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Introduction 
Rock is a natural occurrence mass of cohesive organic or inorganic material, which forms a part 
earth crest of which most rocks are composed of one or more minerals. [van Rossen, 1987] 
 
Rocks can be classified in different ways. The most used classification is based on their origin, in 
which the following classes can be distinguished. 
1. Igneous rock; a rock that has solidified from molten rock material (magma), which was 

generated within the Earth. Well known are granite and basalt 
2. Sedimentary rock; a rock formed by the consolidation of sediment settle out in water, ice of 

air and accumulated on the Earth’s surface, either on dry land or under water. Examples are 
sandstone, lime stone and clay stone  

3. Metamorphic rock; any class of rocks that are the result of partial or complete 
recrystallisation in the solid state of pre-existing rocks under conditions of temperature and 
pressure that are significantly different from those obtaining at the surface of the Earth.  

 
 
Table 1 
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Table 2 Identification of rock 
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The strength of rock 
When deterring the dredgebility of rock, distinction has to be made between the properties of 
intact rock and that of a rock mass. Depending on the fracture density of the rock the cutter will 
cut intact rock or break out rock blocks. 
In the first case the strength (tensile- and compressive strength), deformation properties (E-value) 
and the petrography (mineralogical proposition) of the intact rock determines the production 
completely. The second case the fracture frequency and the weathering of the rock is more 
important than the strength of the intact rock. It is known that the absence of water in rock is 
important for the rock strength. When saturated with water the rock strength can be 30 to 90 % of 
the strength of dry rock. Therefore rock samples have to be sealed immediately after drilling in 
such a way that evaporation of or intake of water is avoided. It has to be mentioned that this does 
not mean that cutting forces in saturated rock are always lower than in dry rock. 
The petrography is important for the weir of rock cutting tools 
 
Unconfined compressive strength 
The most important test for rock in the field of dredging is the unaxial unconfined compressive 
strength (UCS). In the test a cylindrical rock sample is axial loaded till failure. Except the force 
needed, the deformation is measured too.  So the complete stress-strain curve is measured from 
which the deformation modulus and the specific work of failure can be calculated. 
 

σ

ε

Brittle

Stress-strain diagram

W d= σ ε

UCS

E

 
Figure 1 

 

The compressive strength (Fig.1) is defined as:  q F
Au =  met: 

qu= the compressive strength  [N/m2] 
F = de compressive force   [N] 
A = cross section of the cylinder [m2] 
E = Deformation modulus  [N/m2] 
W = specific work of failure  [J/m3] 
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Unconfined Tensile Strength 
The unaxial unconfined tensile strength is defined in the same way as the compressive strength 
Figure 2a. Sample preparation and testing procedure require much effort and not commonly done 
Another method to determine the tensile strength , also commonly not used ,is by bending a 
sample Figure 2b 
 

 
a: Unconfined  b: Bending 

Figure 2 

 
Brazilian Split Test 
The most common used test to estimate, in an indirect way, the tensile strength is the Brazilian 
split test. Here the cylindrical sample is tested radial (Fig. 3) 
 

 
Figure 3 
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One can derive[Fairhurst, 1964] that the tensile stress in the centre line of the cross section is 

equal to:σ
πt

F
Dl

=
2 .  With l the length of the sample in m., D the diameter of the sample in m. and 

F the compressive force in N.  
The compressive force in the centre is equal to σ σd t= −3 . 
The validity of BTS to determine de UTS is discussed by many researchers. In general in can be 
stated that the BTS over estimates the UTS. According to Pells (1993) this discussion is in most 
applications in practice largely academic. 
 
Point Load test 
Another test that is familiar with the Brazilian splitting test is the point load strength test (Fig. 4). 
This test is executed either axial, diametrical or on irregular pieces. 
 

Diametrial Point Load test

F

F

A

 
Figure 4 

 
Point load test is frequently used to determine the strength when a large number of samples have 
to be tested. The tests gives for brittle rocks, when tested under diametric loading, values 
reasonable close to the BTS. Also it is suggested that PLS=0.8*BTS it is suggested to establish 
such a relation based on both tests. 

 
 

Hardness 
Hardness is a loosely defined term, referring the resistance to rock or minerals against an 
attacking tool. Hardness is determined using rebound tests (f.i. Schmidt hammer), indentation 
tests, (Brinell, Rockwell) or scratch tests (Mohs). The last test is based on the fact that a mineral 
higher in the scale can scratch a mineral lower in the scale. Although this scale was established in 
the early of the 19th century it appeared that the an increment of Mohs scale corresponded with a 
60% increase in indentation hardness.  
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Table 3 

Mohs Table 
No. Mineral 
1 Talc 
2 Gypsum 
3 Calcite 
4 Fluorite 
5 Apatite 
6 Orthoglass 
7 Quartz 
8 Topaz 
9 Corundum 
10 Diamond 

 
 
The failure of intact rock. 
In rock failure a distinction is made between brittle, brittle ductile and ductile failure. Factors 
determining those types of failure are the ductility number (ratio compressive strength over 

tensile strength) qu

tσ
, the confining pressure and the temperature. During dredging the 

temperature will have hardly any influence, however when drilling deep oil wells temperature 
will play an important role.  The corresponding failure diagrams are shown in Fig. 5. 
The confining pressure where the failure transit from brittle to ductile is called σbp 
 
 

 
Figure 5 

 
Brittle failure  
Brittle failure occurs at relative low confining pressures  σ3 < σbp en deviator stress  
q=σ1-σ3  > ½qu. 
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De strength increases with the confining pressure but decreases after the peak strength to a 
residual value.  The presence of pore can play an important role.  
 

 
Brittle failure types are shown in Fig. 6 
• Pure tensile failure with or without a small confining pressure. 
• Axial tensile failure 
• shear plane failure 
 

 
Brittle ductile failure also called Semi brittle 
In the transition area where  σ3 ≈ σbp, the deformation are not restricted to local shear planes or 
fractures but are divided over the whole area.  The residual- strength is more or less equal to the 
peak strength. 
 
Ductile failure 
A rock fails ductile when σ3 >> qu en σ3 > σbp  while the force stays constant or increases some 
what with increasing deformation 
 

Shear 
  belt

s1 s1 s1

s  > 03

s1

  discrete
Shear planeTensile

Failure
   Axial
tensile

Shear
zone Ductile

Increasing confining pressure

Brittle Semi brittle Ductile

Tensile
Failure

 
Figure 6 
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Failure modes in soil cutting. 
In granular materials three basic failure modes 
can be distinguished: 
¾ ductile (Flow Type) 
¾ deformation in a shear plane (Shear Type)  
¾ deformation in cracks (Tear type) 
 
Theoretically these three failure modes can 
occur in all soil types.  
As shown in Figure 6 the occurrence of a 
particular failure mechanism is determined by 
external conditions as confining pressure but 
also from the process scale length and water 
depth. 
 
In reality these basic failure modes can occur 
together during cutting of rock with a cutting 
tool as shown in Figure 7 

Flow Type

Shear Type

Tear Type

Basic Failure Modes

Figure 7 
 
 

Ship

Tool

Crushed zone

Tensile crack

Shear plane

Shear zone

Plastic deformation

Failure modes during cutting

Brittle-ductile transition 

Shear crack

 
Figure 8 

 
When cutting a crushed zone occurs under the point of the tool. At small cutting depth the 
crushed material will flow to the surface along the rake plane. When the depth is increased to a 
level that no crushed material can flow to the surface the stresses in the crushed zone will 
increase strongly. According to Fairhurst the cutting forces are transmitted via particle – particle 
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contact, forming load bearing alignments, to the environment forming. So the cutting forces 
transmitted to the intact rock  as discrete point loads, causing micro cracks and finally in a tensile 
crack. 
 
In this cutting process the following failure types occurs according Fig. 8. 
Traject I: a tensile failure 
Traject II: a shear failure 
Traject III a shear bend or area  
Traject IV plastic deformation 
 
The transition of brittle to ductile is still a point of investigation. For the time being it is assumed 
that the confined pressure at the transition is a function of the ratio unconfined compressive 

strength (UCS) over the unconfined tensile strength (UTS); m . See chapter envelope for 

ductile failure. 

qu

t
=

σ

 
The influence of the failure mechanism is shown well in the cutting force registration for brittle 
and ductile rock as function of time as shown in figure below. 
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Figure 9 

 
 

Cutting rock in a brittle or in a ductile mode can have influence on the type of pick to be used. 
Under brittle failure chips are formed with breaking out angles wider than the cross section of the 
tooth, β2 positive. 
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Figure 10 

 
 
 
On the other hand 
when cutting in 
ductile mode β2 will 
be negative. In that 
case trapezoidal pick 
points will be 
preferable. 

 
Figure 11 

 

 
Failure of rock 
In engineering practice a number failure criteria are known. The most important are: 

• The maximum stress theory 
• The maximum strain theory 
• The maximum shear stress theory 
• The theory of Mohr 
• The theory of maximum distortion energy 

Combinations of these theories are developed too. 
  
For rock it is common to use the theory of Mohr.
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Failure theory of Mohr 
The failure of rock is mostly discussed with the failure model of Mohr 
 

 
Figure 12 

 
The difference with all other failure theories is that having executed a number of experiments it 
is decided where the material fails or where not. 
In Figure 12 a pure shear test (circle 1), pure tensile test (circle 2), pure compression test (3), a 
hydrostatic tension test (4), a hydrostatic compression tests (5) and if required a number of 
additional tests. Plotting the circles, which the stresses when failure occurs and enveloping those 
circles by curves, it is stated that for the region inside the envelope no failure will occur and on 
or outside the envelope, the rock start to fail or is completely failed.    
 
In figure 11 the rock starts to fail in point A at a shear stress τA and a normal stress σA.  The main 
stresses at this point are σ1 and σ3 
The relation between τ and σ1-σ3 and σ and σ1-σ3 can easily derived. 
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Figure 13 

 
The envelope in this τ-σ diagram can be transformed to the σ1-σ3 diagram, giving the relation 
between σ1 and σ3 when failure starts. Such a diagram shows for the required minimum main 
stress as function of the confining pressure to get failure. 
 

σ 3

σ 1

s1 3-s  Diagram

No failure

Failure

 
Figure 14 
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Figure 15 

 

Dependant on the main stress the failure makes an angle π φ
4 2

+  or π φ
4 2

−  with the horizontal 

axes. In principal the failure makes an angle π φ
4 2

−  with the direction of the main stress. 

 
Besides the σ1-σ3 diagram, use is also made from the p-q diagram, in which p=(σ1+σ2+σ3)/3 is 
called the hydrostatic stress and  q=σ1-σ3 the deviator stress. σ1-σ3 equals 2 times the radius of 
Mohr’s circle, while mostly during test  σ2=σ3, so  p=(σ1+2σ3)/3. 
 

p=(σ + 2 σ ) /31 3

p-q Diagram

q=σ − σ1 3

 
Figure 16 
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Remark. 
The crossing of the envelope with the x-axes gives on the right  side hydrostatic pressure and on 
the left side hydrostatic tension. 
 
 
For rock a distinction is made for different type of failures, brittle, ductile or brittle-ductile or 
semi brittle. So use is made of different parts of the envelope of Mohr. 
The envelope for brittle failure is mainly determined by the peak stresses of the rock and can be 
determined by the Brazilian split test and a number of compression tests in a triaxial apparatus 
with different confining pressures. 
Depending on what kind of tests are done the literature make use of different Mohr’s envelopes 
for brittle failure. 
 
 
Envelopes for brittle failure 
1. Linear envelope tangent to the axial tension circle en uniaxial compression circle. 
 

 

 
Figure 17 

 
 

The general equation is  τ σ φ= +c tan  
From Figure 17 follows that  

τ
σ σ

φ

σ
σ σ σ σ

φ

=
−

=
+

−
−

1 3

1 3 1 3

2

2 2

cos

sin
 

Substituted in the general equation gives: 
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resulting in 
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This equation can be written as: 
 

σ σ π φ π φ
1 3

2

4 2
2

4 2
= +FHG

I
KJ + +FHG

I
KJtan tanc  

 
The general equation τ σ ϕ= +c tan  can be expressed in the compressive strength qu and the 
ratio between the compressive strength and the tensile strength m 
 

From Figure 17 follows that sinφ σ
σ

=
−
+

q
q

u t

u t

 

And according Figure 18 : cos tanφ
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σ

φ
σ
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=
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=
−q

q
q

q
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u t

u t

u t

en
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qu t-σ
q +u σ τ

quσt

φ

2  
Figure 18 
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Further more follows from Figure 17 :    
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This results with m  in  
qu

t
=

σ
τ σ φ= +c tan : 

 τ σ
q m q

m
mu u

= + ⋅
−1

2
1

2
     met m  

qu

t
=

σ
 

and in the σ1 - σ3 diagram 
σ σ1 31
q m

m
qu u

= +  

 

Giving a linear relation between 31 and
u uq q

σσ  

 
2. Linear envelope tangent to the Brazilian tension circle en unaxial compression circle. 
 
 

 
Figure 19 

 
 

In the same way one can derive: 
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q m

m
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+
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3. Parabolic envelope tangent to the unaxial tension circle en unaxial compression circle. 
 

 
Figure 20 

 
The equation of the envelope is:  τ σ σ σ2 2

1 1= + − +t md i b gt     

and 
σ σ σ1 3 31 1

1 1 2 1
−

=
+ −

+ − + +






q

m
m

m m
qu u

 

 
This type of envelope is used by Griffith. 
Griffith (Fairhurst, 1964) has derived a criterion for brittle failure. His hypothesis assumes 
that fracture occurs by rapid extension of sub-microscopic, pre-existing flaws, randomly 
distributed throughout the material. 
He defined the following criteria: 
• If 3 01 3σ σ+ ≥ ,  failure will occur when σ1=σt; the unaxial tensile strength. ( Remember; 

The condition 3σ1+σ3=0 is fulfilled in the Brazilian split test) 
 
• And when 3 01 3σ σ+ ≤ ,  failure will occur when b  σ σ σ σ σ1 3

2
1 38 0− + + =g b gt

In the τ-σ diagram the Mohr envelope for this criteria is the parabola: ( )2 4 t tτ σ σ σ= −   
From the second criteria one can derive that brittle failure will occurs when the ratio of 
uniaxial compressive strength over uniaxial tensile strength is 8 or higher. (put σ3=0, this 
gives σ1=-8 σt. So for the unconfined compressive strength test σ3=0 and σ1=qu=-8 σt)  
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Fairhurst gives in his article a empirical generalisation of Griffith criterion to overcome the 

critic of the constant ratio qu

tσ
=8. He stated : 

• If n n2 1 1 3− 0+ ≥b gσ σ , failure will occur when σ1=σt; the unaxial tensile strength 
• 0If n n2 1 1 3− + ≤b gσ σ , failure will occur when: 

σ σ
σ σ

1 3
2

1 3

2 1
−
+

= − − σ
σ

σ σ
2

1 3

2

1
2 1

2
1+

+
−F
HG
I
KJ −

RS|T|
UV|W|

L
N
MM

O
Q
PPg n

t
tb g bn n  

With n m= + 1b g  and m= qu

tσ
, the absolute value of the unaxial compressive strength 

over the unaxial tensile strength. 
 
In  the dredging technology the specific energy formulas are mostly based on the 
compressive strength of rock and are of the condition SPE= i uA g(f ) q⋅ ⋅ . 
In which A is a constant g(fi) a value depending on the fracture spacing index and qu the 
unconfined compressive strength. 
When this value is based on rocks with small m-values it will over estimate the SPE for rocks 
with large m-values. Of coarse if the SPE is based on high m-values it will under estimate the 
SPE for small m-values. 

 
 
 

4. The brittle failure envelope according Hoek & Brown 
 Hoek & Brown have developed from experiments on rocks with different tension-

compression ratio’s a relation between the main stresses for brittle failure. 
 

σ σ σ1 3 3 1
−

= +
q

m
qu u

 

 
This equations gives parabola in the σ1-σ3 diagram. 
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Figure 21 

 In the τ−σ diagram the equation is given in parameter form: 
 

τ σ
σq

m
q

m

m m
q

u u

u

= + ⋅ −
+ +



















1
2

1 1
4 1

3

3

2

 

σ σ σ
σq q

m
q

m

m m
q

u u u

u

= + + −
+ +



















3 3

3

1
2

1 1
4 1

 

 
 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

-0.5 0 0.5 1 1.5

Sigma/qu

Ta
u/

qu Tau_m=32
Tau_m=16
Tau_m=8
Tau_m=4
Mohr

 
Figure 22 
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Because this envelope is based on a large number of tests, it is preferable above the other 
equations. 
An estimation about the m-value for common rocks can be found in the table below. 
(Hoek et al. 1995) 

Table 4 

 
 

 
The envelope for ductile failure.  
Mogi (1966) found in his research on certain types of rock a linear relation between the main 
stresses for transition between brittle and ductile. For sandstone σ σ1 34 3= .  and for limestone 
σ σ1 4 2= . 3 Those values can only be an indication, because other researches found, especially, 

for limestone higher values for the transition between brittle and ductile (Verhoef 
σ
σ

1

3

6≥  

As stated earlier the transition between brittle and ductile is assumed to be a function of the ratio 
UCS over UTS. 

If it is assumed that for brittle failure the theory of Hoek & Brown is valid 
σ σ σ1 3 3 1

−
= +

q
m

qu u
 

together with Mogi’s theory σ ασ1 = 3 , then the confined strength can be calculated for the 
intersection of the lines. 
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Indeed the confined pressure at the 
transition between brittle and 
ductile is only depended on the 
ratio UCS over UTS when the 
theory of Mogi is valid. The results 
are presented in the graph below 
for different values of α 
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Figure 23 

 

 
Figure 24 

 
The slope of the envelope in the ductile area is determined either the cutting process is drained or 
undrained. In drained conditions pore water flow is possible due to pressure gradients. In 
undrained conditions pore water flow is not possible and the pore water pressure will affect the 
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stress state in the pores. Which condition occurs depends on the speed of failure and the 
permeability. 
Under drained conditions the slope of the envelope can be estimated from the slope from the 
brittle envelope at the transition point of brittle – ductile. Undrained cutting of rock can be 
compared with cutting of clay and metal. In this case the slope of the envelope φ=0. 
Van Kesteren (1995) stated that pore water pressures must play a role in the formation of the 
crushed zone. He distinguished to limiting conditions; drained and undrained. In the drained 
situation a pore water flow is possible due to the pressure gradient in the pores without hindering 
the volume change behaviour due to the change in the stress state. In the undrained state 
migration of pore water is virtually impossible. No volume change will occur in the material of 
the intact rock that becomes a part of the crushed zone. In the crushed zone the total isotropic 
total stress is very high with the result that the pore pressure is very high too  
 
 
As showed above the transition between brittle and ductile failure is mainly determined by the 

ratio qu

tσ
. So stated Gehring (1987) that ductile failure will occur when the ratio qu

tσ
 < 9 and 

brittle failure when qu

tσ
 > 15, while 9< qu

tσ
<15 the rock fails in the transition between brittle and 

ductile. These values are in agreement with the theory of Fairhurst (Fairhurst, 1964)  
 
 
Influence of water depth   
Weak brittle rocks have tensile strength of 0.2 to 5 Mpa. The maximum pressure differences that 
can occur in the cracks when cavitation occurs depends on the water depth and is in the order of 
0.2 to 0.4 Mpa for 10 to 30 m water depth.  
Therefore the influence of the water depth on the crack propagation is limited.  
In the case of very thin fracture it might be possible that due to the capillary action of the pore 
water cavitation does not occur, which will increase the cutting forces.   
 
 
The influence of discontinuities 
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Figure 25 

 
The presents of fracture influence the dredgebility of rock strongly. If the fracture frequency is 
that high that the block size is in the order of the maximum cutting depth of the cutting tools, the 
rock strength plays a less important role for the production than when the fracture frequency 
results in block sizes in the size of the cutting tool.  
When drilling ores in rock the driller determines the RQD-value of the rock. This is the 
percentage of drill samples with a length of 10 cm or more per meter core length. The RQD value 
is only a rough estimate of the fracture frequency. 
 
Besides the fracture frequency the decomposition or weathering of the rock is a important 
parameter for the dredgebility. 
The decomposition is expressed in grades. 

Table 5 

Grade I fresh or intact rock (Intact gesteente)  
Grade II slightly decomposed (Licht verweerd) 
Grade III Moderately decomposed  (Matig verweerd) 
Grade IV Highly decomposed (Sterk verweerd) 
Grade V Completely decomposed (Volledig verweerd) 
Grade VI Residual soil Residue (gesteente) 

 
The difference between completely decomposed and residual soil is the original rock structure is 
present in the first and not in the last. 
Except the production the cutting tool consumption per m3 dredged soils depends on these 
factures too. 
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Simple cutting models 
For the cutting models discussed in this chapter, the following assumptions are made: 
• The width of the cuttin tools is much larger than the depth of the (B>>d), so 2D cutting 

theories. 
• The state of the plane stress is valid 
 
I. Model of Evans 
 
Evans suggested a model on basis of observations on 
coal breakage by wedges.  
In this theory it is assumed that: 
¾ a force R is acting under an angle φ with the 

normal to the surface ac of the wedge. 
¾ A Resultant force T of the tensile forces acting at 

right angles on the arc cd 
¾ A third force S is required to maintain 

equilibrium in the buttock. 
The action of the wedge tends to split the rock and 
does rotate it about point D. It is therefore assumed 
that the force S acts through D.  
Along the fracture it is assumed that a state of plain 
strain is working and the equilibrium is considered 
per unit of width of the rock . 
The force due to the tensile strength of the rock is: 
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Figure 26 
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−
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cos sin2  

 
where rdω is an element of the arc CD making an angle ω with the symmetry - axe of the arc. 
Let d be the depth of the cut and assume that the penetration of the edge may be neglected in 
comparison with d. This means that the force R is acting near point C.  
Taking moments about D gives 

( ) αϕθα
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sincos
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TrdR =++  

 

From the geometric relation follows: 
α

α
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sin dr =  hence ( )ϕθαα
σ

++
=
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dR t . 

The horizontal component of R is Rsin(θ+φ) en due to the symmetry of the forces acting on the 
wedge the total cutting force is: 
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=+=
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The normal force (^ on cutting force) is per side: 
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The assumption is made that α is determined in such that Fc is minimal, i.e. that 
dF
d

c

α
= 0 giving:
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hense:  

The total cutting F
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and 

The normal force ^ Fc for one side ( ) ( )
( )ϕθ

ϕθσ
ϕθ

+−
+

=+=
sin1
cos

cos t
n

d
RF  but  the total normal force 

is zero due to the symmetry 
 
If the friction between the rock an d R is zero φ=0 and the cutting force reduces to: 

F
d

c
t=

−
2
1

σ θ
θ

sin
sin
b g
b g  and Fn=0 

 
N.B. 

All forces are per unit of width! 
 

 
The standard tooth 

e

j

q

d

Cutting by an asymmetric wedge

Rq

α

T
R

S

R

R

Fc

d

r

C

D

O

T

α

2 θ

A

r

α
θ

j

jd

h

Figure 27 
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α
For a standard tooth one can derive with the aid of Figure 27 : 
h r and d r= ⋅ − =2 2 2sin sin sinα α εb g  
or 

d h=
−

sin
sin

α
α εb g  

 

F
d h

c
t t=

+
− +

=
−

⋅
+

− +
2
1

2
1

σ θ ϕ
θ ϕ

σ α
α ε

θ ϕ
θ ϕ

sin
sin

sin
sin

sin
sin

b g
b g b g

b g
b g  

The horizontal component will be: 

F
h

c h
t=

−
⋅

+
− +

2
1

σ α
α ε

θ ϕ
θ ϕ

ε
sin

sin
sin

sin
cosb g

b g
b g  

and the vertical component: 

F
h

c v
t=

−
⋅

+
− +

2
1

σ α
α ε

θ ϕ
θ ϕ

ε
sin

sin
sin

sin
sinb g

b g
b g  

 
The above equation is only valid when the path of the cutting tool has the same direction as the 
fracture. This means that if the maximum thickness of the chip is almost the cutting depth that 
this expression can be used. 
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II. Model of Merchant 
 
 
This model is original developed 
for cutting elastic-plastic metals 
and assumes failure to occur in 
shear. The depth of cut is small 
compared with the width of the 
cutting tool, so a condition of plane 
strain can be assumed. 
The model is semi empirical. 
Merchant assumes that shear takes 
place over a line from the tip of the 
tool to the surface. However this 
model can be used too when plastic 
yield occurs only this line. In that 
case it is assumed that γ is small or 
zero. Experiments have shown that 
this theory is applicable for some 
kinds of coal and wet chalk. 

τ τ σ γ= +0 tan

π
φ

2
−

dQ
P

F
s

t0

t

ss

t

0 tan

a
f

q

Merchant’s  theory

q
a

φ
2

−

q+f-a

Figure 28 

 
The model assumes a cohesion τ0 and no adhesion and is therefore a particular situation of the 
theory of Dr.ir S.A. Miedema. 
 
Equilibrium of forces gives: 

σ θ θ φ α= +
sin sin

d
F b g−  

and  

τ θ θ φ α= +
sin cos

d
F b g−  

At the moment of failure: 
τ τ σ γ= +0 tan  

Hence: 
 

τ τ σ γ τ θ θ φ α γ θ θ φ α= + = + + − = + −0 0tan sin sin tan sin cos
d

F
d

Fb g b g  
or 

  τ
θ

θ φ α γ θ φ α γ
γ0

d F
sin

cos cos sin sin
cos

=
+ − − + −L

NM
O
QP

b g b g
 

It is assumed the angle θ can be determined by minimising the force F: so 
dF
dθ

= 0. 

This results in 

( )
dF
d

d
d

d
θ θ θ

τ γ
θ φ α γ

=
+ − +







sin

cos
cos

0  
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( ) ( )

( )[ ]
( )

( )[ ]
dF
d

d d
θ

τ γ
θ θ φ α γ θ θ φ α γ

θ θ φ α γ
τ γ

θ φ α γ

θ θ φ α γ
=

+ − + − + − +

+ − +
=

+ − +

+ − +
0 2 2 0 2 2

2
cos

cos cos sin sin

sin cos
cos

cos

sin cos
 

 
dF
dθ

= 0 for:    ( )cos 2 0θ φ α γ+ − + =

 

( )2
2 4

1
2

θ φ α γ
π

θ
π

γ φ α+ − + = ⇒ = − + −  

 
The force per unit of width is: 
 

( ) ( )
F

d
=

− + −








⋅
+ + −







sin

cos

cos
π

γ φ α

τ γ
π

γ φ α
4

1
2 4

1
2

0  

Further more 

( ) ( ) ( )

( ) ( )

sin sin cos cos sin

cos sin

π
γ φ α

π
γ φ α

π
γ φ α

γ φ α γ φ α

4
1
2 4

1
2 4

1
2

1
2

2
1
2

1
2

− + −






 = + −









− + −








= + −








− + −














 

 
and 
: 

( ) ( ) ( )

( ) ( )

cos cos cos sin sin

cos sin

π
γ φ α

π
γ φ α

π
γ φ α

γ φ α γ φ α

4
1
2 4

1
2 4

1
2

1
2

2
1
2

1
2

− + −






 = + −









− + −








= + −








− + −














 

 
Hence: 
 

( ) ( )
( )F

d d
=

⋅

+ −








− + −














=
⋅

− + −
2

1
2

1
2

2
1

0
2

0τ γ

γ φ α γ φ α

τ γ
γ φ α

cos

cos sin

cos
sin

 

 
The horizontal cutting force is: 

( )
( )P

d
=

⋅ −
− + −

2
1

0τ γ φ α
γ φ α

cos cos
sin

 

en normal force: 
( )

( )Q
d

=
⋅ −

− + −
2

1
0τ γ φ α

γ φ α
cos sin

sin
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The ratio between these forces is: P
Q

= −cot φ αb g  

The relation (1
4 2

)πθ γ φ α= − + −  determines if the failure is on shear or on tensile 

The normal pressureσ θ θ φ α= +
sin sin

d
F b − g becomes ( )sin 1sin

4 2
F

d
θ πσ γ φ α = − − +  

  

s<0 if ( )1 0
4 2
π γ φ α− − + <  
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Figure 29 

 
Failure angle θ <0 for large rake angles a, and large friction f and small shear angles g 
 
Example 
Given 
• For brittle failure use is made of the envelope according Hoek  & Brown. 
• The rock is a limestone with a ductility number m=4 and the transition between brittle and 

ductile is determined by the equation of  Mogi σ σ1 34 2= .  
• Rake angle α=30°, friction angle between tool and rock  φ=72° 
• Cutting depth d=0.1 m 
 
Solving 
• Determine the cross point between the envelope of Hoek & Brown with equation of  Mogi, 

results in σ/qu=1.144 en τ/qu=0.843 
• Determine Mohr circle for that point. Centre at σ/qu=1.466 and radius R/qu=0.902 
• Determine the slope of the envelope tan(γ)=0.3817 
• Determine τ0 (τ0/qu=0.406) 
• Calculate the forces F, P en Q and the stresses σ en τ with the formula of Merchant. Results: 

F/qu=0.691, P/qu=0.513, Q/qu=0.462, σ/qu=1.335 en τ/qu=0.9156 
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For small values of φ the rock fails brittle. A  Mogi equation with a larger tangent  results in a 
plastic cutting process for small values of  φ. With high φ-values a wear flat can be simulated. 
 

For σ1=6.5σ3 and φ π
=

3
   gives the following Figure 30 
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Figure 30 

 
 
Model van Nishumatsu 
 

τ τ σ γ= +0 tanp p d n

= −F
HG

I
KJ0 sinθ

λ

dQ
P

F
s

t0

t

ss

t

0 tan

a
f

q

Nishimatsu’s  theory

A

B

p p d n

= −HG KJ0 sinθ
λ

l is the distance from A to a point along AB

 
Figure 31 

Nishimatsu presented a theory for the cutting 
of rock in which he assumes that the resulting 
stress p acting the failure line AB is 
proportional to the nth power of the distance 
from surface point B and is constant in 
magnitude and direction. So: 

p p
d n

= −






0 sinθ

λ  

The exponent n is called the stress distribution 
factor 
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Stress distribution along the failure plane
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Figure 32 

 
The integral of the resulting stress have to be in equilibrium with the force F. 
 

F p
d

d
n

o

d

= −






∫0 sin

sin

θ
λ λ

θ

 

 
Or 

( )
( )

( )

F
p

n
d

of p n
d

F
n n

=
+

−






 = + −









+ − +
0

1

0

1

1
1

sin sinθ
λ

θ
λ  

Substituting this in  equation: 

p p
d n

= −






0 sinθ

λ  

results in 

( )p n
d

F= + −






1

sinθ
λ  

 
The maximum stresses σ and τ occurs  for λ=0 and are: 
 

σ
θ

λ θ φ= + − αF
HG

I
KJ + −n d F1b g b

sin
sin g  

 

τ
θ

λ θ φ= + − αF
HG

I
KJ + −n d F1b g b

sin
cos g  

 
The general solution is: 
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( )F
n

d
=

+
⋅

⋅
− + −

2
1

2
1

0τ γ
γ φ α

cos
sin

 

 
( )

( )P
n

d
=

+
⋅ −

− + −
2

1 1
0τ γ φ α

γ φ α
cos cos
sin

 

 
( )

( )Q
n

d
=

+
⋅ −

− + −
2

1 1
0τ γ φ α

γ φ α
cos sin
sin

 

 
For n=0 this results in Merchant equation. 
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Figure 33 

 
 


Prof.ir. W.J. Vlasblom  Page 34 of 41                 March 2003 
 



Dredging Engineering Section        Wb 3413 Cutting of rock 
 

 
 
Specific energy of sharp and blunt cutting tools 
 
Summarising the cutting force per unit width of the fore mentioned cutting theories are: 

 
Table 6 

Evans ( )
( )

2 sin
1 sin

t
c

d
F

σ θ φ
θ φ

+
=

− +
 

Merchant ( )
( )

02 cos cos
1 sinc

d
F

τ γ φ α
γ φ α

⋅ −
=

− + −
 

Nishumatsu ( )
( )

0 cos cos2
1 1 sinc

d
F

n
τ γ φ α

γ φ α
⋅ −

=
+ − + −

 

  
The specific energy SPE is the energy required to cut 1 m3 rock, which is equal to the power to 
cut 1 m3/sec.  
The power per unit width  with vc the seed of the cutting tool. The production per unit 

width is so 

cP F v= ⋅ c

cq d v= ⋅ c c

c

F v
d v

⋅
=

⋅
cFSPE

d
= , which is according the fore mentioned theories  

 
Table 7 

Evans ( )
( )

2 sin
1 sin

tSPE
σ θ φ

θ φ
+

=
− +

 

Merchant ( )
( )

2cos cos
1 sin

SPE
γ φ α

γ φ α
−

=
− + −

 

Nishumatsu ( )
( )

0 cos cos2
1 1 sin

SPE
n

τ γ φ α
γ φ α

−
=

+ − + −
 

 
These theories are applicable for intact rock and sharp cutting tools. 
 
From different experiments it appears that cutting force and the normal force can be written as: 
 

P a b d
Q a b d

c c

n n

= +
= +

 

 
According Nishimatsu first terms (a en ac n ) are caused by the existence of the crushed zone. The 
terms b en bc n  correspond with the equation of P en Q mention in the simple models. 
Other investigators (Adachi, 1996) state that the terms a en ac n  are a result of the weir of the 
cutting tool and state for sharp tools  a ac n= = 0 
Both effects are not contradictory to each other. 
 
As stated earlier: ( ) ( )Q P P= − = = −tan tanφ α ζ ζ φ αmet  
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d

If the area cutted is equal to , then for sharp tools the following results are valid:  A wd=
P b wd
Q b wd b w

s c

s n c

=
= = ⋅ζ

  

 
 

 
Figure 34 

 
The specific energy of the cutting force and normal force for sharp tools become: 
 

with

s c
c c

s c
n c

n

c

b wdPv PSPE b
wdv wd wd

b wdQv QSPE b
wdv wd wd

b
b

ζ ζ

ζ

= = = =

⋅
= = = = ⋅

=

 

Or:   
SPE
SPE

Q
P

n
s

c
s = = ζ  is constant. This equation can be written as: 

SPE SPEc
s

n
s=

1
ζ

 

Adachi (1996) reports that, according that research from researcher in the field of cutting tools 
for the oil-industry, there is a clear experimental evidence that the value ζ depends on the type of 
cutting tool and is independent of the rock material. 

 
For blunt tools this becomes: 
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SPE
P

wd
a b wd

wd
a
wd

b

SPE
Q

wd
a b wd

wd
a
wd

b
a
wd

b

c
b c c c

c

n
b n n n

n
n

c

= =
+

= +

= =
+

= + = + ⋅ζ
 

 

In which the factors 
a
wd

en
a
wd

c n do have the dimension of specific energy  [N/m²] 

The second equation can be written as: 
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resulting in 
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with 
  

The ratio between the forces P en Q is: 
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which is not constant, besides  SPE
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When ac en an are determined by friction a
a

c

n

= =µ 0 6. . Furthermore for sharp tools ζ<0.66 and is 

b wd
a

c

c

 > 1; fulfilling the condition  SPE
SPEc

b
0 1=<<  
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Practical applications of the cutting theories 
 
During cutting, a single cutting tool experiences a 
force F, having three orthogonal components:  

• in the direction parallel to the soil surface, 
the Cutting Force C  

• perpendicular to the surface the Normal 
Force N  

• a sideways or Lateral Force L (Fig. 34)  
The Lateral Forcer L is mainly caused by the 
interaction of neighbouring cuts. This force may 
be  
neglected for cylindrical cutter heads with 
staggered teeth on the cutter head blades 

F

LC

N

Figure 35 
 
Cutter heads, however, have very seldom a cylindrical shape but rather have profiles as shown in 
Figure 36 
This profile is determined by a plane through the 
surface of revolution formed by the tooth points. 
The cutter teeth are normally positioned in such a 
way that the projection of it's centre line is normal 
to the profile. The Normal Force N has two 
orthogonal components Ncosκ and Nsinκ, 
respectively perpendicular and parallel with the 
cutter shaft. 
 

k
Nsink

Ncosk

N

 
Figure 36 

In a plane perpendicular to the axe of rotation, a 
tooth on a cutter head experiences a force F 
having 
two components: in the direction parallel to the 
soil surface, the Cutting Force C, and 
perpendicular to the surface, the Normal Force, 
Ncosκ (Figure 36). In the direction perpendicular 
this plane the tooth is subjected to the force Nsinκ 
 

q
-j

Cutting Force C

Tooth

Radius r

Path of Tooth

Center
of
Cutter

Normal Force N

R

cosk

Figure 37 
 
Both forces in can be decomposed either in (Fig. 36): 

Prof.ir. W.J. Vlasblom  Page 38 of 41                 March 2003 
 



Dredging Engineering Section        Wb 3413 Cutting of rock 
 

 
 

)
)

• Horizontal Force H and a Vertical Force V, or in 
• cutter head related co-ordinates; tangential Force T and the radial force R 
•  

From Figure 37 follows: 
( ) (
( ) (

sin cos cos

cos cos sin
cos cos sin
sin cos cos

T C N

R C N
H C N
V C N

θ ϕ κ θ ϕ

θ ϕ κ θ
θ κ θ

ϕ

θ κ θ

= − − −

= − −

= −
= −

−  

 
It was already stated that the axial force is 

 sinA N κ=

q
-j

Vertical
Force V q+j

Tangential Force T

Tooth Horizontal Force H

Radial Force R

 
Figure 38 

Cutting Force C

Normal Force Ncosk

 
Using the theory as discussed earlier for a single cutting tools the Cutting Force C and the N 
Normal N are proportional with the depth of cut to: C a andc c n nb d N a b d= + = +  . 
 
Substitution of the equation for the Normal Force in the one for the Cutting Force results in: 

0which can be written asc c c
c n

n n n

b b bC a a N C C N
b b b

= − + = +  

When the last expression is substituted in the equation for T, R, H and V results in: 

( ) ( ) ( )

( ) ( ) ( )

0

0

0

0

sin sin cos cos

cos cos cos sin

cos cos cos sin

sin sin cos cos

c
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c

n

c
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c

n

bT C N
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bR C N
b

bH C N
b

bV C N
b

θ ϕ θ ϕ κ θ ϕ

θ ϕ θ ϕ κ θ

θ θ κ θ

θ θ κ θ

ϕ

 
= − + − − − 

 
 

= − + − + − 
 

 
= + + 

 
 

= + − 
 

 

All forces are a function of the parameters C0, N, θ, φ, and κ of which θ, φ, and κ are determined 
by the tooth position during cutting. 
 
The angles θ and φ depend on the cutter head speed ω and the swing speed vs according to: 

( ) (cos and 1 sinc cx r m y r )ϕ ϕ ϕ= ⋅ + = ⋅ +  
xc=x-coordinate cutting tool point in m. 
yc= y-coordinate cutting tool point in m 
r=radius of cutting tool point to cutting axes in m 
while 

svm and t
r

ϕ ω
ω

= =  with t is the time in seconds 
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By differentiating of xc and yc gives 

cos tan
sin

c c

c c

dy dy d
dx d dx m

ϕ ϕ θ
ϕ ϕ

= = =
−

 and according to Figure 39  

Or 
( )arccos sinmϕ θ θ= −  

 m-sinj

co
sj

1+m -2msin
2

j

q

Figure 39 
 
According to Figure 40 the depth of cut  

sin cossvd
p

θ κ
ω

=  

with: 
vs= swing speed of the cutter in m/s 
ω=the angular speed of the cutter in radians/s
p=the number of blades on the cutter 
κ= profile angle in radians 

S

-j
q

k

S

d

Tooth path

Tooth path

Radius r

Figure 40 

 
Substituting the equation for the depth din the equation for the Normal Force results 

in 

n nN a b d= +

sin coss
n n

vN a b
p

θ κ
ω

= +  

If the coefficients C0, ac, an, bc and bn are known all forces can be calculated as function of the 
position of the cutting tool point.
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