the specific heat (eq. 9.8c) is given for the four different symmetnes,
calculated for the case that half of the clusters is odd and half is even. The lower part (b)
of the figure is an expansion of the top part (a), showing the behaviour at small 7 in more
detail. Notice the strong deviation form the bulk behaviour Cyp=2(n2/3)K2T/5 (see e.8.
Kittel, Intr. to Solid State Physics)
In exactly the same way also the magnetic moment and susceptibility can be calculated.
Here the behaviour shows a significant difference between even and odd, as we have seen
already in our qualitative discussion. For the odd case (figure 9.12) all distributions show 2
clear 1/7-behaviour, in accordance with our previous arguments, and only marginal
differences are apparent for the different symmetries. The even case also follows our
intuitive reasoning, showing a decrease with decreasing temperature. =~ -
Looking to the odd case in more detail we have to note that our derivation only holds if
gupB<KkT, as this guarantees the up- and down-state to be nearly energetically degenerate.
In practical systems we know that a number of other mechanism (i.e., other than the free
electron spins as discussed here) may contribute to the magnetic state of the cluster
(nuclear, ionic, orbital moments). The magnetic field resulting from these contributions
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mmplies this condition will fail to hold at ever decreasing temperature This will imply a
saturanon of this odd spin contribution.

Now that we have discussed the theory at some length we want to present some more
experimental results. Two recent experiments will be described demonstrating the 0D
levels in small metallic particles, and one experiment showing the effect of the parity on
the magnetic susceptibility of an ensemble of clusters.

The first experiment to be discussed has already been presented in the Introduction,
chapter 1 (M.E. Lin et.al, Phys. Rev. Lett. 67, 477 (1991)). Figure 9.13 shows the set-up.
The basic idea behind the experiment is to employ the effect of field emission of electrons
from an area of large electric field strength to extract electrons from the cluster. These
emitted electrons are collected in an energy analyser, allowing their energy to be
determined with high resolution.

In fig 9.13a the set-up is shown schematically. The cluster, attached to a very sharp
needle, is held at zero potential. A nearby screen, with a small hole in its centre, is put at a
large positive voltage. The sharpness of the tip leads to a very large electric field in the
vicinity of the tip, resulting in fie/d-emission of electrons from the tip. If a small object is
located close to the sharpest area of the tip, thé field will bé largest there and so electrons
from this object will be emitted most easily. This is shown in fig 9.13a. In

fig 9.13b an energy diagram for the tip is displayed; with the cluster modelled as a
potential well and the bound states of the electrons shown inside the well. Electrons
emitted from these bound states (via tunnelling through the triangular barrier at the

right) and arniving at the screen (or the analyser) will have a fotal energy given by the
sum of (e times) the acceleration voltage and the bound state eigenenergy;

luo
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Figure 9.13. a. Schematic diagram showing the cluster attached to the field-emitiing
tip. b. Energy landscape showing the bound states of the cluster, and the triangular
barrier separating the eigenstates from the vacuum towards the fluorescent screen.

note that this total energy will be Jess than the accelerator voltage. In the analyser, located
behind the hole in the screen,-each incoming electron is counted and its energy is measured
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Figure 9.14. a. The energy spectrum from the field-emitted electrons from a Au cluster of
~ I nm diameter; the total applied voltage difference is 2550 V, stressing the need jor
very high energy resolution. b. For comparison the spectrum for electrons emitted from a
clean tip; note the featureless peak.
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leading to a spectrum of the number-of-electrons <-> energy. As the electrons from the
bound states have different total energies they should show up in the spectrum as
different peaks. This is exactly what is seen in fig. 9.14a and b. In particular 9.14b
shows what is found for a clean tip: no particular structure in the spectrum is seen. In
contrast fig. 9.14a shows the spectral distribution for a Au cluster of ~ 1nm diameter
attached to the tip: a clear splitted-peak-shaped distribution (at an energy /less than the

- accelerator voltage, as anticipated) is evident. This result demonstrates the bound state
eigenenergies of a metallic cluster. '
Before closing the discussion of this experiment we should mention one complicating
factor. As discussed in chapter 7 the small capacitance C associated with the small size of
the particle will result in'an appreciable Coulomb energy ~¢2/2C-required to add or
remove an electron to or from the cluster. It is very likely that in this experiment charging
energy plays a significant role. To what extent it affects the results can not be determined
immediately and so the conclusions from this experiment should be treated with some
caution!

The second experiment is more recent (D.C. Ralph et.al., Phys. Rev. Lett. 74, 3241
(1995)) and employs an Al island embedded in an insulating medium. By voltage bias
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Figure 9.15. a. The I-V characteristic of the device at T=320 mK; the leads are forced
normal by a magnetic field of ~100 mT. Note the Coulomb blockade threshold of ~6mV.
b. The derivative of the curve of figure a., highlighting the structure related to the _
confinement energies. c. Schematic diagram of the device, showing the small Al islands.
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tunnel spectroscopy (see chapter 7 and 10) the electronic levels are extracted from the -V
(and dI/dV-¥) curves. Figure 9.15a shows the structure of the device. It 1s made by
etching a small hole (~ 5 nm) in a thin Si;Ny membrane. Next one Al electrode is
evaporated, followed by an oxidation step: this forms the first tunnel barrier. Then on the
side where the island has to be realised a very:thin Al layer is evaporated of ~ 2 nm on
average. The trick to form the island is now that the evaporation of very thin metal layers
_at room temperature commonly does not result in a closed and uniform coverage but
instead a non-continuous, granular layer results showing the formation of small islands.
Next this discontinuous layer is oxidised (yielding the second tunnel barrier) followed by
evaporating the counter electrode. Note that the alignment of the etched hole and a metal
island isjust random, just as the shape and size of the island itselfl To-alesser extent this
also holds for the transmission of the barriers. The typical values found are ~ 10 nm
.diameter and a volume of ~ 100 nm3, the last one yielding an average level spacing AE~
07 eV, in addition a capacitance of ~ 15 aF (= 10*10-18 F) is estimated from the size,
yielding a charging energy ~ 6 meV. Figure 9.15b and c show the results obtained at
7=320 mK and a magnetic field of ~ 100 mT (to suppress the superconductivity of Al). -
‘Very clearly the Coulomb blockade threshold is seen at ¥=4-5 mV. Beyond this bias

oltage a distinct step-like structure is seen in the current-voltage characteristic (= peaks
in the differential conductance versus bias voltage). Note that the typical peak spacing
between 5.5 and 11 mV equals ~ 0.5 meV, in reasonable accordance with the estimation
based on the size of the island. It should be noted that quite a few more interesting results
. are presented in this paper, including effects dueto the superconducting state.

The last experiment we want to discuss concerns a measurement of the magnetic
susceptibility of Mg clusters, embedded in a frozen hexane environment (K. Kimuro et.al,
Surf. Sc. 156, 883 (1985)). Note that Mg contributes an even number of electrons to the
conduction band, so the system should be even. The magnetic moment is meastired
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Figure 9.16. Magnetic susceptibility of Mg clusters in frozen hexane, measured using a
Faraday balance. Mg particles of ~ 2nm diameter were used, with an average energy
level spacing corresponding to ~ 250K. With each Mg atom contributing 2 electrons to
the conduction band the total electron parity of each cluster is assumed to be even.
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employing a so called Faraday balance, which measures the force resulting from the
interaction between the applied field and the induced (spin-) moment. The typical size
of the Mg particles is ~ 2 nm, resulting in a mean level spacing of ~ 20 meV (or ~ 250
K). Based on our preceding discussion (Fig. 9.12) we anticipate a suppression of the
spin confribution to the magnetisation if k7<~ 0.5 * the average level spacing, i.e.
below ~ 120 K. Figure 9.16 shows the results of this experiment. Two features are
evident: first a weak rise of X (with decreasing temperature) around ~ 40 K. Secondly,
a clear reduction is seen to occur below ~ 50-60 K, which becomes even more
pronounced if we "correct” for the hump around 40 K. The reduction of X is attributed
to Jevel repulsion and non-random level distribution, i.e. the effect we wers interested
in. The hump is not well understood and was attributed to some impurity effects.

9:6 Closing remarks

In this chapter we have discussed a number of aspects related to the electronic and
structural properties of small conducting particles, called clusters. From the presented
material it will be clear that the theory is rather well developed. Expertmental
verification of theoretical predictions have been largely hampered by the constraints
posed by the sensitivities required to study clusters. One approach to overcome this
difficulty has been to investigate large numbers of (nominally) similar clusters, but the
unavoidable statistical variations between the members poses considerable limits to
the interpretation of the results. The second approach, i.e. to study only single clusters,
is only recently becoming into reach, and this only for a few quantities. Much
experimental work is still to be done.

By no means full coverage of this broad subject is given in this chapter. Aspects like
the recently discovered (and widely studied!) bucky balls and bucky tubes have not
been discussed: scanning some recent issues of Nature, Science, Physics Today or the
like will provide ample entrance into this area. Also the effect of confinement on the
superconducting properties of small structures has not been included: here only few
experiments exist. Some aspects are discussed in the reviews of Perenboom and
Halperin.
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10. Scanning probe methods/techniques

Key words: scanning probing, STM, SFM, MFM, SIMS, ion beams, electron beams,
Auger effect

10.1 Introduction

Mesoscopic physics concentrates on the properties of matter on a small sized scale. As we
have seen in the preceding chapters this is commonly achieved by fabricating small
structures, ~such as rings (chapter 5), junctions (chapter 6 and 7), dots (chapter 7 and 8)
or clusters (chapter 9) -, which are investigated e.g. via leads attached to the device. In a

; different approach one employs a particular. lengthscale that is intrinsic to the phenomenon
. of interest, which allows to effectively "cut out” a section of this size from the

- macroscopic system. This is done e.g: in the case of weak localisation (chapter 2, with the
phase coherence length as the scale of interest) or the quantum Hall effect (chapter 4, with
the magnetic length as the typical length of confinement).

In the present chapter we will see how these methods can be complemented by techniques
- that allow the:investigations of properties on an-even more local:scale: Some.of these

. methods has been touched upon already before; but here-we want to introduce thesein a

more systematic way.

The methods that we want to discuss go under the name of local probing. The degree of
locality, i.e. the resolution in space; varies between methods, depending on the specific
mechanism used, but it may reach values to fens of pm, i.e. well below the size of the
smallest atoms! As in addition these techniques often allow the (nano-)probe to be
directed to various positions on the surface of the-object that is investigated, - indicated by
scanming -, there is not too much imagination required to envision that the resulting
scanning local probing is very powerful and versatile! This is even more 8o as some
methods are also capable to be employed as tools to modify the surface on an atomic scale
in a controlled way, in this way providing a means to perform fabrication on an atomic
level. ‘

We first (section 10.2) will provide a short introduction to various local probing methods
based on the use of particle beams. Next we will discuss two recently emerged and by now
very widely used methods, based on the use of local forces (section 10.3) and on local
tunnel currents (section 10.4) respectively. | '

10.2 Particle beam scanning probe methods

The central issue in scanning probe methods and techniques is the intrinsic/generic
capability of determining the properties of a surface on a very local scale. In this section
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we will discuss a few methods that are based on the focused irradiation by particles of the
surface under investigation, like electrons or ions. We will present a few methods
employing particle injection, and see how this may provide detailed information on the
local physical and chemical properties of the surface using various spectroscopic means.

In particle beam probing methods we can distinguish between two types of particles,
namely electrons and atoms (or ions). In using electrons one commonly detects (in a
spectrally sensitive way) the radiation that is emitted from the irradiated solid
("fluorescence”), and this provides direct information on the chemical nature of the
material. In employing atoms or ions one commonly detects the particles that are knocked
out from the surface by the incoming ions; by mass-spectroscopic means one can
determine which atomic species are being emitted. For more details of this field the book
of Fuchs (see end of this chapter) can be used.

10.2.a. Electron beams.

The basic idea here is to inject high energy electrons into the surface of the solid and see
how the interaction of these electrons leads to energy transfer to.the atoms constituting
the matter under investigation. Figure 10.1 shows this process in a simple way. The
incoming (high energy) electron penetrates the electron cloud surrounding the atom, and
transfers its energy (partially) to an electron from one of the inner shells via inelastic
scattering. This will remove this electron from the shell, leaving the atom 1n an excited
state (i.e., with a hole at the place of the formerly bound inner electron). Next, this hole
will be ‘occupied by the transition of one of outer shell electrons to the inner shell hole.
Now two processes may occur, Either the energy released at this transition is transferred
to-again another electron from one of the higher lying shells, leading to its emission as a
so=called Auger electron, or it will result in the emission of a photon determined by the
energy difference of the two bound states. For this second process the energy difference
AFE is characteristic for the atom hit by the incoming high energy electron, in this way
allowing the determination of the particular atom from its emitted radiation. It may range
up to ~100 keV for heavy atoms and so the resulting photons will be in the very short

Figure 1071, The process of
the generation of an X-ray
photon via the removal of an
electron from the inner shell of
an atom.
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. the lateral resolution of ~200-nm.

Figure 10.2. Microcomposition

of a regular scanning electron

selectively measuring the local
yittrium content (white "spots”).

wavelength range of X-rays, following the relation A=hc/AE (approximately an energy of 1

+keV corresponds to a wavelength of 1 nm).
=By scanning the incoming electron beam across the surface and measuring the emitted
“radiation in a wavelength-resolved way, the local composition of the surface can be

determined, a method called electron beam X-ray microanalysis. Figure 10.2 shows a
typical result obtained on a small area of barium titanate ceramic material. Here the X-ray
detector was set to measure the characteristic X-rays emitted from Yittrium atoms. Note
At first sight one may infer:that the lateral resolution will be determined by the beamsize of
the incoming electrons, which can be as:small as 1- nm.-Thisis, however,.not so. The

actual limit is governed by the penetration depth of the high energy electrons into the
material, spreading these electrons also laterally over an area of the same order of -
magnitude. As these distances vary from ~10 nm (at ~ 1 keV or less) to-~1 pm (at ~ 100
keV), this will determine the lateral resolution.

~ Alternatively to employing the emitted X-ray, also the process which involves:the.emission

of the (secondary) Auger electron can be used. In this case its energy allows information
on its origin (i.e., from which atom it was emitted) to be obtained. We will not discuss this’
method here.

As a final note it should be indicated that employing these electron beam microanalysis
methods will not affect (strongly) the properties of the solid under investigation. This
follows from the smallness of electron mass relative to the atomic mass (and so the small
transfer of its kinetic energy to the atom) and the relatively large binding energies of atoms
in solids. In this respect the method is of a non-destructive nature.

10.2.b. Jon beams Tt T T me

The most important method employing ions as the incoming particles is called Secondary
Ton Mass Spectrosecopy (SIMS). It employs the fact that when the solid surface 1s
bombarded by a beam of primary ions, components of the surface are abraded by
sputtering, and some of the removed particles are emitted as (secondary) ions into the free
space above the surface. By collecting these secondary particles and investigating these by
a mass selective method, the individual species removed from the surface can be analysed.

< - -micrographand an X:ray image

obtained from local X-ray analysis.
The picture shows a superposition



- Figure 10.3. 4 SIMS depth
profile for a Gads substrate
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By scanning the (focused) beam of incoming ions across the surface, information on the
local composition of the surface can be obtained.

From this short introduction we immediately can deduce the most important
characteristics of SIMS. First, the sputtering action makes the method destructive in
nature: the surface is directly modified by the abrasive action of the primary ions.
Secondly, as ions only penetrate the solid very shallowly, the method is depth-selective to
a few atomic layers (~ 1nm). Combining one and two immediately implies its use for
depth-dependent investigations by the measurement of the secondary ions composition
duting the continuously further penetration into the material (in time) by the abrasive
sputtering action. This provides a so-called composition depth profile. Figure 10.3 shows
a typical depth profile of a semiconductor (GaAs), covered by a metalisation layer of
Ge(10nm), In(2), Mo(12) and W(20). Evidently the time-axis is a measure of the depth
reached during the sputter process. From the picture we nicely can see the transition from
metal to metal and from the metal to the GaAs layer itself

From the know metal layer thicknesses (as obtained by the metal evaporation parameters)
this:picture provides some typical numbers for the depth resolution that can be obtained.
With the In and Ge peaks being comparable in width (= time) we may infer a resolution of
~10 nm. In view of the "fundamental" limit given by the ion penetration depth (a few nm),
this may seem not so good. However, other contributions have to be taken into account,
and these are much more restrictive. One important contribution is the effect of
redeposition of the abraded matenial: a fraction of the material sputtered away from former
Tayers is redeposited, and so this will contribute to the mass composition at lower layers of
the material, in this way smearing the abruptness of any compositional interface transition.
Secondly, any morphological variations along the surface (i.e. grains etc.) will result in
different rates of sputtering and so fluctuations in the depth, leading to a spreading of the
average composition seen by the fofal beam. Under favourable conditions effective depth
resolutions of better than 10 nm can be-achieved, comparing well with the example of
figure 10.3.

The lateral resolution that can be obtained by SIMS largely depends on the diameter of the
ion beam. This is governed by the design of the ion emitter and the ion-optics of the total
beam generator: values of 50 nm or less have been attained for liquid metal ion sources.
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10.3 Scanning force methods

Nature provides us with a wide variety of forces. Also in mesoscopic systems various
types of force will be relevant. Whenever an atom is brought in close proximity to a
second atom, interaction between the two will occur. This interaction will be either
attractive or repulsive and so an (electrostatic) force between the two results. For the case
of the persistent currents discussed in chapter 5 a finite magnetic moment results, and this
will lead to a (small!!) magnetic force if a small magnet would be put close by.
In this section we will discuss scanning methods based on the use of local variations of
force on a nanometer scale. Methods to investigate the submicrometer properties of
(interfaces of) solids based on the use of these forces are denoted by Scanning Force
Microscopy or SEM. Depending on the particular employed force names like AFM
(atomic forces) or MFM (magnetic forces) are used. Given the small sizes involved, the-
.forces commonly encountered are rather small: for the case of interatomic forces values as
_small as 10-10 N are quite normal, with the added characteristic of the very strong
--dependence on the distance between the two atoms. Needless to say that these very small

values require special approaches to allow their proper measurement.

10.3a. Basic properties
In the world of atoms and molecules the electromagnetic interaction is the only relevant
one of the four known fundamental forces in nature. Concentrating here on atomic
interactions.at short distances we want to. gain understand of the modes of operation and
the limitations. of the (atomic)-force -microscope ((A)FM). : ,
Basically the interatomic forces: contain two contributions, one being relatively(!) long

* ranged and attractive in nature, while the second is considerably more short range and
repulsive. :
The atiractive force is called the Van der Waals force and is a consequence of the dipole-
dipole interaction between two atoms or molecules. To be somewhat more specific, the
VdW force contains three types of contributions, one resulting. from permanent dipoles,
the second from dipole-induced dipole interactions and the last (commonly largest) arising
from fluctuations in the atomic charge distributions (positive relative to negative). The
VAW force behaves like 7 for distance ~<10 nm.
The repulsive force acts at a considerably shorter range, i.e. below a few tenths of nm.
Two contributions can be mentioned. First the strong overlap of two electron clouds leads
to incomplete screening of the nuclear charges, resulting in a strong coulombic (repulsive)
force between the two atoms. Second, the Pauli exclusion principle will try to avoid
electrons to occupy the same volume in space, in this way also giving rise to a repulsive
action.
Figure 10.4 shows a typical curve of the total interaction energy (with the resulting force
being the gradient of this energy) in dependence of distance r, showing the characteristic
Lennard-Jones shape. It will be evident that the long range nature of the Van der Waals
forces will not favour atomic resolution to be achieved by the scanning force microscope:
the long tails of the forces (~1 nm or more) of the many atoms on the surface interacting
with those in the scanning point-shaped probe (or tip) will simply average out all lateral
atomic-sized fluctuations along the surface of interest with a typical scale of ~0.1 nm.
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Only the short range repulsive interaction allows the full, atomic resolution to be obtained
from the SFM. This implies that, in order to attain atomic resolution, an {(atomically) sharp
tip should be brought in very close proximity to the actual surface, i.e. to operate the AFM
in the contacting mode.

One more aspect of the force-distance relation has to discussed. If the distance is reduced
more and more, the resulting rapid increase of the interaction will lead to elastic
modifications (=reversible) and even plastic deformations (=irreversible) of the surface
(and the tip as well!), and may ultimately lead to a direct contact: the two stick together.
Forces of ~ 1*10-7 N seem to be enough to achieve this last condition. Evidently this last
occurrence will result in surface damage. Rephrasing this consequence more positively
however, means that this working condition can also be employed for the purpose of
nanostructuring and some words will be devoted to that in section 10.5.

10.3b. Experimental aspects

The basic operation of the Scanning Force Microscope shows considerable resemblance to
that of the STM (see section 10.4). Figure 10.5 shows the typical diagram for its
operation. The sharp tip acted upon by the applied force is mounted at the end of a
deflectable lever. Piezo-electric transducers, which provide a well controlled elongation
(and so displacement) at the application of a given voltage, are used for vertical and lateral
displacement. The vertical displacement of the lever arm is sensed and used as the
feedback information for the z-piezo, which keeps the force between sample and tip
constant. In this way the voltage atthe z-piezo-directly reflects the size of'the local (force-
)corrugation ("hills and valleys"). The lateral displacement is controlled via the x- and -
piezos, allowing the scanning of the surface.

Evidently the tip and cantilever are crucial for the proper operation. Basically the tip shape
largely determines the lateral resolution that can be attained. In addition the (elastic)
properties of the cantilever, including the detection of its vertical displacement, are central
for the vertical resolution.
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Figure 10.5. Basic diagram

of a scanning force microscope.
The sharp probing tip is attached
fo cantilever-type spring. The
deflection resulting from the

[—\A/V\_f ' measured force is sensed, and fed

! i + back to the z-piezo, maintaining a

Lever

i Feedback-
Probe Tip Loep.

xyz - Piezo constant tip-sample distance (or
Scanner T Jorce). The x- and y-piezo allow
the lateral scanning of the sample
surface.

Many different schemes are used for this vertical detection, based on optical, capacitive
and electron tunneling ((S)TM "piggy-backed" onto the SFM!) methods. Recently the use
of piezo-resitive (i.e. showing-a strain-dependent resistance)-cantilevers ‘has-emerged
.rapidly. Figure 10.6 shows the basic aspects: of this type of detection.- The resistive
cantilever (made of doped Si) has two legs (Fig 10.6a), which allows its resistance to be
measured. Given the strain-dependent nature of the material, the resi_-stance..dir_ectiy reflects

e
i

a. b.

Figure 10.6. Piezo-resistive cantilever employed for scanning force microscopy. a. The
two-legged cantilever beam, with the two electrical contacts Jor the measurement of its
resistance at the right. b. The tip, located at the endpoint of the cantilever: foial height ~

3 pm.
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the "vertical" deflection of the cantilever, and so of the force acting on the tip (provided
the elastic constants of the cantilever beam are known). Note the (barely distinguishable)
tip at the end of the cantilever in figure 10.6a. Figure 10.6b provides 2 SEM picture at a
much larger scale of the actual tip; with ~ 3 pm total height a tip radius of ~ 20 nm can be
achieved. Typical force constants of ~ 10711 N/nm are (commercially) available, and-
combined with a resolution of one part in a million for the resistance "
measurement it allows the determination of forces well below 10 pN. All these numbers
imply that sub-nm vertical resolution is possible.

10.3.c. Experimental results

In this subsection we will present three characteristic examples of measurements
performed by scanning force microscopes. These will range from the atomic arrangement
“of a crystal, the magnetic arrangement on a computer hard disc, to the tmaging of a large
organic molecule.

Figure 10.7 shows a crystalline surface which is rather well known in the field of SFM and
STM, namely graphite. The spacing between atoms is approximately 0.24 nm. With a load
force of 10 nN a vertical corrugation of ~ 0.02 nm is measured.

of a graphite surface, showing

corrugation is 0.02 nm, and the
applied loading force is 108 N.
Total area is 4.0*5.5 nm?.

The second example concentrates on the measurement of magnetic forces. Figure 10.8
shows an image obtained from the magnetic ordering similar to that found at the surface of
a (computer) hard disc. The magnetic recordifig track has a-widthof ~10 um, with
magnetic transitions every 5 pm. The image is obtained with a Ni tip. From this image we
can deduce a resolution of at least 100-200 nm. Note the "force roughness” or "force
noise" across the surface. This is not due to topological corrugations but indeed represents
the noise occurring in magnetic image itself, demonstrating the limits for the signal-to-
noise ratio that can be attained in such systems.

atomic resolution. The (vertical)

- Figure 10.7. Scanning force image
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- Figure 10.8. Magnetic force microscope image obtained with a Ni tip ona magnetic
record track on a CoPtCr medium. The tip was polarised in the direction perpendicular
to the sample surface.

From various experiments performed on magnetic systems with very abrupt local changes
of the magnetic polarisation (e.g. at the walls between neighbouring magnetic domains) an
experimental lateral resolution of ~ 10-15 nm has been.achieved. From rather simple mode
descriptions it is clear that this is mostly determined by the tip radius:(~10 nm) and the tip-
sample distance.

The third example originates from a completely different area and again relies on atomic
interaction. Figure 10.9 shows an AFM image obtained from a DNA string deposited onto
a metal surface. It is taken in the non-contacting mode, i.e. at a relatively large distance
from the sample. The apparent width of the string deduced from the image is

~= -~ - Frigure~10.9 Atomic force
microscopic image obtained from a
DNA string onto a metal subsirate.
The image is taken in the non-
contacting mode. Total field of
view is 1*1 pm?.
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approximately 30-50 nm. Note that this is much larger than the known diameter of a bare
DNA string, which is ~ 2nm. In the present image the measured width is determined by
the relatively large distance between tip-and molecule (due to the non-contacting mode of
operation) and the tendency of the molecule to entangle once put into "free space”.

Before closing this section on force microscopy some final remarks may be in place. The
absence of nearly any preconditions related to surface properties evidently underlines the
broad applicability of the SFM. This has been materialised over the last ten years as it has
been used in fields like chemistry and electrochemistry (like catalyses), biology and
medical sciences, in applied sciences like electronics, magnetics (like recording) and
physical chemistry (e.g. polymers), with in addition a variety of applications in pure
science.

10.4 Scanning tunneling methods: microscopy and spectroscopy

Inthis section we will concentrate on the transport of electrons between two conductors
that are very weakly coupled. This separation could be realised by a narrow gap of
vacuum or an insulator. The resulting barrier classically will prevent current to flow
between the two pieces of material. However, as we have seen before (see chapter 1 and
9) quantummechanically this is still allowed by the process called tunneling. It is our aim
to:see what type of information can be gained from the tunneling into a local pesition on a
sutface and how this can be accomplished experimentally.

In section 7.2 we have discussed tunneling in the context of the controlled exchange of
single electrons between leads and a small island. In that particular case tunneling was only
employed as a way to "isolate" the island from the leads to such a degree that the
(wavefunction of the) electrons can be assumed to localised, i.e. the electron either sit on
the island or in one of the leads. In the present section we are more interested in which
effects determine the current flow in the tunneling process.

10.4.a. Theory of tunneling

Figure 10.10 shows the energy diagram (or landscape) resulting from the formation of a
tunneling system by bringing two conductors (1 and 2) in close proximity. If the two are
put together in such a way that weak coupling arises, electrons can be exchanged between
the two and so in equilibrium this results in the alignment of the electrochemical potentials
of the electron reservoirs. The (different) workfunctions @ associated with the two
conductors determine the barrier height and shape. Note that 1 and 2 can be a normal
metal, semiconductor, or a_superconductor. | L

To obtain a quantitative description that would allow the calculation of the current in
dependence of voltage, temperature, tunnel barrier properties, electronic properties of the
conductors etc., basically two approaches can be taken. One way is to take an electron
wave incident on one side of the barrier and to calculate its transmission by matching the
wavefunctions at the two boundaries at each side of the barrier. The transmitted
waveamplitude directly provides the current flowing via this tunneling wave. It is called
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- Figure 10.10 Energy diagram or
landscape in a tunneling system.
a. The two conductors denoted
1 and 2 at large distance, showing
the workfunctions (or ionisation
energies) of the two. b. On close
encounter the Fermi energies {or
electrochemical potentials) align,
defining the shape of the barrier. c.
(d) The. system under finite bias
A voltage: V; <V, . d. Opposite
TP SAMPLE - condition: V> V.

the wave-matching method. In the second approach, called the transfer or tunneling -
‘Hamiltonian method, the barrier is explicitly assumed to be of small transparency, allowing
the use of perturbation theory in the problem. Now the overlap matrix element of any two
wavefunctions at different sides of the barrier is calculated, from which the current
(transferred via that pair of states) can be evaluated.

Employing the second approach, one describes the system by two Hamiltonians for the
unperturbed eigenstates of the two conductors, and a perturbation term H; associated with
the weak tunneling coupling. Now we can apply the famous Fermi's Golden Rule to
evaluate the probability for the transition (i.e. the transition or tunneling rate) from one
particular initial state iy in reservoir 1 at one side of the barrier to a state j, in reservoir 2
at the other side. This reads R

1. .2 _
Tyosg, =5 <l >7 8(Ey —Ej) (10.1)

where the matrix element describes the overlap between the wavefunctions of the two
states and the S-function guarantees that the process is elastic (i.e., no loss of energy
during the actual tunneling process itself). This energy conservation basically says that the
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twho states have to be aligned to allow the transfer of the particie/wave. Evidently, to
obtain the actual rate 7;-> j, one has to multiply by the degree of occupation of the 1-
state, f;, and that of vacancy of the 2-state, (i—fj). This yields

I, . )
Ty =ZI<ilH 2 > £y (1= £, )8(E; ~E},) (102)

To obtain the total rate of particles flowing between the two reservoirs 1 and 2 we of
course have to sum over all states 7} and j,. To do so we assume that the density of states
piand pp at sides 1 and 2 1s large Thls allows us to rewrite the sum over all states as an
integral.

Applying a bias voltage V' between the two conductors shifts the Fermi levels by eV
Limiting ourselves to rather small energy shifts implies that only states close to the Fermi
energy are of importance. As, in addition, the large DOS implies a strong mixing between
states, it is very likely that the character of all the states is rather similar. This allows the
matrix elements to be replaced by the product of an average transmission probability
Ti5=|t15? (with ), being the transmission coefficient through the barrier). The result for
the integrated current from 1 to 2 now can be written as (see eq. (7.8))

fisy=eliny =7 J Tiopr(E—-eV ) f(E—-eV *py( E){1- f(E))dE  (10.32)

Far the current flowing in the reverse direction from 2 to 1 we obtain in the same way

Iy =ely 1 =5 [ Tapa(E)F(Ep pi(E~eV )1~ f(E=eV )Jdi (103b)
—x0
If'ithe bias is taken such that eV’<0 (see figure 10.1c) at zero temperature this reverse
current. will drop to zero as all occupied states in 2 that could contribute to the current
towards 1 are faced with occupied states in 1. So, for the total current only the
coniribution from 1 to 2 needs to be taken, integrated over the bias energy interval eV,
which yields

EF—EV
ho=lhyy-hy=hsn= T12 IPME eV )Jpy( E)dE (10.4)
EF
In the limit of very small bias-veltage we-may-assume that the DOS at-both sides will be
approximately constant within this energy range and so we find for the linear regime

2
e €
ho =T —pi(Ep)pa( EpJA(E) =T — pipoV = GV (10.5)

with G denoting the linear conductance of the tunnel junction.
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If the DOS does depend on energy the (incremental) current will become bias dependent.
For this more general case from eq: (10.4) we simply can evaluate the differential
conductance at a given bias voltage :

d .. e
— =T PUE=eV)oy(E) (10.6)

The transmission 7 through the barrier can be evaluated approximately, assuming that the
states can be represented by plane waves and taking a rectangularly shaped barrier of
width &, and height Ey, (relative to the Fermi-energy). From textbook quantummechanics
we know. that the wave penetrating the barrier will show an-exponential decrease, with a

. decaylength given by 7, =27 /x = h/\2mkE}, . The overlap between the plane waves at

~ both sides of the barrier now approximately equals 7 ~ z‘f'z ~ exp(—2xdy ), 1.e. it goes with
the square of the transmission coefficient. To gain some feeling for typical numbers, we

- take the barrier height F;, approximately equal to the workfunction (~ 5 eV for a metal
‘versus vacuum); with a barrier of the size of just one atomic layer (~ 0.2 nm) we find
Ty~0.01, i.e. << 1. Note that this small value resulting from the very thin barrier should be
treated as a very rough estimate, as it is by no means evident that the "macroscopic
average" workfunction holds for such sub-nm situations.

The important conclusion that can be drawn from the preceding discussion is that the total
tunnel current depends directly on the density of states at the two sides of the barrier.
More particularly, this implies that if the DOS at one side, e.g. oy, is known (or at least is
constant), eq. (10.6) immediately shows that the differential conductance is a direct
measure for the local DOS py(E), including its dependence on energy. This forms the
crucial aspect defining the intrinsic capabilities of the technique of tunnel spectroscopy. 53
one of the electrodes is made needle-shaped and allowed to be positioned at different
places across the surface of the second electrode, the resulting system is called a Scanning
Turmeling Microscope/Spectroscope or SIM/S.

10.4.b. Experimental aspects

From the preceding section it is clear that for tunneling to occur the barrier between the two
electrodes has to be in the range of atomic sizes, because of the exponential decrease of the
overlap between the electron states at the two sides. However, this only is somehow a
minimum requirement: a stable measurement -of the current-(say to better-than 1 %) at a given
voltage dictates the exponent to be stable to this value, and so the width of the barrier (or the
distance between the two conductors) should be stable within ~< 1 pm (or 0.001 nm)!

From now on we assume that one of the electrodes is configured as a very sharp needle, or
tip, while the second electrode is taken to be "flat" (apart from atomic scale corrugations) and
is denoted the substrate. For the ease of reference we will denote the direction perpendicular
to the substrate as vertical (or z) and along it as lateral (or x,y). In order to explore the limits
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further we take the tip to be of the size of a single atom. If this is so it is not difficult to see
that in the lateral direction a resolution of the order of the tip size should be attainable.
Evidently this implies that, for a stable current, also in the lateral direction the tip should not
beallowed to move (unintentionaliy!) by more than ~ 1 pm. So we have to conclude that tip-
_ to-substrate displacements should be controllable to much less than interatomic distances. If
we-succeed to-do so, the road is open to investigate electronic properties of surfaces on a
sub-atomic length scale, in particular if also the tip-can scan the surface of the substrate.

Figure 10.11 shows schematically the setup for such a Scanning Tunneling Microscope
(compare to the rather similar diagram of the AFM, figure 10.5). In figure 10.11a the tip is
seen to be mounted on a carrier that can be displaced by applying voltages to the three
attached piezo elements x,y,z. The two insets show the configuration of tip to substrate at
increased magnification. Figure 10.11b shows the electronic circuit employed for the
STM. The translation or scanning in the lateral direction is driven by the computer. While
scanning the feedback can be operated in two modes. If the feedback loop is closed it will
effectively make the z-piezo to move such that the current sensed by the tip is kept
constant: this implies that it keeps a constant distance relative to the local corrugation
(e.g. atomic "hills and valleys"). The feedback voltage operating on the vertical piezo is a
direct measure of this corrugation. This mode is referred to as the constant current mode.
In the second way of operation the feedback loop 1s opened. As the tip now hovers above
the surface at a constant average height the current entering into the tip directly reflects
the local structure of the surface. This way of operation is denoted as the constant height
m@de It should be kept in mind that of course variations in the local density-of-states will
aﬁ'_ect the current(-variations) measured during scanning.

MONITOR

a. it S . b-.ﬁ. .

Figure 10.11. Schematic diagram of a scanning tunneling microscope. a. Shows the ﬁp
mounted onto a piezo driven construction, allowing displacement in three orthogonal
directions via potentials fo the piezo elements. b. Shows the electronic feedback circuit that
allows the distance from tzp to substrate fo be kept constant, e.g. during a lateral (x,y) sweep
along the surface.
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Both methods presented above perform a measurement.of the current at constant tip-
substrate bias voltage V, i.e. including only the contribution of states within a constant
energy window AE=eV. From egs. (10.4) and (10.6) we can see that in order to obtain
information on the energy dependence of the density of states po(E) the voltage should be
swept and the resulting /-J curve will contain the required information. More specifically,
if we assume that the density of states of the tip (say p,(£)) can be taken to be
-approximately independent of energy (which is the case if it is a-normal metal, with the
Fermi energy somewhere in the middle of an energy band), the derivative of the current
(10.6) with respect to the voltage immediately yields

~d—V = T"};-PI(E)Pz(EF) const. PI(EF —eV) (10.7)

The assumption of a constant DOS of the (metallic) tip holds quite well if the substrate is a
serruconductor or a superconductor, as the range of energies of interest is comparable to
the gap, i.e. ~ 1 eV for semiconductors and ~ 1 meV for superconductors. Note that if the
‘density of states of the tip can not be taken as constant one will find a convolution of tip
and substrate states, a case which will make the interpretation of results more complicated.
Given the energy resolving capability resulting from this approach it is called tunneling
spectroscopy.

Before proceeding to the discussion of some experiments one word needs to be devoted
to the conditions of the surface.; Evidently,to investigate:the'properties of a surface it is

. essential that the surface is well-characterised, i.. it should be: az‘om:cally clean and free
of contaminations. As this may seem to be completely obvious, it is exactly-this aspect
which is one of the major problems encountered in STM and STS (= ST Spectroscopy).
To obtain reliable experimental data this often implies that the STM needs to operated in a
ultra high vacuum (UHV) environment to prevent the formation of adsorbates and oxide
films. Often this requires that the surface to be investigated has to formed in UHV, e.g. by
cleaving the material in the vacuum chamber.

Evidently the same thing holds for the tip: also this needs to be well prepared and clean. In
addition the required atomic resolution requires that the shape of the tip needs to be point-
like on an atomic scale, This guarantees a well-defined atomic state (or orbital) to be
available to tunnel from. The appropriate preparation of the tip (e.g. by electrochemical
etching) is an important step for successful STM experiments.

As a final remark we should stress the versatility of the STM method by noting that it can
also be used to study dynamical phenomena occurring at the surface. As scanning can be
performed at rather high rates, the change of local properties can be investigated during
time. This allows e.g. the study of growth mechanisms in real time.

10.4.c. Experimental results

In this subsection we want to present a few characteristic results obtained at both low
voltage in the linear regime, as well as at higher bias to perform spectroscopy. Metals,
semiconductors and superconductors will be discussed in some detail, while one example
of a biological nature will be mentioned.
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Figure 10.12. Constant current -
STM image of the (110) surface.
of InSb, in UHV. The light dots are
the Sh-atoms.

Figure 10.12 shows a nice STM image of a clean semiconductor surface; the topographic
characteristics are enhanced (by computer) by representing the data both in grey-scale as
well as in a pseudo-3D perspective manner. Taken in the constant current mode it shows

Figure 10.13. Part of a DNA molecule deposited onto a PtC film pre-treated by Mg salts.
a. The actual image, with each section being a half of the DNA helical turn; b. For
comparison a model of the DNA macromolecule is shown, with a total length of 12 nm.
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rows of atoms at the (110) surface of InSb, taken in UHV (Y. Liang et.ai., J. Vac. Sc.
-Techn. B9, 730 (1991)). Taken at a current level of 0.1 nA, with electrons flowing out of
the substrate (i.e. the substrate at a -0.2V versus the tip), it shows the Sb atoms as light
-dots. Note the details in the grey-scale image, indicating a lateral resolution which is well
below the interatomic distance.
As a second example figure 10:13 shows a bare DNA molecule.adsorbed to a PtC surface
(M: Amrein et.al., Science 243, 1708 (1989)). Figure 10.13a clearly displays sections,
each section being one half of the helical turn characteristic of the DNA molecule (see
figure 10.13b; not on the same scale as 10.13a!). This image is obtained with the PtC
surface pre-treated by Mg salts, and held under slightly wet conditions. Without discussing
this any further this implies that STM also can be employed to study a variety of (electro-)
chemical processes and mechanisms under aquatic environmental conditions.

To further illustrate the capability of STM to study the local DOS figure 10.14 shows
results obtained on a GaAs/AlGaAs multi-layer heterostructure (see chapter 1 and 3 for
more details). In such a system the edges of the conduction band (CB) and the valence
band (VB) show characteristic offsets due to the difference in electron (or hole) affinity of
the two materials. This step is known to be ~ 250.meV for the conduction band (with the
AlGaAs being higher than the GaAs), and ~ -200 meV for the valence band (with AlGaAs
lower than GaAs; the total difference in bandgap follows as ~ 450 meV). The top of the

- figure shows the layer structure, grown by MBE starting from the n-doped GaAs buffer
followed by sequentially adding ~100 nm thick layers of n- or p-type AlGaAs and GaAs.
The sample was prepared by cleaving the grown layerpackage perpendicularly to the
growth direction and passivating the surface by dipping into ammonium sulphide. The

Figure 10.14. A 700%500 nm?
STM image of an
Aly 3Gay As/GaAs multilayer
heterostructure, obtained with
a sample bias of -2.3 V and at
a constant current of 0.3 nA.
e The top part shows the
layerstructure; the lower part
. shows the tip distance while
TR T T scamning the cleaved surface
The main part of the figure
shows the stripes representing
the difference in valence band
offsets of AlGaAs (dark)
Scanning Distance relative to GaAds.
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lower two parts of the figure show the result from the STM experiment done in UHV
conditions (S. Gwo et.al., Phys. Rev. Lett. 71, 1883 (1993)), taken at 0.3 nA and with the
satple set at -2.3 V relative to the tip. This implies that the Fermi level of the tip is well
inside the CBs, and so electrons will be transferred from the semiconductors into the tip.
With the AlGaAs VB lying lower than that of GaAs the total energy interval of filled

VB states of GaAs will be larger than of AlGaAs. If the tip would be held at a constant
distance relative to the semiconductor interface this would imply a smaller current when
scanning the AlGaAs as compared to the GaAs. Or, if operating in the constant current
mode, the tip will move closer to the AlGaAs than to the GaAs. This is exactly what is
seen in the lowest part of figure 10: while crossing the AlGaAs layers the tip hovers across
thé interface ~ 7 nm closer than for the GaAs sections.. - - '

A{e. 14 Ale 1’4
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Figure 10.15. Density-of-states versus-energy diagrams and I-V curves for tunneling
between a normal conductor and a superconductor. a. The diagram for zero bias voltage
(i.e. Fermi energies are aligned); normal metal left, superconductor (with gap 2A, right);
note the enhanced DOS in the superconducior just above and below the gap. b. Diagram
at bias V=Ae. ¢. At T>0 K the Fermi-Dirac distribution broadens the transition Jfrom
empty to occupied states. d. The I-V curve at T=0; note the abrupt rise of the current at
the gap. e. The effect of T>0is a more gradual increase of the current at the gap.
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- In chapter 6 we have introduced superconductivity. One of the most characteristic features
of a metal in the superconducting state is the formation of an energy gap around the Fermi
energy, resulting from the condensation of "normal" electrons into pairs of electrons,
called Cooper pairs. The energy gap denotes the absence of single particle states.
Evidently this should show up in a tunneling experiment as a reduction of the current for
voltages corresponding to energies within the gap (typically ~ ImV). .

Figure 10.15 shows the DOS-diagrams from which we-can deduce the most characteristic
features of the /-V-curve. Figure 10.15a and b show the o(E) diagrams for the normal
metal N (left) weakly connected to the superconductor S (right) via a tunnel barrier. With
the bias {¥]<4/e no empty states are available in S (pg(|E|<4)=0), and so no current will
flow (see eq. (10.5)), as depicted in figure 10.15d. At the gap the discontinuous-increase
of pg to a value far beyond the normal state value leads to a steep rise of the current,
followed by a more gradual increase when the DOS in S returns to that of the normal
metal. In figure 10.15c¢ the effect of the temperature is seen‘to broaden all features via
thermal smearing. The resulting 7-F-curve for 7>0 is shown in figure 10.15e, with a much
more smooth rise of the current near the gapvoltage. For the differential conductance
dI/dV(V) given by eq. (10.6), reflecting the DOS of the superconductor, we immediately
infer that this conductance will be zero within the gap (1), followed by a peak-shaped rise
close to the gap voltage (2) and a reduction to a voltage independent value beyond the gap
(3). Figure 10.16 shows an experimental result of this nature. It is obtained on NbSe,, a
superconductor with a critical temperature of 7.2 K and with excellent surface quality
properties.
An attractive feature of this NbSe, system is that it is:a type II superconductors This

- implies that the:application of a'magnetic field affects superconductivity in-a non-uniform

manner, giving rise to a regular lattice of "normal” areas, called vortices, embedded in a

superconductive environment. Increasing the magnetic field will increase the vortex
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Figure 10.17. STM into a vortex lattice induced in the type 1l superconductor NbSn. @
The Abrikosov vortex lattice formed at a field of B=1T and at T=1.8K; white indicates
the superconductor. The vortex rows are ~40 nm apart and each vortex is ~15 nm in
diameter. b. The differential conductance dl/dV-V at three positions relative fo a single
vortex: the topmost curve is in the centre of a vortex, the mid curve at 7.5 nm from the
centre (i.e., "at" the vortex edge), and the lowest curve inside the superconductor (see
figure 10.7); three curves are offset for clarity.

density, ultimately leading to-a complete suppression of superconductivity once all
vortices overlap. Figure 10.17a shows an STM image of such a so called Abrikosov flux
or vortex lattice in NbSn, in a magnetic field of ~ 1T and at 7=1.8K. Note the nice regular
triangular pattern of the vortices. The vortex rows are 40 nm apart, with the vortex
diameter being ~15 nm.

Figure 10.17b shows the spectroscopic dl/dV-V curves taken at three different positions
relative to a single vortex. Just outside of the vortex, i.. in the area where the material is
superconductive, a curve very similar to that of figure 10.16 is found (lowest curve),
indicating a strong suppression of the DOS around the Fermi energy. In the mid curve
taken near the edge of vortex, a significant change is evident: now the DOS is non-zero
for all energies, and a small feature is seen near zero energy. The topmost curve is taken at
the heart of the vortex, where the gap is strongly suppressed due to the penetrating
magnetic field. Now a large peak-shaped feature is seen at the position of the dip in the
superconductor. It took some-time before the origin of the peak became clear. One can
model the system as a normal vortex core surrounded by a superconductor. From what we
have seen in chapter 6 this implies that electrons residing inside the core will experience
Andreev reflection if approaching the superconducting wall around. As the reflected AR
holes will be reconverted into electrons at "the other side” of the vortex (etc...), this will
result in coherent multiple AR and so to the formation of Andreev eigenstates, much in the
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same way as we ,Qave’éeen before. The features seen in the differential conductance curves
indicate tge_:diiérere DOS resulting from these eigenstates, '

Just as a'short remark: note that this experiment does not require the STM to have atomic
resolution in the lateral directions, as the vortices are large. However in the vertical
direction the requirements are as usual, to ascertain appropriate current stability for the

Spectroscopy.

The last experimental result we want to discuss is at the heart of every physicist. It images -
in a direct way the spatial distribution of the quantum probability of electrons confined
inside a two-dimensional cavity, employing an STM. This surface quantum cavity or
quantum corral (as it was called) has been biilt by using the same STM also as the
manufacturing machine. I s .
The experiment starts frop-a blank Cu(111) surface, held in atomically clean conditions in
Ultra High Vacuum (VHV). The STM tip is used to position individual Fe atoms onto the
Cu surface (the selection of Fe and Cu is by no means an evident one!). This is done by
locating the tip above a "Fe atom storage place" somewhere at the surface, and applying a
(positive) voltage to the tip: if done properly this makes one of the Fe atoms to become
adhered to the tip. Next the tip is brought (with the atom on it) to the place where the

Figure 10.18. The direct imaging by STM of quanium interference effects and the
Jormation of quantum eigenstates in a surface 2-dimensional electron gas at the Cu(lll)
surface, obtained in UHV conditions. The boundary conditions for the wavepatterns are
defined by arranging Fe atoms on the'surface employing the same STM. a. The
positioning of a single Fe atom at the surface leads to the formation of a clear
ringshaped wavepattern (13%13 nm image, I=1.0 n4). b. Arranging 48 Fe atoms in a
ring forms a closed surface cavity or quantum corra@*fjc__i' béautiful standing wave pattern
is set up, showing directly the spatial distribution of the probability of the eigenstates
(ringdiameter 14.2 nm; I=].0 nA).




atom has to be positioned, followed by applying a negative voltage to the tip to "launch”
the atom into place.

The peculiar feature of the Cu(111) surface is that a 2-dimensional electron system is
formed at the surface. Evidently any additional atom at the surface will affect the
eigenstates of the electron system, effectively via its change of the boundary conditions.
This will become visible in the shapes of the wavefunctions, i.c. in the interference patterns
of the electronic states. This is what the STM can measure.

Once an Fe atom is appropriately positioned the STM is switched to the measuring mode
and the local DOS is scanned. Figure 10.18a shows the result. In addition to the large
central peak showing the well-localised Fe atom a striking circular wave-pattern is set up
in the surface electron system, demonstrating the interference of the injected electrons
{from the STM tip) with the single Fe atom.

The next step in the experiment is to add more Fe atoms in order to increase the
confinement of the electrons. More specifically, Eigler and Crommie (Science 262, 218
(1993)) were able to arrange a total of 48 Fe atoms in a perfect ring, forming a so called
quantum corral. Figure 10.18b shows the stunning STM picture. Inside the corral a very
strong ring-shaped pattern is visibie, thus forming one of the most direct experimental
demonstrations of quantummechanics textbook examples. The actual pattern that is found
evidently depends on the wavelength of the injected electron, and so on the energy or tip
voltage; this is also found experimentally.

10.6 Closing remarks

The field of scanning probe methods and techniques is still evolving rapidly. New methods
and applications become apparent at a high rate. No effort has been taken to describe this
lively field in full, but we have hinted upon a number of interesting methods that are
available and results that has been obtained over the last decade. One interesting recent
development is the {scanning) near-field optical microscope ((S)NOM), which allows the
detection or excitation of optical radiation (in the visible range) on a lateral scale of 50 nm
and less (D.W. Pohl and L. Novotny, J. Vac. Sci Techn. B12, 1441 (1994)). As this also
can be combined with STM the phenomena like electrofluerescence on a nanometer scale
should be accessible. In addition the whole field of fabrication of structures and
modification of surfages on a molecular and atomic scale (as very briefly discussed in the
last part of the preceding section, concerning the manipulation of Fe atoms on a surface)
has not been discussed. Some more details on this and related subjects can be found in the
literature given next to this section.
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