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Allocation and Binding

• Allocation (unit selection) – Determination of the type 
and number of resources required:
• Number and types functional units
• Number and types of storage elements
• Number and types of busses

• Binding – Assignment to resource instances:
• Operations to functional unit instances
• Values to be stored to instances of storage 

elements
• Data transfers to bus instances
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Allocating and Binding (2)



5

Allocating and Binding (3)

• Optimization goal
• Minimize total cost of functional units, register, bus 

driver, and multiplexer
• Minimize total interconnection length
• Constraint on critical path delay
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Approaches to Allocating/Binding

• Constructive – start with an empty data path and add 
functional, storage and interconnects as necessary.
• Greedy algorithms – perform allocation for one 

control step at a time.
• Rule-based used to select type and numbers of 

function units, especially prior to scheduling.
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Approaches to Allocating/Binding (2)
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Approaches to Allocation/Binding (3)

• Graph-theoretical formulations – sub-tasks are 
mapped into well-defined problems in graph theory.
• Clique partitioning.
• Left-edge algorithm.
• Graph coloring.
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Allocation and binding

• Allocation:
• Number of resources available

• Binding:
• Relation between operations and resources

• Sharing:
• Many-to-one relation

• Optimum binding/sharing:
• Minimize the resource usage
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Optimum sharing problem

• Scheduled sequencing graphs

• Operation concurrency well defined

• Consider operation types independently

• Problem decomposition

• Perform analysis for each resource type
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Compatibly and conflicts

• Operation compatibility:
• Same type
• Non concurrent

• Compatibility graph:
• Vertices: operations
• Edges: compatibility relation

• Conflict graph:
• Complement of compatibility graph

t1 x=a+b            y=c+d 1 2

t2 s=x+y             t=x-y 3       4

t3 z=a+t 5

1 2

3 4

5

Compatibility graph

Conflict graph

1 2

3 4

5
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Compatibility and conflicts

• Compatibility graph:
• Partition the graph into a minimum number of cliques
• Find clique cover number k ( G+ )

• Conflict graph:
• Color the vertices by a minimum number of colors.
• Find the chromatic number х ( G_ )

• NP-complete problems:
• Heuristic algorithms
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Example

t1 x=a+b            y=c+d 1 2

t2 s=x+y             t=x-y 3          4

t3 z=a+t 5

Conflict

1 2

3 4

5

1 2

3 4

5

Compatibility

Partitioning

Coloring

ALU1: 1,3,5

ALU2: 2,4
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Graph coloring

Graph coloring is a special case of graph labeling; it is an 
assignment of labels traditionally called "colors" to 
elements of a graph subject to certain constraints. 

• In its simplest form, it is a way of coloring the vertices of 
a graph such that no two adjacent vertices share the 
same color; this is called a vertex coloring. 

• Similarly, an edge coloring assigns a color to each edge 
so that no two adjacent edges share the same color. In 
general, a graph G is k  colorable if each vertex can be 
assigned one of k colors so that adjacent vertices get 
different colors.  The smallest sufficient number of colors 
is called the chromatic number of G.
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Perfect graphs

• Comparability graph:
• Graph G (V, E ) has an orientation G ( V, F ) with the 

transitive property

   (vi, vj) є F   and    (vj, vk) є F  →  (vi, vk) є F

A comparability graph is an undirected graph that connects 
pairs of elements that are comparable to each other in a 
partial order.
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Perfect graphs

Interval graph:

• Vertices correspond to intervals

• Edges correspond to interval intersection

• Subset of chordal graphs

• a graph is chordal if each of its cycles of four or more vertices 
has a chord, which is an edge that is not part of the cycle but 
connects two vertices of the cycle. 

An interval graph is the intersection graph of a multiset of 
intervals on the real line. It has one vertex for each interval in the 
set, and an edge between every pair of vertices corresponding to 
intervals that intersect.
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Data-flow graphs
(flat sequencing graphs)

• The compatibility/conflict graphs have special 
properties:
• Compatibility

• Comparability graph
• Conflict

• Interval graph
• Polynomial time solutions:

• Left-edge algorithm
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Example   6.2.1
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Example   6.2.1b
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Example 6.2.4
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MULT =  v1,v2  v3,v6 v7,v8 
ALU = v5,v9

The set of intervals corresponding to the conflict graphs

Overlapping intervals correspond to edges
In the conflict graph for each type.
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Left-edge algorithm

• Input:

• Set of intervals with left and right edge

• A set of colors (initially one color)

• Rationale:

• Sort intervals in a list by left edge

• Assign non overlapping intervals to first color using the list

• When possible intervals are exhausted, 
increase color counter and repeat



23

ILP formulation of binding

• Boolean variable bir

• Operation i bound to resource r
• Boolean variables xil

• Operation i scheduled to start at step l

               ∑ r   bir = 1      for all operations i

    ∑ i bir    ∑ m=l-di+1..l  xim ≤ 1      for all steps l and 
resources r
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Hierarchical sequencing graphs

• Hierarchical conflict/compatibility graphs:
• Easy to compute
• Prevent sharing across hierarchy

• Flatten hierarchy:
• Bigger graphs
• Destroy nice properties
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Example  6.2.8
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NOP

Conditional execution. Sequencing graph, execution 
intervals, Non chordal (!) conflict graph.

a graph is chordal if each of its cycles of four or more nodes has a 
chord
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Register binding problem

• Given a schedule:
• Lifetime intervals for variables
• Lifetime overlaps

• Conflict graph (interval graph):
• Vertices (or nodes)   ↔  variables
• Edges (or links) ↔ overlaps
• Interval graph

• Compatibility graph (comparability graph):
• Complement of conflict graph
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Register sharing in data-flow graphs

• Given:
• Variable lifetime conflict graph

• Find:
• Minimum number of registers storing all the variables

• Key point:
• Interval graph

• Left-edge algorithm (polynomial-time complexity)
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Example  6.2.9
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Sharing, conflict graph

http://en.wikipedia.org/wiki/Cycle_%28graph_theory%29
http://en.wikipedia.org/wiki/Node_%28graph_theory%29
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Register sharing
 general case

• Iterative conflicts:
• Preserve values across iterations
• Circular-arc conflict graph

• Coloring is intractable
• Hierarchical graphs:

• General conflict graphs
• Coloring is intractable

• Heuristic algorithms



31

Example  6.2.10
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Clique Partitioning

• Let G = (V, E) be an undirected graph with a set V of 
vertices and a set E of edges.

• A clique is a set of vertices that form a complete sub 
graph of G.

• The problem of partitioning a graph into a minimal 
number of cliques such that each vertex belongs to 
exactly one clique is called clique partitioning.
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Clique Partitioning (2)

• Formulation of functional unit allocation as a clique 
partitioning problem:
• Each vertex represents an operation.
• An edge connects two vertices iff:

• 1. The two operations are scheduled into 
different control steps, and

• 2. There exists a functional unit that is capable of 
carrying out both operations.
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A Clique
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Clique Partitioning (Cont’d)

• Formulation of storage allocation as a clique 
partitioning problem:
• Each value needed to be stored is mapped to a 

vertex.
• Two verticals are connected iff life-time of the two 

values do not intersect.
• The clique partitioning problem is NP-complete.
• Efficient heuristics have been developed: e.g., Tseng 

used a polynomial time algorithm which generates 
very good results.
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Tseng’s  Algorithm

• A super-graph is derived from the original graph.
• Find two connected super-nodes such that they have 

the maximum number of common neighbors.
• Merge the two nodes and repeated from the first step, 

until  no more merger can be carried out.
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Tseng’s Algorithm (2)
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Left-Edge (LE) Algorithm

• The LE algorithm is used in channel routing to 
minimize the number of tracks used to connect points.
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Left-edge algorithm

• Input:
• Set of intervals with left and right edge
• A set of colors (initially one color)

• Rationale:
• Sort intervals in a list by left edge
• Assign non overlapping intervals to first color using 

the list
• When possible intervals are exhausted, 

increase color counter and repeat



41

Left-edge algorithm

LEFT_EDGE(I) {
Sort elements of I in a list L in ascending order of li;
c = 0;
while (some interval has not been colored) do {

S = Ø;
r = 0;
while (  exists s є L such that ls > r) do {

s = First element in the list L with ls > r;
S = S U {s};
r = rs;
Delete s from L;

}
c = c + 1;
Label elements of S with color c;

}
}
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Example
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Left-Edge (LE) Algorithm (2)

• The register allocation problem can be solved by the 
LE algorithm by mapping the birth time of a value to 
the left edge, and the death time of a value to the right 
edge of a wire.
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Variable Life Times
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Left-Edge (LE) Algorithm (Cont’d)

• The algorithm works as follows:
• The values are sorted in increasing order of their 

birth time.
• The first value is assigned to the first register.
• The list is then scanned for the next value whose 

birth time is larger than or equal to the death time of 
the previous value.

• This value is assigned to the current register.
• The list is scanned until no more value can shared 

the same register. A new register will then be 
introduced.
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Left-Edge (LE) Algorithm (Cont’d) 
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Left-Edge (LE) Algorithm (Cont’d) 

• The algorithm quarantines to allocate the minimum 
number of registers, but has two disadvantages:
• Not all life-time table might be interpreted as 

intersecting intervals on a line.
• Loop
• Conditional branches

• The assignment is neither unique nor necessarily 
optimal (in terms of minimal number of multiplexers, 
for example).
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Summary

• Resource sharing is reducible to vertex coloring or to 
clique covering:
• Simple for flat graphs
• Intractable, but still easy in practice, for other 

graphs
• Resource sharing has several extensions:

• Module selection
• Data path design and control synthesis are 

conceptually simple but still important steps
• Generated data path is an interconnection of blocks
• Control is one or more finite-state machines
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TSENG's Algorithm

TSENG( G+(V. E. W) I {
while (E # 0) do {

Iw = max w;   /* largest edge weight */
E' = {{u,. u,) t E such that w,, = l w ) :
G'+(V'. E'. W'] = subgraph of G+(V. E. W) induced by E':
while (E' #0) do (

Select I",. q) t E' such that ir, and t j have the most neighbors in common:
C = (",.Uj):
Delete edges ( s r, I if ( u i . L?) -$ E' VCI :l V':
Delete venen ~j from V';

while (one venex adjacent td v, in G'+(V', E'. W')) do I
Select t8k such that ( v , , uk) E E' and r., and L S h~a ve the
mosr neighbors in common;
C = C u { " i ) ;
Delete edges {>'I. u,) if ("1. ui) E' Vu, t V';
Delete venex uk fmm V';
1
Save clique C in the clique list;
I
Delete the vertices in the clique list from V;
I
I
ALGORITHM 6.3.1
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