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Module1

• Objectives
• Motivation
• Compiling language models into abstract models
• Behavioral-level optimization and program-level 

transformations
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Models and flows
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Architectural-level synthesis motivation

• Raise input abstraction level
• Reduce specification of details
• Extend designer base
• Self-documenting design specifications
• Ease modifications and extensions

• Reduce design time
• Explore and optimize macroscopic structure:

• Series/parallel execution of operations
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Architectural-level synthesis

• Translate HDL models into sequencing graphs
• Behavioral-level optimization:

• Optimize abstract models independently from the 
implementation parameters

• Architectural synthesis and optimization:
• Create macroscopic structure:

• Data-path and control-unit
• Consider area and delay information of the 

implementation
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Compilation and behavioral 
optimization
• Software compilation:

• Compile program into intermediate form
• Optimize intermediate form
• Generate target code for an architecture

• Hardware compilation:
• Compile HDL model into sequencing graph
• Optimize sequencing graph
• Generate gate-level interconnection for a cell 

library
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Hardware and software compilation
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Compilation

• Front-end:
• Lexical and syntax analysis
• Parse-tree generation
• Macro-expansion
• Expansion of meta-variables

• Semantic analysis:
• Data-flow and control-flow analysis
• Type checking
• Resolve arithmetic and relational operators
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Parse tree example

a = p + q * r

assignment
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Behavioral-level optimization

• Semantic-preserving transformations aiming at 
simplifying the model

• Applied to parse-trees or during their generation
• Taxonomy:

• Data-flow based transformations
• Control-flow based transformations
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Data-flow based transformations

• Tree-height reduction
• Constant and variable propagation
• Common sub-expression elimination
• Dead-code elimination
• Operator-strength reduction
• Code motion
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Tree-height reduction

• Applied to arithmetic expressions
• Goal:

• Split into two-operand expressions to exploit 
hardware parallelism at best

• Techniques:
• Balance the expression tree
• Exploit commutativity, associativity and distributivity
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Example of tree-height reduction using 
commutativity and associativity

+

+

*

*+

+

a ab bc cd d

x = a + b * c + d → x = (a + d) + b * c



18

Example of tree-height reduction using 
distributivity

*

+

*

*

+

* *

* *

a ab bc cd de ea

x = a * (b * c * d + e) → x = a * b * c * d + a * e;
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Examples of propagation

• Constant propagation

a = 0;  b = a + 1;  c = 2 * b;

a = 0;  b = 1;  c = 2;
• Variable propagation:

a = x;  b = a + 1;  c = 2 * x;

a = x;  b = x + 1;  c = 2 * x; 
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Sub-expression elimination

• Logic expressions:
• Performed by logic optimization
• Kernel-based methods

• Arithmetic expressions:
• Search isomorphic patterns in the parse trees
• Example:

a = x + y;  b = a + 1;  c = x + y

a = x + y;  b = a + 1;  c = a;



21

Examples of other transformations

• Dead-code elimination:

a = x; b = x + 1; c = 2 * x;

a = x;   can be removed if not referenced
• Operator-strength reduction:

a = x2,  b = 3 * x;

a = x * x;  t = x << 1; b = x + t;
• Code motion:

for ( i = 1; i < a * b) {   }

t = a * b;   for ( i = 1; i < t) {   }
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Control-flow based transformations

• Model expansion
• Conditional expansion
• Loop expansion
• Block-level transformations
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Model expansion

• Expand subroutine
• Flatten hierarchy
• Expand scope of other optimization techniques

• Problematic when model is called more than once
• Example:

x = a + b;  y = a * b; z = foo (x , y);
foo(p,q) { t=q - p; return (t); }
By expanding foo:
x = a + b; y = a*b; z = y – x;
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Conditional expansion

• Transform conditional into parallel execution with test 
at the end

• Useful when test depends on late signals
• May preclude hardware sharing
• Always useful for logic expressions
• Example:

y = ab; if (a)  {x = b + d; } else { x = bd; }
• Can be expanded to: x = a (b + d) + a’bd
• And simplified as: y = ab; x = y + d ( a + b )
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Loop expansion

• Applicable to loops with data-independent exit 
conditions

• Useful to expand scope of other optimization 
techniques

• Problematic when loop has many iterations
• Example:

 x = 0;  for ( i = 1; i < 3; i++ )  { x = x + i; }
• Expanded to:

 x = 0;  x = x + 1;  x = x + 2;  x = x + 3;
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Module2

• Objectives
• Architectural optimization
• Scheduling, resource sharing, estimation
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Architectural synthesis and 
optimization

• Synthesize macroscopic structure in terms of building-
blocks

• Explore area/performance trade-off:
• maximize performance implementations subject to 

area constraints
• minimize area implementations subject to 

performance constraints
• Determine an optimal implementation
• Create logic model for data-path and control
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Design space and objectives

• Design space:
• Set of all feasible implementations

• Implementation parameters:
• Area
• Performance:

• Cycle-time
• Latency
• Throughput (for pipelined implementations)

• Power consumption
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Design evaluation space
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Hardware modeling

• Circuit behavior:
• Sequencing graphs

• Building blocks:
• Resources

• Constraints:
• Timing and resource usage
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Resources

• Functional resources:
• Perform operations on data
• Example: arithmetic and logic blocks

• Storage resources:
• Store data
• Example: memory and registers

• Interface resources:
• Example: buses and ports
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Synthesis in the temporal domain

• Scheduling:
• Associate a start-time with each operation
• Determine latency and parallelism of the 

implementation
• Scheduled sequencing graph:

• Sequencing graph with start-time annotation
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Example
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Synthesis in the spatial domain

• Binding: 
• Associate a resource with each operation with the 

same type
• Determine the area of the implementation

• Sharing:
• Bind a resource to more than one operation
• Operations must not execute concurrently

• Bound sequencing graph:
• Sequencing graph with resource annotation
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Example
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Estimation
• Resource-dominated circuits.

• Area = sum of the area of the resources bound to the 
operations

• Determined by binding
• Latency = start time of the sink operation (minus start 

time of the source operation)
• Determined by scheduling

• Non resource-dominated circuits

• Area also affected by:
• Registers, steering logic, wiring and control

• Cycle-time also affected by:
• Steering logic, wiring and (possibly) control
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Approaches to architectural 
optimization

• Multiple-criteria optimization problem:
• Area, latency, cycle-time

• Determine Pareto optimal points:
• Implementations such that no other has all 

parameters with inferior values
• Draw trade-off curves:

• Discontinuous and highly nonlinear
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Area-latency trade-off

• Rationale:
• Cycle-time dictated by system constraints

• Resource-dominated circuits:
• Area is determined by resource usage

• Approaches:
• Schedule for minimum latency under 

resource usage constraints
• Schedule for minimum resource usage under 

latency constraints
• for varying cycle-time constraints
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Area/latency trade-off
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Summary

• Behavioral optimization:
• Create abstract models from HDL models
• Optimize models without considering 

implementation parameters
• Architectural synthesis and optimization

• Consider resource parameters
• Multiple-criteria optimization problem:

• area, latency, cycle-time
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