
Resource sharingResource sharing

This presentation can be used for non-commercial purposes as long as this note and the
copyright footers are not removed

© Giovanni De Micheli – All rights reserved

3

Allocation and Binding

• Allocation (unit selection) – Determination of the type
and number of resources required:
• Number and types functional units
• Number and types of storage elements
• Number and types of busses

• Binding – Assignment to resource instances:
• Operations to functional unit instances
• Values to be stored to instances of storage

elements
• Data transfers to bus instances

4

Allocating and Binding (2)

5

Allocating and Binding (3)

• Optimization goal
• Minimize total cost of functional units, register, bus

driver, and multiplexer
• Minimize total interconnection length
• Constraint on critical path delay

6

Approaches to Allocating/Binding

• Constructive – start with an empty data path and add
functional, storage and interconnects as necessary.
• Greedy algorithms – perform allocation for one

control step at a time.
• Rule-based used to select type and numbers of

function units, especially prior to scheduling.

7

Approaches to Allocating/Binding (2)

8

Approaches to Allocation/Binding (3)

• Graph-theoretical formulations – sub-tasks are
mapped into well-defined problems in graph theory.
• Clique partitioning.
• Left-edge algorithm.
• Graph coloring.

9

Allocation and binding

• Allocation:
• Number of resources available

• Binding:
• Relation between operations and resources

• Sharing:
• Many-to-one relation

• Optimum binding/sharing:
• Minimize the resource usage

11

Optimum sharing problem

• Scheduled sequencing graphs

• Operation concurrency well defined

• Consider operation types independently

• Problem decomposition

• Perform analysis for each resource type

12

Compatibly and conflicts

• Operation compatibility:
• Same type
• Non concurrent

• Compatibility graph:
• Vertices: operations
• Edges: compatibility relation

• Conflict graph:
• Complement of compatibility graph

t1 x=a+b y=c+d 1 2

t2 s=x+y t=x-y 3 4

t3 z=a+t 5

1 2

3 4

5

Compatibility graph

Conflict graph

1 2

3 4

5

13

Compatibility and conflicts

• Compatibility graph:
• Partition the graph into a minimum number of cliques
• Find clique cover number k (G+)

• Conflict graph:
• Color the vertices by a minimum number of colors.
• Find the chromatic number х (G_)

• NP-complete problems:
• Heuristic algorithms

14

Example

t1 x=a+b y=c+d 1 2

t2 s=x+y t=x-y 3 4

t3 z=a+t 5

Conflict

1 2

3 4

5

1 2

3 4

5

Compatibility

Partitioning

Coloring

ALU1: 1,3,5

ALU2: 2,4

15

Graph coloring

Graph coloring is a special case of graph labeling; it is an
assignment of labels traditionally called "colors" to
elements of a graph subject to certain constraints.

• In its simplest form, it is a way of coloring the vertices of
a graph such that no two adjacent vertices share the
same color; this is called a vertex coloring.

• Similarly, an edge coloring assigns a color to each edge
so that no two adjacent edges share the same color. In
general, a graph G is k colorable if each vertex can be
assigned one of k colors so that adjacent vertices get
different colors. The smallest sufficient number of colors
is called the chromatic number of G.

16

Perfect graphs

• Comparability graph:
• Graph G (V, E) has an orientation G (V, F) with the

transitive property

 (vi, vj) є F and (vj, vk) є F → (vi, vk) є F

A comparability graph is an undirected graph that connects
pairs of elements that are comparable to each other in a
partial order.

17

Perfect graphs

Interval graph:

• Vertices correspond to intervals

• Edges correspond to interval intersection

• Subset of chordal graphs

• a graph is chordal if each of its cycles of four or more vertices
has a chord, which is an edge that is not part of the cycle but
connects two vertices of the cycle.

An interval graph is the intersection graph of a multiset of
intervals on the real line. It has one vertex for each interval in the
set, and an edge between every pair of vertices corresponding to
intervals that intersect.

18

Data-flow graphs
(flat sequencing graphs)

• The compatibility/conflict graphs have special
properties:
• Compatibility

• Comparability graph
• Conflict

• Interval graph
• Polynomial time solutions:

• Left-edge algorithm

19

Example 6.2.1

TIME 1

TIME 2

TIME 3

TIME 4

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

3 1 8

7 6 2

4 10

5 11

9

Compatibility graph per resource type

20

Example 6.2.1b

TIME 1

TIME 2

TIME 3

TIME 4

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

3 1 8

7 6 2

4 10

5 11

9

Conflict graph

10

6 2

4
8

5 11

21

Example 6.2.4

TIME 1

TIME 2

TIME 3

TIME 4

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

1

4

5 9

102

3 6

7 8

11

MULT = v1,v2 v3,v6 v7,v8
ALU = v5,v9

The set of intervals corresponding to the conflict graphs

Overlapping intervals correspond to edges
In the conflict graph for each type.

22

Left-edge algorithm

• Input:

• Set of intervals with left and right edge

• A set of colors (initially one color)

• Rationale:

• Sort intervals in a list by left edge

• Assign non overlapping intervals to first color using the list

• When possible intervals are exhausted,
increase color counter and repeat

23

ILP formulation of binding

• Boolean variable bir

• Operation i bound to resource r
• Boolean variables xil

• Operation i scheduled to start at step l

 ∑ r bir = 1 for all operations i

 ∑ i bir ∑ m=l-di+1..l xim ≤ 1 for all steps l and
resources r

24

Hierarchical sequencing graphs

• Hierarchical conflict/compatibility graphs:
• Easy to compute
• Prevent sharing across hierarchy

• Flatten hierarchy:
• Bigger graphs
• Destroy nice properties

26

Example 6.2.8

(a) (b) (c)

a

dc

b

a

b

c d

TIME 1

TIME 2

TIME 3

TIME 4

a

BR c

b

NOP

NOP

d

NOP

NOP

Conditional execution. Sequencing graph, execution
intervals, Non chordal (!) conflict graph.

a graph is chordal if each of its cycles of four or more nodes has a
chord

27

Register binding problem

• Given a schedule:
• Lifetime intervals for variables
• Lifetime overlaps

• Conflict graph (interval graph):
• Vertices (or nodes) ↔ variables
• Edges (or links) ↔ overlaps
• Interval graph

• Compatibility graph (comparability graph):
• Complement of conflict graph

28

Register sharing in data-flow graphs

• Given:
• Variable lifetime conflict graph

• Find:
• Minimum number of registers storing all the variables

• Key point:
• Interval graph

• Left-edge algorithm (polynomial-time complexity)

29

Example 6.2.9

* *

* *

*-

-

TIME 1

TIME 2

TIME 3

TIME 4

1 2

3

4

5

6

7

z1 z2

z3
z4

z5
z6

z1

z3

z5

z2

z4

z6

z1 z2

z3 z4

z5 z6

(a) (b) (c)

Sharing, conflict graph

http://en.wikipedia.org/wiki/Cycle_%28graph_theory%29
http://en.wikipedia.org/wiki/Node_%28graph_theory%29

30

Register sharing
 general case

• Iterative conflicts:
• Preserve values across iterations
• Circular-arc conflict graph

• Coloring is intractable
• Hierarchical graphs:

• General conflict graphs
• Coloring is intractable

• Heuristic algorithms

31

Example 6.2.10

TIME 1

TIME 2

TIME 3

TIME 4

<

* *

*

*

+

*

*

+-

-

3 x u dx

3

y u dx x dx

dx

y

u

u
y

c

a

4

5

3

7

9

1 2

6

8

10

11

z1 z2

z3 z4

z5 z6

z7

x
y

u

z1 z2

z3 z4

z5 z6

u y

u y

z7

x

x

(a) (b)

33

Clique Partitioning

• Let G = (V, E) be an undirected graph with a set V of
vertices and a set E of edges.

• A clique is a set of vertices that form a complete sub
graph of G.

• The problem of partitioning a graph into a minimal
number of cliques such that each vertex belongs to
exactly one clique is called clique partitioning.

34

Clique Partitioning (2)

• Formulation of functional unit allocation as a clique
partitioning problem:
• Each vertex represents an operation.
• An edge connects two vertices iff:

• 1. The two operations are scheduled into
different control steps, and

• 2. There exists a functional unit that is capable of
carrying out both operations.

35

A Clique

36

Clique Partitioning (Cont’d)

• Formulation of storage allocation as a clique
partitioning problem:
• Each value needed to be stored is mapped to a

vertex.
• Two verticals are connected iff life-time of the two

values do not intersect.
• The clique partitioning problem is NP-complete.
• Efficient heuristics have been developed: e.g., Tseng

used a polynomial time algorithm which generates
very good results.

37

Tseng’s Algorithm

• A super-graph is derived from the original graph.
• Find two connected super-nodes such that they have

the maximum number of common neighbors.
• Merge the two nodes and repeated from the first step,

until no more merger can be carried out.

38

Tseng’s Algorithm (2)

39

Left-Edge (LE) Algorithm

• The LE algorithm is used in channel routing to
minimize the number of tracks used to connect points.

40

Left-edge algorithm

• Input:
• Set of intervals with left and right edge
• A set of colors (initially one color)

• Rationale:
• Sort intervals in a list by left edge
• Assign non overlapping intervals to first color using

the list
• When possible intervals are exhausted,

increase color counter and repeat

41

Left-edge algorithm

LEFT_EDGE(I) {
Sort elements of I in a list L in ascending order of li;
c = 0;
while (some interval has not been colored) do {

S = Ø;
r = 0;
while (exists s є L such that ls > r) do {

s = First element in the list L with ls > r;
S = S U {s};
r = rs;
Delete s from L;

}
c = c + 1;
Label elements of S with color c;

}
}

42

Example

0 1 2 3 4 5 6 7

1

 6

 4

 7

8

 2

 3

5

 1

0 1 2 3 4 5 6 7 8

 2 3

 6 7 5

 4

1 6

7 4

2

3

5

Conflict graph
Intervals

6

7 4

2

1

3

5

Colored conflict
graph

Coloring

43

Left-Edge (LE) Algorithm (2)

• The register allocation problem can be solved by the
LE algorithm by mapping the birth time of a value to
the left edge, and the death time of a value to the right
edge of a wire.

44

Variable Life Times

45

Left-Edge (LE) Algorithm (Cont’d)

• The algorithm works as follows:
• The values are sorted in increasing order of their

birth time.
• The first value is assigned to the first register.
• The list is then scanned for the next value whose

birth time is larger than or equal to the death time of
the previous value.

• This value is assigned to the current register.
• The list is scanned until no more value can shared

the same register. A new register will then be
introduced.

46

Left-Edge (LE) Algorithm (Cont’d)

47

Left-Edge (LE) Algorithm (Cont’d)

• The algorithm quarantines to allocate the minimum
number of registers, but has two disadvantages:
• Not all life-time table might be interpreted as

intersecting intervals on a line.
• Loop
• Conditional branches

• The assignment is neither unique nor necessarily
optimal (in terms of minimal number of multiplexers,
for example).

48

Summary

• Resource sharing is reducible to vertex coloring or to
clique covering:
• Simple for flat graphs
• Intractable, but still easy in practice, for other

graphs
• Resource sharing has several extensions:

• Module selection
• Data path design and control synthesis are

conceptually simple but still important steps
• Generated data path is an interconnection of blocks
• Control is one or more finite-state machines

49

TSENG's Algorithm

TSENG(G+(V. E. W) I {
while (E # 0) do {

Iw = max w; /* largest edge weight */
E' = {{u,. u,) t E such that w,, = l w) :
G'+(V'. E'. W'] = subgraph of G+(V. E. W) induced by E':
while (E' #0) do (

Select I",. q) t E' such that ir, and t j have the most neighbors in common:
C = (",.Uj):
Delete edges (s r, I if (u i . L?) -$ E' VCI :l V':
Delete venen ~j from V';

while (one venex adjacent td v, in G'+(V', E'. W')) do I
Select t8k such that (v , , uk) E E' and r., and L S h~a ve the
mosr neighbors in common;
C = C u { " i) ;
Delete edges {>'I. u,) if ("1. ui) E' Vu, t V';
Delete venex uk fmm V';
1
Save clique C in the clique list;
I
Delete the vertices in the clique list from V;
I
I
ALGORITHM 6.3.1

	Resource sharing
	Allocation and Binding
	Allocating and Binding (2)
	Allocating and Binding (3)
	Approaches to Allocating/Binding
	Approaches to Allocating/Binding (2)
	Approaches to Allocation/Binding (3)
	Allocation and binding
	Optimum sharing problem
	Compatibly and conflicts
	Compatibility and conflicts
	Example
	Slide 15
	Perfect graphs
	Slide 17
	Data-flow graphs (flat sequencing graphs)
	Example 6.2.1
	Slide 20
	Example 6.2.4
	Slide 22
	ILP formulation of binding
	Hierarchical sequencing graphs
	Example 6.2.8
	Register binding problem
	Register sharing in data-flow graphs
	Example 6.2.9
	Register sharing general case
	Example 6.2.10
	Clique Partitioning
	Clique Partitioning (2)
	A Clique
	Clique Partitioning (Cont’d)
	Tseng’s Algorithm
	Tseng’s Algorithm (2)
	Left-Edge (LE) Algorithm
	Left-edge algorithm
	Slide 41
	Slide 42
	Left-Edge (LE) Algorithm (2)
	Variable Life Times
	Left-Edge (LE) Algorithm (Cont’d)
	Left-Edge (LE) Algorithm (Cont’d)
	Slide 47
	Summary
	Slide 49

