
Architectural-Level SynthesisArchitectural-Level Synthesis

This presentation can be used for non-commercial purposes as long as this note and

 the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

2

Module1

• Objectives
• Motivation
• Compiling language models into abstract models
• Behavioral-level optimization and program-level

transformations

4

Models and flows

LANGUAGE MODELS ABSTRACT MODELS

HDL

HDL

HDL

compilation

compilation

translation

Operations and dependencies
(Data-flow & sequencing

graphs)

FSMs – Logic functions
(State-diagrams & logic

networks)

Interconnected logic blocks
(Logic networks)

B
E

H
A

V
IO

R
A

L
 V

IE
W

S
T

R
U

C
T

U
R

A
L

 V
IE

W

A
R

C
H

IT
E

C
T

U
R

A
L

 L
E

V
E

L
L

O
G

IC
 L

E
V

E
L

Physical design
(mask layout)

Verilog

VHDL

SystemC

Esterel

Statecharts

Schematics

GDS2

Matlab

C/C++

SystemC

8

Architectural-level synthesis motivation

• Raise input abstraction level
• Reduce specification of details
• Extend designer base
• Self-documenting design specifications
• Ease modifications and extensions

• Reduce design time
• Explore and optimize macroscopic structure:

• Series/parallel execution of operations

9

Architectural-level synthesis

• Translate HDL models into sequencing graphs
• Behavioral-level optimization:

• Optimize abstract models independently from the
implementation parameters

• Architectural synthesis and optimization:
• Create macroscopic structure:

• Data-path and control-unit
• Consider area and delay information of the

implementation

10

Compilation and behavioral
optimization
• Software compilation:

• Compile program into intermediate form
• Optimize intermediate form
• Generate target code for an architecture

• Hardware compilation:
• Compile HDL model into sequencing graph
• Optimize sequencing graph
• Generate gate-level interconnection for a cell

library

11

Hardware and software compilation

lex parse optimization codegen

front-end Intermediate form back-end

lex parse
behavioral

optimization

front-end Intermediate form back-end

a-synthesis

l-synthesis

l-binding

12

Compilation

• Front-end:
• Lexical and syntax analysis
• Parse-tree generation
• Macro-expansion
• Expansion of meta-variables

• Semantic analysis:
• Data-flow and control-flow analysis
• Type checking
• Resolve arithmetic and relational operators

13

Parse tree example

a = p + q * r

assignment

identifier expression

expressionidentifier

identifier identifier

a

=

+

*p

q r

14

Behavioral-level optimization

• Semantic-preserving transformations aiming at
simplifying the model

• Applied to parse-trees or during their generation
• Taxonomy:

• Data-flow based transformations
• Control-flow based transformations

15

Data-flow based transformations

• Tree-height reduction
• Constant and variable propagation
• Common sub-expression elimination
• Dead-code elimination
• Operator-strength reduction
• Code motion

16

Tree-height reduction

• Applied to arithmetic expressions
• Goal:

• Split into two-operand expressions to exploit
hardware parallelism at best

• Techniques:
• Balance the expression tree
• Exploit commutativity, associativity and distributivity

17

Example of tree-height reduction using
commutativity and associativity

+

+

*

*+

+

a ab bc cd d

x = a + b * c + d → x = (a + d) + b * c

18

Example of tree-height reduction using
distributivity

*

+

*

*

+

* *

* *

a ab bc cd de ea

x = a * (b * c * d + e) → x = a * b * c * d + a * e;

19

Examples of propagation

• Constant propagation

a = 0; b = a + 1; c = 2 * b;

a = 0; b = 1; c = 2;
• Variable propagation:

a = x; b = a + 1; c = 2 * x;

a = x; b = x + 1; c = 2 * x;

20

Sub-expression elimination

• Logic expressions:
• Performed by logic optimization
• Kernel-based methods

• Arithmetic expressions:
• Search isomorphic patterns in the parse trees
• Example:

a = x + y; b = a + 1; c = x + y

a = x + y; b = a + 1; c = a;

21

Examples of other transformations

• Dead-code elimination:

a = x; b = x + 1; c = 2 * x;

a = x; can be removed if not referenced
• Operator-strength reduction:

a = x2, b = 3 * x;

a = x * x; t = x << 1; b = x + t;
• Code motion:

for (i = 1; i < a * b) { }

t = a * b; for (i = 1; i < t) { }

22

Control-flow based transformations

• Model expansion
• Conditional expansion
• Loop expansion
• Block-level transformations

23

Model expansion

• Expand subroutine
• Flatten hierarchy
• Expand scope of other optimization techniques

• Problematic when model is called more than once
• Example:

x = a + b; y = a * b; z = foo (x , y);
foo(p,q) { t=q - p; return (t); }
By expanding foo:
x = a + b; y = a*b; z = y – x;

24

Conditional expansion

• Transform conditional into parallel execution with test
at the end

• Useful when test depends on late signals
• May preclude hardware sharing
• Always useful for logic expressions
• Example:

y = ab; if (a) {x = b + d; } else { x = bd; }
• Can be expanded to: x = a (b + d) + a’bd
• And simplified as: y = ab; x = y + d (a + b)

25

Loop expansion

• Applicable to loops with data-independent exit
conditions

• Useful to expand scope of other optimization
techniques

• Problematic when loop has many iterations
• Example:

 x = 0; for (i = 1; i < 3; i++) { x = x + i; }
• Expanded to:

 x = 0; x = x + 1; x = x + 2; x = x + 3;

26

Module2

• Objectives
• Architectural optimization
• Scheduling, resource sharing, estimation

27

Architectural synthesis and
optimization

• Synthesize macroscopic structure in terms of building-
blocks

• Explore area/performance trade-off:
• maximize performance implementations subject to

area constraints
• minimize area implementations subject to

performance constraints
• Determine an optimal implementation
• Create logic model for data-path and control

28

Design space and objectives

• Design space:
• Set of all feasible implementations

• Implementation parameters:
• Area
• Performance:

• Cycle-time
• Latency
• Throughput (for pipelined implementations)

• Power consumption

29

Design evaluation space

Area

Area

Area

Latency

Latency

Latency

Latency
Max

Area
Max

Cycle-ti
me

30

Hardware modeling

• Circuit behavior:
• Sequencing graphs

• Building blocks:
• Resources

• Constraints:
• Timing and resource usage

31

Resources

• Functional resources:
• Perform operations on data
• Example: arithmetic and logic blocks

• Storage resources:
• Store data
• Example: memory and registers

• Interface resources:
• Example: buses and ports

34

Synthesis in the temporal domain

• Scheduling:
• Associate a start-time with each operation
• Determine latency and parallelism of the

implementation
• Scheduled sequencing graph:

• Sequencing graph with start-time annotation

35

Example

* * + <

-

-

* * * * +

NOP 0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

NOP

36

Synthesis in the spatial domain

• Binding:
• Associate a resource with each operation with the

same type
• Determine the area of the implementation

• Sharing:
• Bind a resource to more than one operation
• Operations must not execute concurrently

• Bound sequencing graph:
• Sequencing graph with resource annotation

37

Example

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(1,1) (1,2) (1,3) (1,4) (2,2)

(2,1)

38

Estimation
• Resource-dominated circuits.

• Area = sum of the area of the resources bound to the
operations

• Determined by binding
• Latency = start time of the sink operation (minus start

time of the source operation)
• Determined by scheduling

• Non resource-dominated circuits

• Area also affected by:
• Registers, steering logic, wiring and control

• Cycle-time also affected by:
• Steering logic, wiring and (possibly) control

39

Approaches to architectural
optimization

• Multiple-criteria optimization problem:
• Area, latency, cycle-time

• Determine Pareto optimal points:
• Implementations such that no other has all

parameters with inferior values
• Draw trade-off curves:

• Discontinuous and highly nonlinear

41

Area-latency trade-off

• Rationale:
• Cycle-time dictated by system constraints

• Resource-dominated circuits:
• Area is determined by resource usage

• Approaches:
• Schedule for minimum latency under

resource usage constraints
• Schedule for minimum resource usage under

latency constraints
• for varying cycle-time constraints

42

Area/latency trade-off

1 2 3 4 5 6 7 8

5

10

15

7

8

12

13

(3,2)

(2,1)

(3,1)

Area

Latency

20

18

17

30

40

(2,2)

(2,1)

(1,2)

(1,1)

Cycle-ti
me

X

43

Summary

• Behavioral optimization:
• Create abstract models from HDL models
• Optimize models without considering

implementation parameters
• Architectural synthesis and optimization

• Consider resource parameters
• Multiple-criteria optimization problem:

• area, latency, cycle-time

	Architectural-Level Synthesis
	Module1
	Models and flows
	Architectural-level synthesis motivation
	Architectural-level synthesis
	Compilation and behavioral optimization
	Hardware and software compilation
	Compilation
	Parse tree example
	Behavioral-level optimization
	Data-flow based transformations
	Tree-height reduction
	Example of tree-height reduction using commutativity and associativity
	Example of tree-height reduction using distributivity
	Examples of propagation
	Sub-expression elimination
	Examples of other transformations
	Control-flow based transformations
	Model expansion
	Conditional expansion
	Loop expansion
	Module2
	Architectural synthesis and optimization
	Design space and objectives
	Design evaluation space
	Hardware modeling
	Resources
	Synthesis in the temporal domain
	Slide 35
	Synthesis in the spatial domain
	Slide 37
	Estimation
	Approaches to architectural optimization
	Area-latency trade-off
	Area/latency trade-off
	Summary

