Hardware Modeling

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed Giovanni De Micheli

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Delft University of Technology

© Giovanni De Micheli – All rights reserved

Module 1

- Objective
 - Electronic systems and their requirements
 - Integrated circuits
 - Design styles

Electronic systems

• Systems on chip are everywhere

Technology advances enable increasingly more complex designs

- Challenges:
 - Ride the technology wave
 - Cope with design complexity

Projecting the future

Trends

Figure SYSD5 SOC Consumer Portable Design Complexity Trends

Integrated circuits

- Systems on Chip (SoC)
 - Multi-processing SoCs (MPSoCs)
- Systems in a package (SiP)
- Silicon technology (CMOS)
 - Down scaling of feature sizes
 - Nanotechnologies on the horizon ...
- Different design styles
 - To address performance and cost issues

Integrated Circuit Design Styles

Transition to Automation and Regular Structures

Multi Core designs

TUDelft

21

∎ **∪** Delft

Module 2

- Objective
 - Electronic design automation
 - Synthesis and optimization
 - Multi-criteria optimization

Computer-aided design

- Enabling design methodology
 - Support large scale system design
 - Design optimization, trade-offs
 - Reduce design time and time to market

micro-Electronic System Level design

- Conceptualization and modeling
 - Hardware description languages
- Synthesis and optimization
 - Model refinement
- Validation
 - Check for correctness

Synthesis history

- Few logic synthesis algorithms and tools existed in the 70's
- Link to place and route for automatic design
 - Innovative methods at IBM, Bell Labs, Berkeley, Stanford
- First prototype synthesis tools in the early 80s
 - YLE [Brayton], MIS [Berkeley], Espresso
- First logic synthesis companies in the late 80's
 - Synopsys and others
- Today: Cadence, Mentor, Forte Design, Xilinx Vivado HLS

Modeling abstractions

- System level
 - Untimed specification
- Architectural level
 - Operations implemented by resources
- Logic level
 - Logic functions implemented by gates
- Geometrical level
 - Transistors and wires

ARCHITECTURAL LEVEL	
PC = PC + 1; FETCH (PC); DECODE (INST);	

System synthesis

- Architectural-level synthesis
 - Determine macroscopic structure
 - Interconnection of major building blocks
- Logic-level synthesis
 - Determine the microscopic structure
 - Interconnection of logic gates
- Physical design
 - Geometrical-level synthesis
 - Determine positions and connections

Synthesis and optimization

- Synthesis with no optimization has no value
- Optimization is the means to outperform manual design
- Objectives
 - Performance
 - Frequency, latency, throughput
 - Energy consumption
 - Area (yield and packaging cost)
 - Testability, dependability, ...
- Optimization has multiple objectives
 - Trade off

Pareto points

- Multi-criteria optimization
- Multiple objectives
- Pareto point:
 - A point of the design space is a Pareto point if there is no other point with:
 - At least one inferior objectives
 - All other objectives inferior or equal

Combinational circuit optimization

Optimization trade-off in sequential

Example: Differential equation solver

```
diffeq {
   read ( x, y, u, dx, a ) ;
   repeat {
       xI = x + dx;
       ul = u - (3 \cdot x \cdot u \cdot dx) - (3 \cdot y \cdot dx);
       yl = y + u \cdot dx;
       c = x < a;
       x = xl; u = ul; y = yl;
   until ( c );
write (y)
```


Example

35

*f***U**Delft

Summary

- Computer-aided IC design methodology:
 - Capture design by HDL models
 - Synthesize more detailed abstractions
 - Optimize critical parameters
- Computer-aided system design methodology:
 - Support for Hardware/Software co-design
 - Synthesis of hardware, software and interfaces
- Evolving scientific discipline

