Scheduling

Revisited

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

Module 1

Objectives:

- The scheduling problem
 - ♦ Case analysis
- Scheduling without constraints
- Scheduling with timing constraints

Scheduling

Circuit model:

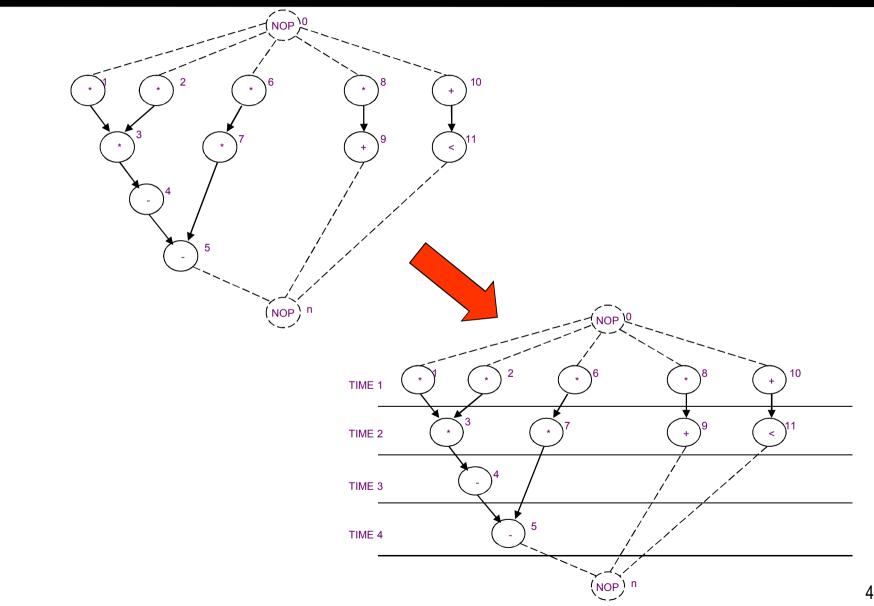
- Sequencing graph
- Cycle-time is given
- Operation delays expressed in cycles

Scheduling:

- Determine the start times for the operations
- Satisfying all the sequencing (timing and resource) constraint

Goal:

Determine area/latency trade-off



4

Taxonomy

Unconstrained scheduling

Scheduling with timing constraints:

- Latency
- Detailed timing constraints
- Scheduling with resource constraints

Related problems:

- Chaining
- Synchronization
- Pipeline scheduling

All operations have bounded delays

•All delays are in cycles:

Cycle-time is given

No constraints – no bounds on area

◆Goal:

Minimize latency

Given a set of ops V with integer delays D and a partial order on the operations E:

• Find an integer labeling of the operations $\phi : V \rightarrow Z^+$ such that:

 $t_{i} = \varphi(v_{i}),$ $t_{i} \ge t_{j} + d_{j} \quad \forall i, j s.t. (v_{j}, v_{i}) \in E$ and t_{n} is minimum

ASAP scheduling algorithm

```
ASAP ( G<sub>s</sub>(V,E) ) {

Schedule v<sub>0</sub> by setting t<sub>0</sub><sup>S</sup> = 1;

repeat {

Select a vertex v<sub>i</sub> whose predecessors are all scheduled;

Schedule v<sub>i</sub> by setting t<sub>i</sub><sup>S</sup> = max t<sub>j</sub><sup>S</sup> + d<sub>j</sub>;

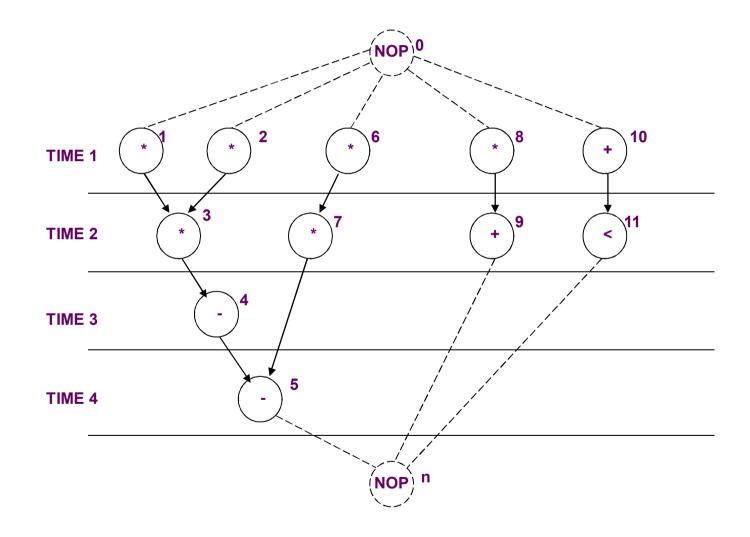
}

j:(v<sub>j</sub>,v<sub>j</sub>) e E

until (v<sub>n</sub> is scheduled);

return (t<sup>S</sup>);

}
```



ALAP scheduling algorithm

```
ALAP (G_s(V,E), \overline{\lambda}) {

Schedule v_n by setting t_n^{\ L} = \lambda + 1;

repeat {

Select a vertex v_i whose successors are all scheduled;

Schedule v_i by setting t_i^{\ L} = \min t_j^{\ L} - d_i;

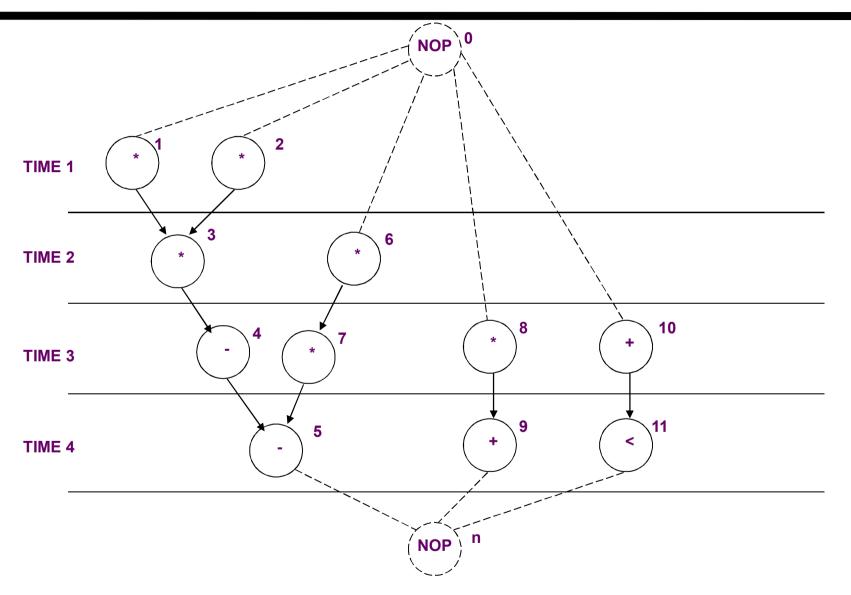
}

j:(v_i,v_j) \in E

until (v_0 is scheduled);

return (t^{\ L});

}
```



11

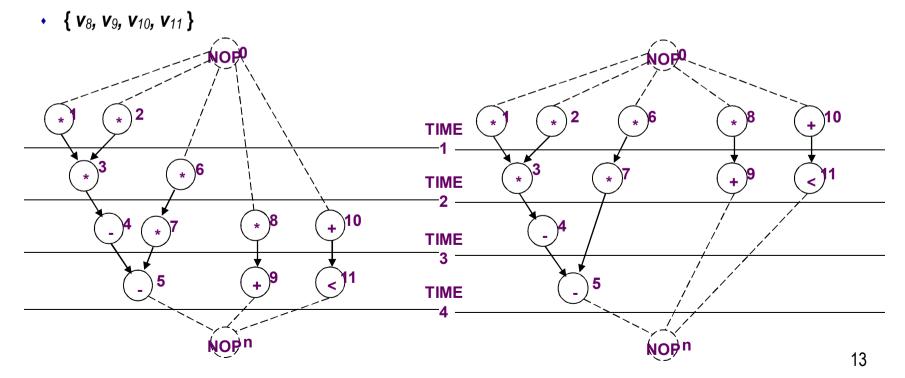
ALAP solves a latency-constrained problem

 Latency bound can be set to latency computed by ASAP algorithm

Mobility:

- Defined for each operation
- Difference between ALAP and ASAP schedule
- Slack on the start time

- Operations with zero mobility:
 - { **v**₁, **v**₂, **v**₃, **v**₄, **v**₅ }
 - Critical path
- Operations with mobility one:
 - { **v**₆, **v**₇ }
- Operations with mobility two:



Module 2

Objectives:

- Scheduling with resource constraints
- Exact formulation:
 - ♦ ILP
 - ♦ Hu's algorithm
- Heuristic methods
 - ♦ List scheduling
 - ♦ Force-directed scheduling

Scheduling under resource constraints

Intractable problem

Algorithms:

- Exact:
 - ♦ Integer linear program
 - ♦ Hu (restrictive assumptions)
- Approximate :
 - ♦ List scheduling
 - ♦ Force-directed scheduling

ILP formulation

Binary decision variables:

$$X = \{ x_{il}, i = 1, 2, ..., n; l = 1, 2, ..., \lambda + 1 \}$$

x_i is TRUE only when operation **v**_i starts in step *I* of the schedule (i.e. $I = t_i$)

 $\boldsymbol{\lambda}$ is an upper bound on latency

• Start time of operation $v_i : \sum_{i} I \cdot x_{ii}$

ILP formulation constraints

Operations start only once

 $\Sigma x_{ii} = 1$ i = 1, 2, ..., n

Sequencing relations must be satisfied

 $t_i \ge t_j + d_j \quad \Rightarrow \quad t_i - t_j - d_j \ge 0 \quad \text{for all } (v_j, v_i) \in E$ $\Sigma I \cdot x_{il} - \Sigma I \cdot x_{jl} - d_j \ge 0 \quad \text{for all } (v_j, v_i) \in E$

Resource bounds must be satisfied

Simple case (unit delay)

 $\sum_{i:T(v_i)=k}^{\prime} x_{il} \le a_k \quad k = 1, 2, ..., n_{res}; \text{ for all } I$

ILP Solution

Use standard ILP packages

Transform into LP problem

Advantages:

- Exact method
- Others constraints can be incorporated

Disadvantages:

Works well up to few thousand variables

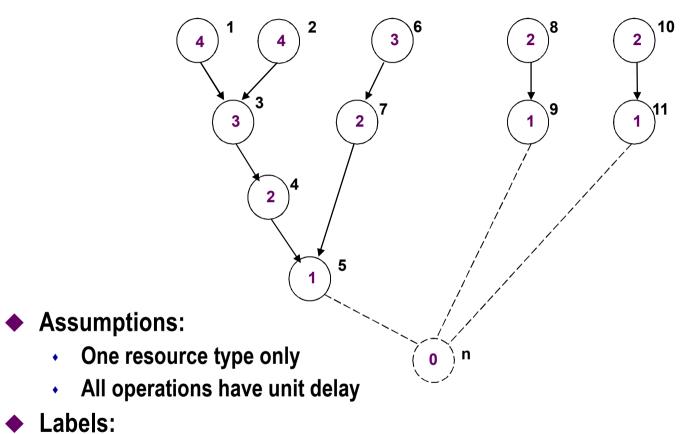
Hu's algorithm

Assumptions:

- Graph is a forest
- All operations have unit delay
- All operations have the same type

Algorithm:

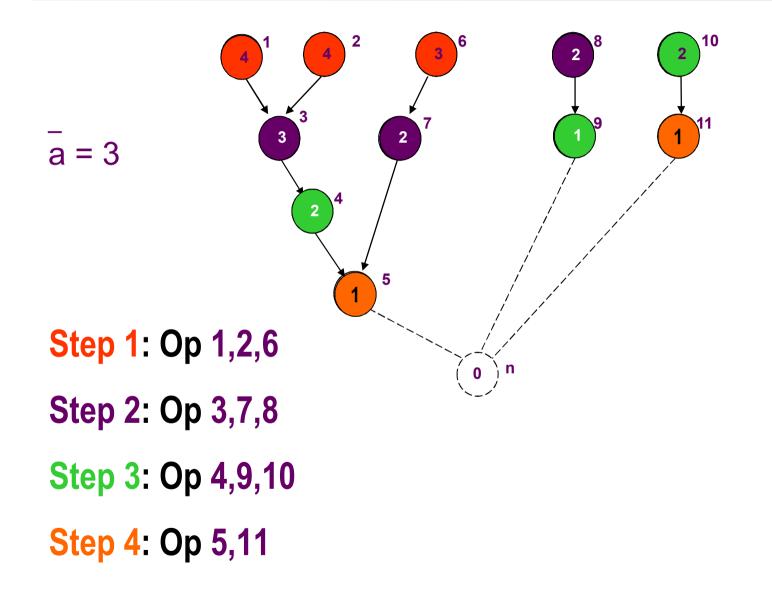
- Greedy strategy
- Exact solution



• Distance to sink

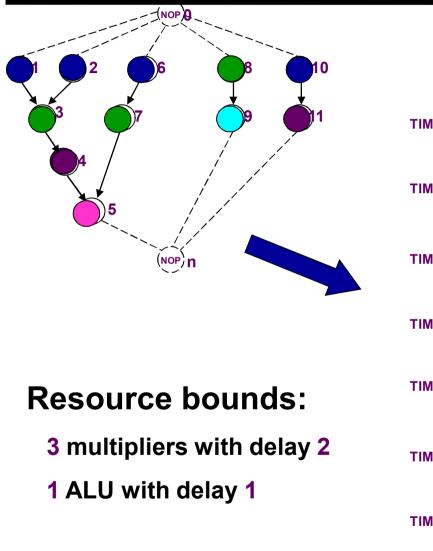
Algorithm Hu's schedule with ā resources

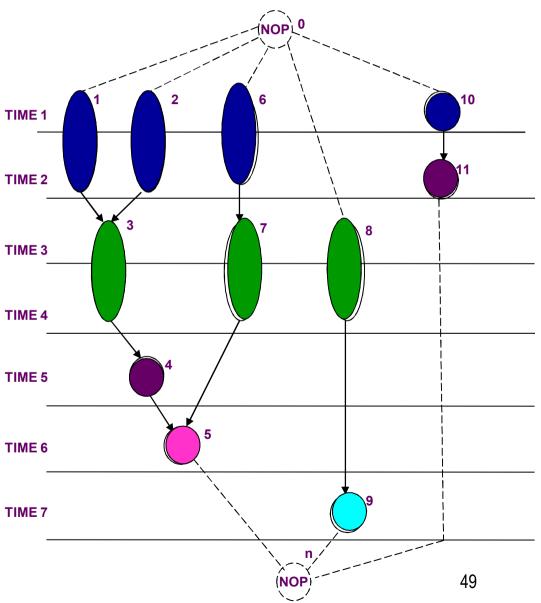
- Label operations with distance to sink
- ♦ Set step / = 1
- Repeat until all ops are scheduled:
 - Select $s \leq \bar{a}$ resources with
 - ♦ All predecessors scheduled
 - Maximal labels
 - Schedule the s operations at step I
 - Increment step I = I + 1



List scheduling algorithms

- Heuristic method for:
 - Min latency subject to resource bound
 - Min resource subject to latency bound
- Greedy strategy (like Hu's)
- General graphs (unlike Hu's)
- Priority list heuristics
 - Longest path to sink
 - Longest path to timing constraint





Force-directed scheduling definitions

Operation *interval*:

- Mobility plus one (µ_i +1)
- Computed by ASAP and ALAP scheduling [t^S, t^L]

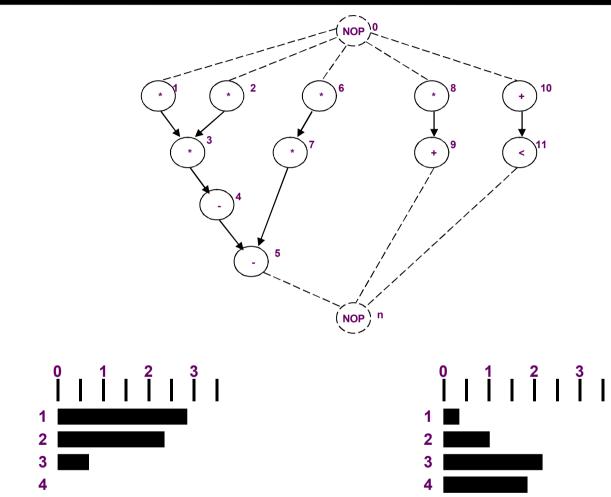
Operation probability p_i (I):

Probability of executing in a given step

1/(μ_i + 1) inside interval; 0 elsewhere

• Operation-type distribution $q_k(l)$:

• Sum of the operation probabilities for each type



Distribution graphs for multiplier and ALU

Force

Used as *priority* function

Force is related to concurrency:

Sort operations for least force

Mechanical analogy:

- Force = constant x displacement
 - Constant = operation-type distribution
 - Displacement = change in probability

Forces related to the assignment of an operation to a control step

Self-force:

- Sum of forces to feasible schedule steps
- Self-force for operation v_i in step I

 $\sum_{m \text{ in interval}} q_k(m) \left(\delta_{lm} - p_i(m) \right)$

Predecessor/successor-force:

- Related to the predecessors/successors
 - Fixing an operation timeframe restricts timeframe of predecessors/successors
 - Ex: Delaying an operation implies delaying its successors

Scheduling and chaining

- Consider propagation delays of resources not in terms of cycles
- Use scheduling to *chain* multiple operations in the same control step
- Useful technique to explore effect of cycle-time on area/latency trade-off
- Algorithms:
 - ILP, ALAP/ASAP, list scheduling

Summary

Scheduling determines area/latency trade-off

- Intractable problem in general:
 - Heuristic algorithms
 - ILP formulation (small-case problems)

Several heuristic formulations

- List scheduling is the fastest and most used
- Force-directed scheduling tends to yield good results

Several extensisons

Chaining