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Abstract

This study presents a new multivariable closed-loop identification technique for estimating the dynamic compliance of the

multijoint human arm during posture maintenance. The method is designed for the application of continuous force disturbances

that facilitate interaction of the limb with the environment. The dynamic compliance of the arm arises from different physiological

mechanisms and is important for maintaining stable postures and to suppress disturbances. Estimates can be useful to analyze the

ability of the nervous system to adapt the arm compliance to different types of disturbances and environments. The technique is

linear and requires no a priori knowledge of the system. Linear system behavior is justified for posture tasks where the hand position

deviates slightly from a reference position. Interaction results in a closed-loop configuration of arm and environment. The problem

with previous methods is the restriction to open-loop systems. With the current technique, the dynamic arm compliance is separately

estimated from the closed-loop. The accuracy of the identification technique is tested by simulations for different values of the

dynamic compliance of the arm and environment and for different methodological parameters. It is concluded that the identification

technique is accurate, even for short observation periods and severe noise.

# 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Human arm posture maintenance is the result of

coordinated forces around the joints at particular joint

angles. The goal of posture control is to maintain a

certain mean position and to minimize deviations in the

presence of force disturbances. With respect to the

displacements, the restoring forces result from elastic,

viscous and inertial properties. Elastic and viscous

properties of a limb can be adapted and originate

from intrinsic muscle stiffness and damping and addi-

tionally from reflexive feedback from muscle spindles

(Toft et al., 1991; Doemges and Rack, 1992a; Kirsch et

al., 1993; Kearney et al., 1997). Both intrinsic and

reflexive contributions depend on (a) the task instruc-

tion given to the subjects (Smeets and Erkelens, 1991;

Doemges and Rack, 1992b; Gomi and Osu, 1998), (b)

the properties and type of the disturbance signal (Stein

and Kearney, 1995; Cathers et al., 1999; Van der Helm

et al., 2002), (c) the configuration, of the arm (Mussa-

Ivaldi et al., 1985; Dolan et al., 1993) and (d) the

mechanical properties of the environment (Milner and

Cloutier, 1993; De Vlugt et al., 2002).

Most of these studies used transient position distur-

bances to identify only the stiffness of single joints and

some have retrieved stiffness ellipses for the two-joint

case (Mussa-Ivaldi et al., 1985; Dolan et al., 1993; Gomi

and Kawato, 1996). Since position is imposed, the

reaction force was taken as the free output variable.

The task instruction is mostly formulated so as to

maintain a certain force level in certain directions. Other

studies analyzed the transient response in EMG signals

to separate the reflexive contributions by isolating the
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delayed response from the instantaneous. Only the first

hundreds of milliseconds were analyzed where voluntary

reactions are likely not to take place (Toft et al., 1991;

Stein and Kearney, 1995). A few studies applied
continuous stochastic position disturbances to deter-

mine the mechanical properties of the limb (Kirsch et

al., 1993; Kearney et al., 1997; Cathers et al., 1999;

Perreault et al., 2001; Zhang and Rymer, 1997).

Compared with transient disturbances, this method

allows a faster and more accurate quantification of

limb stiffness, damping and mass because a richer

frequency range is applied.
However, since position is simply imposed by a

manipulator that is assigned a stiffness much larger

than that of the concerned limb, the ‘responding’ forces

can by no means change the limb position or muscle

lengths. For (ideal) position disturbances, position and

force are fully decoupled and there is no matter of active

stabilization, i.e. the position servo provides inherent

stability. Because of the decoupling, the system can be
regarded as an open-loop, facilitating straight forward

open-loop identification techniques (Bendat and Piersol,

1986; Ljung, 1999).

In contrast to position disturbances, force distur-

bances facilitates a functional dynamic analysis of the

limb compliance during natural interaction with the

environment. Deviations of the endpoint position, as a

result of the force disturbance, are determined by the
dynamic compliance of both the arm and environment.

Efforts of the central nervous system (CNS) to preserve

stability by adjusting both intrinsic and reflexive proper-

ties have a direct effect on the responding limb position.

The interacting behavior results in a closed-loop control

configuration of limb and environment together. The

problem with previous estimation techniques is the

restriction to open-loop systems.
The goal of this study is to develop a closed-loop

identification technique, which is appropriate for appli-

cation of continuous force disturbances and interaction

with environments during posture control. The techni-

que is nonparametric, meaning that no a priori knowl-

edge of the system is needed. An important requirement

is that the system to be estimated is stationary. This

means that its properties remain constant over the
observed time period. In fact, the interest is in the

system response to the continuous force disturbance.

Therefore, anticipatory muscle activation which changes

the arm compliance (and acts as an additional force

input) should be avoided. This is achieved by using

random force disturbances such that prediction is likely

excluded. If the system is indeed stationary for these

types of force disturbances, the arm compliance can only
be the result of constant intrinsic muscle properties and

peripheral feedback mechanisms.

Kearney and Hunter (1990) already indicated the

great usefulness of closed-loop responses since they

characterize joint behavior under natural behavioral

conditions. They described the basics for the application

of closed-loop estimators for single-joint dynamics. In a

recent study from our laboratory, this experimental
paradigm is applied to quantify the compliance of the

shoulder joint (De Vlugt et al., 2002; Van der Helm et

al., 2002).

The present study extends the estimation method for

single-joint dynamics to a two-input two-output planar

case for estimating arm compliance at the point of

interaction or endpoint. In this case the hand reaction

force acts as the input and the hand position as the
output. The application is also suitable for larger input�/

output systems. The estimated dynamic compliance is

expressed in the frequency domain by means of a matrix

frequency response function (MFRF).

In addition to the closed-loop estimator, a signal

design method is used for the generation of the force

disturbance signals. This method produces unpredict-

able deterministic signals having exact power at specific
frequencies. The main advantage of deterministic signals

is that their periodicity prevents bias in the estimates,

which would otherwise emerge in the case of application

of stochastic signals (Schoukens et al., 1993).

The goodness of the estimation method is verified by

simulations for different properties of arm and environ-

mental compliance. Various experimental and metho-

dological conditions are simulated and discussed. The
results indicate that the endpoint compliance is esti-

mated very accurately, having negligible bias and

variance at rather erroneous conditions, reflected by

high values of the multiple coherence functions.

2. Closed-loop system description

Any (bio)mechanical system in its complete dimen-
sion and normal functioning, is properly described when

a driving force is taken at the input and a movement

(position or velocity) as the output. Only in this way the

system states follow from integration of inputs, and the

output is determined as a (linear) combination of the

system states. To understand the underlying mechan-

isms subserving the mechanical response, the system

therefore, should be analyzed in its causal dynamic
structures wherein it is defined, i.e. as a dynamic

compliance (Hogan, 1985). The compliance comprises

stiffness, damping and inertia properties, together with

feedback loops, and is expressed in meters per Newton

(m/N), i.e. the inverse of the mechanical impedance.

Fig. 1 shows schematically a manipulator to realize an

environment. The Cartesian components of the signals

are defined in the subjects frame having its origin in the
right shoulder. To analyze human arm posture control

effectively, the influence of the environment should be

kept small compared with the arm. This means that the
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inertia, damping and stiffness of the environment should

be as low as possible. Despite lightweight designs and

advanced control strategies to increase the apparent

(virtual) endpoint compliance, the additional contribu-

tion cannot be neglected in practice. Fig. 2 shows the

nonlinear blockscheme representing the mechanical

interaction of the arm with the environment. The total
force acting upon the environment is the summation of

an independent external force disturbance D(t) and the

opposing hand reaction force F(t ). The hand force is an

internal variable and the hand position X(t) is the

output of the total system. It is assumed that the force

disturbance, hand reaction force and hand position are

available from measurements.

Fig. 2 can also be interpreted in terms of classical
control theory. In that case, the environment represents

a mechanical system of which the compliance can be

modified by an additional compliance of the human

arm, which acts as the dynamic compliance controller.

2.1. Linear closed-loop system description

Most system identification techniques are designed

for linear systems, whereas biological systems are highly

nonlinear in nature (Winters and Stark, 1985; Kirsch et

al., 1994; Stein and Kearney, 1995). To use linear

techniques, a nonlinear system should be excited such

that it behaves almost linearly. This means that only

small variations of system states around a working point
are allowed. For human posture maintenance, this

requirement is easily met because it is the primary goal

of posture control to keep the position deviations small

with respect to a reference position. The approximation

around a specific reference point will never be perfect.

The imperfection of the linearized system with respect to

the original nonlinear system is accounted for by an

additional residual signal or model remnant R(f ) at the
output which is uncorrelated with the input D(f ), see

Fig. 3A. The linear dynamic compliance of the human

arm is indicated by the MFRF Hxf(f). Note that the arm

is expressed as the anticausal MFRF Hxf
�1(f) to preserve

the causal definition of the dynamic compliance. The

(virtual) compliance of the environment is indicated by

the MFRF Exz (f). Any nonlinearities in the virtual

compliance are also accounted for by the model remnant
R(f). Volitional force contribution, which is not corre-

lated with the imposed force disturbance D(t), is

represented by the input noise signal N(t ). Finally,

measurement noise is indicated by M(t) and is also

assumed uncorrelated with D(t). Since the control of

posture is a disturbance task, the blockscheme of Fig.

3A is redrawn into a disturbance blockscheme (Fig. 3B)

with a reference position at the input which has to be
maintained. Since model remnant and measurement

noise cannot be separated from each other, both noise

sources are taken together in one noise source M(f).

As a result of the closed-loop configuration, the input

noise N(f) also appears in the hand reaction force F(f)

and consequently is correlated with it. It is, therefore,

impossible to separate that part in the measured hand

position X(f) that comes from the hand reaction force
only. Identification of the arm compliance Hxf (f ) from

F(f ) and X(f) is, therefore, inadequate. An external

signal from outside the loop is needed to eliminate the

contribution of the noise source N(t). The only require-

ment is that the external signal is uncorrelated with the

noise inside the loop. The force disturbance signal D(t)

is taken as the most obvious choice.

The closed-loop estimator of the arm compliance is
derived from the system equations in which F(t) and

X(t) are to be expressed in terms of all the inputs to the

closed-loop system, being D(t), N(t ) and M(t ). First

define the frequency transforms of the signals into their

x �/y components:

F(nDf )� [Fx(nDf )Fy(nDf )]T

X(nDf )� [Xx(nDf )Xy(nDf )]T

D(nDf )� [Dx(nDf )Dy(nDf )]T

N(nDf )� [Nx(nDf )Ny(nDf )]T

Fig. 1. Schematical configuration of a typical experimental setup to

measure the planar dynamic compliance of the human arm. The hand

is physically attached to the manipulator. Forces and motions are

constrained to a horizontal plane and decomposed in cartesian (x �/y )

coordinates in the subjects frame. The origin of the frame is usually

located in the subject’s shoulder rotation center. F is the (2�/1) vector

of the hand reaction force and X is the vector of the endpoint or hand

position.

Fig. 2. Basic (nonlinear) closed-loop configuration of the mechanical

interaction between the human arm and the manipulator acting as the

environment. The total system is excited by a force disturbance D(t ).

The force applied by the human arm F(t ) acts in addition, and

opposite, to the external force. The system output is the common

endpoint or hand position X(t ).
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M(nDf )� [Mx(nDf )My(nDf )]T

where T denotes the vector transposed and nDf the

discrete frequencies. Hereby, n � /[0, 1, 2, . . ., N /2], N�/

fsT , fs the sample frequency and T the observation time

period. The signals are transformed by the standard fast

Fourier transform (FFT) algorithm. The system
MFRFs Hxf (nDf ) and Exz (nDf) are defined as two-by-

two matrices according to:

Hxf (nDf )�
Hxxfx

(nDf ) Hxxfy
(nDf )

Hxyfx
(nDf ) Hxyfy

(nDf )

� �
(1)

Exz(nDf )�
Exxzx

(nDf ) Exxzy
(nDf )

Exyzx
(nDf ) Exyzy

(nDf )

� �
(2)

with zx �/fx�/dx and zy �/fy�/dy . Then the system

equations are:

F� [I�H�1
xf Exz]

�1H�1
xf ExzD� [I�H�1

xf Exz]
�1N (3)

X� [I�ExzH
�1
xf ]�1ExzD� [I�ExzH

�1
xf ]�1ExzN

�M (4)

where I is the unit matrix. In Eqs. (3) and (4) the

arguments are omitted for readability. Making use of

the following algebraic rule:

[I�H�1
xf Exz]

�1H�1
xf �H�1

xf [I�ExzH
�1
xf ]�1

and substituting:

LT � [I�ExzH
�1
xf ]�1

into the transposed Eqs. (3) and (4), results in:

FT �DT ET
xzL

T H�1T

xf �NT HT
xf LT H�1T

xf (5)

XT �DT ET
xzL

T �NT ET
xzL

T �MT (6)

The cancellation of noise can be established by the use
of spectral densities. The spectral densities are obtained

by premultiplication of the loop signals (Eqs. (5) and

(6)) with the complex conjugate of the external signal

D(nDf) and then taking the expectation value of the

products according to:

Gdifj
�EfDi� FT

j g (7)

Gdixj
�EfDi� XT

j g i; j � [x; y] (8)

where * denotes the complex conjugate, G the spectral
density matrix and E{ �/} the expectation operator.

Application of spectral densities to the system equations

(Eqs. (5) and (6)) gives:

Gdf �GddET
xzL

T H�1T

xf �GdnHT
xf LT H�1T

xf (9)

Gdx�GddET
xzL

T �GdnET
xzL

T �Gdm (10)

with

Gdf �
Gdxfx

Gdxfy

Gdyfx
Gdyfy

� �
; Gdx�

Gdxxx
Gdxxy

Gdyxx
Gdyxy

� �
;

Gdd �
Gdxdx

Gdxdy

Gdydx
Gdydy

� �

The external force disturbance is assumed uncorrelated

Fig. 3. (A) Linear system approximation of the nonlinear system (dotted box) between input force disturbance D(t ) and output (hand) position X(t ),

expressed in the frequency domain. R(f ) is the model remnant, N(f ) system input noise and M(f ) measurement noise. All noise signals are unknown

and assumed uncorrelated with D(t ). The dynamic compliance of the arm Hxf (f ) is configured in a closed-loop with the environmental compliance

Exz (f ). The arm compliance is presented as its inverse to preserve its causal definition. F(f ) is the hand reaction force, applied via the hand of the

subject to the manipulator. (B) Redrawn of A into a disturbance control scheme where the goal is to reduce deviations around a reference position.

The posture task is represented by the reference position to be maintained (Xref�/0) which means that the effect of the force disturbance is to be

minimized. The output noise M(f ) also includes the model remnant R(f ).
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with both noise signals such that Gdm and Gdn equal the

nulmatrix. As a result, the corresponding cross-spectra

vanish from Eqs. (9) and (10). The arm compliance

follows from multiplication of both cross-spectral den-
sities, according to:

G�1
df Gdx�HT

xf L�1T

E�1T

xz G�1
dd GddET

xzL
T �HT

xf (11)

A sufficient requirement for the external force distur-

bance signals is that the matrix Gdd is invertible (Eq.

(11)), which means that both signals may not be fully

coupled to avoid matrix singularity. This still allows the

signals in both directions to be correlated with each

other. The closed-loop estimator is, therefore, indiffer-
ent to input coupling, which follows directly from Eq.

(11) where the product Gdd
�1Gdd vanishes.

The purpose of the closed-loop estimator is to obtain

an accurate estimate of the arm compliance Hxf .

2.2. Closed-loop system estimation

The derivation of the arm compliance (Eq. (11)) is a

theoretical one, based on expectation values in the

definition of the spectral densities (Eqs. (7) and (8)). In

fact, these definitions only hold for infinitely long

observations. A practical approximation of spectral

densities, based on finite time records, is obtained by
multiplication of the FFT-transformed signals accord-

ing to:

Ĝdifj
�DiF�j :EfDiFjg�Gdifj

i; j � [x; y] (12)

where Ĝ denotes the estimate of the true spectral density

G (Bendat and Piersol, 1986). Applying the approxima-

tion also to Gdx in Eq. (11) gives the final closed-loop
estimator:

Ĥxf �ĜT
dxĜ�1T

df (13)

with Ĥxf the estimated MFRF of the dynamic arm

compliance. Dividing the above equation into the matrix

components gives:

The left terms in both numerator and denominator

corresponds to the case of no cross coupling between

the x and y components in the closed-loop system,

i.e. of two decoupled single-input single-output (SISO)

systems. The fractions within brackets are corrections

for the case of nonzero coupling, i.e. the existence of off-

diagonal terms in the MFRFs, which is normally the

case in human arm endpoint compliance.

A common indicator of the amount of noise entering
the system, are the multiple coherence functions (Bendat

and Piersol, 1986):

ĝ2
xxdxy

�
P̂xxdx

Ĝdxxx
� P̂xxdy

Ĝdyxx

Ĝxxxx

ĝ2
xydxy

�
P̂xydx

Ĝdxxy
� P̂xydy

Ĝdyxy

Ĝxyxy

(14)

with ĝ2
xxdxy

multiple coherence function from both

inputs (Dx and Dy) to the output in x -direction

(Xx) and ĝ2
xydxy

from both inputs to the output in

y -direction (Xy). When both the multiple coherence

functions are close to one, the power of any noise

is small and the output X is almost linearly related to
the input D. In the case where the multiple coherence

functions are close to zero, the power of noise entering

the system is large. The multiple coherence functions

(Eq. (14)) make use of P̂xidj
(i , j � /[x , y ]), which is

the open-loop estimated MFRF of the complete

system from force disturbance to hand position, accord-

ing to:

P̂xd �ĜT
dxĜ�1T

dd (15)

and specified into its components gives:

P̂xidx
�

Ĝdxxi
[1 � Ĝdxdy

Ĝdyxi
=Ĝdydy

Ĝdxxi
]

Ĝdxdx
[1 � ĝ2

dxdy
]

P̂xidy
�

Ĝdyxi
[1 � Ĝdydx

Ĝdxxi
=Ĝdxdx

Ĝdyxi
]

Ĝdydy
[1 � ĝ2

dxdy
]

i � [x; y] (16)

where ĝ2
dxdy

is the estimated coherence function between

both disturbance signals and defined as:

ĝ2
dxdy

�
½Ĝdxdy

½2

Ĝdxdx
Ĝdydy

(17)

Partial coherence functions provide estimates of the

Ĥxxfx
�

Ĝdxxx
[1 � Ĝdyxx

Ĝdxfy
=Ĝdxxx

Ĝdyfy
]

Ĝdxfx
[1 � Ĝdyfx

Ĝdxfy
=Ĝdxfx

Ĝdyfy
]

Ĥxxfy
�

Ĝdyxx
[1 � Ĝdxxx

Ĝdyfx
=Ĝdyxx

Ĝdxfx
]

Ĝdyfy
[1 � Ĝdyfx

Ĝdxfy
=Ĝdyfy

Ĝdxfx
]

Ĥxyfx
�

Ĝdxxy
[1 � Ĝdyxy

Ĝdxfy
=Ĝdxxy

Ĝdyfy
]

Ĝdxfx
[1 � Ĝdyfx

Ĝdxfy
=Ĝdxfx

Ĝdyfy
]

Ĥxyfy
�

Ĝdyxy
[1 � Ĝdxxy

Ĝdyfx
=Ĝdyxy

Ĝdxfx
]

Ĝdyfy
[1 � Ĝdyfx

Ĝdxfy
=Ĝdyfy

Ĝdxfx
]
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linear relationships between one input (Dx or Dy ) and

one output (Xx or Xy) and is given by (Bendat and

Piersol, 1986):

ĝ2
dixj � dk

�
½Ĝdixj � dk

½2

Ĝdidj � dk
Ĝxixj � dk

i; j; k � [1; 2]; i"k (18)

where the residual spectra Ĝdixj � dk
are defined as:

Ĝdixj � dk
�Ĝdixj

�
1�

Ĝdidk
Ĝdkxj

Ĝdkdk
Ĝdixj

�
(19)

Working out the substitution of Eq. (19) into Eq. (18)

gives:

ĝ2
dixj � dk

�
½Ĝdixj

Ĝdkdk
� Ĝdkxj

Ĝdidk
½2

Ĝ2
dkdk

Ĝdidi
Ĝxjxj

(1 � ĝ2
dkdi

)(1 � ĝ2
dkxj

)
(20)

with ĝ2
dkdi

the ordinary coherence function between both

inputs, defined by Eq. (17), and ĝ2
dkxj

the ordinary

coherence function between one input and one output

and defined as:

ĝ2
dkxj

�
½Ĝdkxj

½2

Ĝdkdk
Ĝxj xj

(21)

Partial coherence functions are equivalent to ordinary

coherence functions after the effects of all other inputs

have been removed from both input and output of

interest (Bendat and Piersol, 1986). Because the input

coherence (Eq. (17)) is part of their expressions, multiple

and partial coherence functions compensate for cou-

pling between the input signals.

2.3. A particular case: the open-loop estimator

Normally, the arm is interacting with an environment
and it was argued that a closed-loop estimator was

necessary to obtain an estimate of the arm compliance.

A typical application of open-loop estimators accounts

in the case position disturbances are applied using a

strong servo controlled manipulator that simply imposes

(or dictates) a prespecified movement irrespective of the

generated hand force. The corresponding open-loop

estimator, as used by Perreault et al. (1999), can be
derived from the closed-loop estimator in the following

way. Let the environment be dominant over the arm, i.e.

Exz �/Hxf or Exz 0/0, then L 0/I .

Additionally, let the external force disturbance in-

crease proportionally such that D�/F. Now, Eqs. (5)

and (6) become:

FT �DT ET
xzH

�1T

xf �NT

XT �DT ET
xz�MT

The product DTExz
T actually describes the imposed

position disturbance. Taking DTExz
T �/Xdist

T as the posi-

tion disturbance, and substituting it into the above

equations gives:

FT �XT
distH

�1T

xf �NT

XT �XT
dist�MT

Effectively, Xdist has become the exciting input of the
arm and this is true as long as X�/Xdist (assuming M�/

Xdist). Evidently, the hand reaction force F must be

taken as the responding output. Assuming that both

noise sources are uncorrelated with the input Xdist, the

open-loop estimator becomes:

Ĝ�1
xx Ĝxf �Ĥ�1T

xf

For correctness of terms, in the above equation the

arm impedance (inverse of compliance) is given because
the force is assumed as an output. Accordingly, the

coherences functions need to be expressed between X

and F.

The other situation for which an open-loop estimator

can be derived is the ideal case that the manipulator has

no dynamics. This means that Exz 0/� and similar steps

can easily be followed to arrive at an open-loop

estimator for the arm compliance. In that case, F is
the exciting input and is equal to D.

2.4. Variance and bias of spectral density estimators

The goodness of the estimation is judged by the bias

and variance of the applied estimator. Variance is the

result of random parts in the signals and is reduced by

averaging the raw spectra (/Ĝdf and Ĝdx) over m adjacent

frequencies (Jenkins and Watts, 1968). As the result, the
frequency resolution decreases to mDf such that the

estimated compliance is defined at the following fre-

quencies:

Ĥxf (nDf ) 0
aver:

Ĥxf (Df1�pmDf ) p �

�
1; 2; . . . ;

N � m

m

�

with Df1 the lowest frequency after averaging according

to:

Df1�
1

m

Xn�2m

n�m�1

nDf

From the above equation it can be seen that the zeroth
frequency is removed from the spectral densities (related

to the mean values of the signals) by omitting the first

averaging window.

To preserve a certain minimal frequency resolution in

order not to average out peaks in the (M)FRFs, m

should be limited. Alternatively, the record time can be

increased, albeit restrictively to avoid fatigue effects

during experiments with humans in vivo.
Bias is the result of structural differences between the

estimated value and the real value. The largest bias

contribution is caused by the finiteness of the time
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records (Bendat and Piersol, 1986; Perreault et al.,

1999). In the case of long observations and a large

number of averaging frequencies, the bias of the spectral

densities approaches zero (Jenkins and Watts, 1968).
Variance of the estimated MFRFs is also reflected by

variance of the multiple coherence functions and bias

results in a decrease of the multiple coherence (Bendat

and Piersol, 1986; Perreault et al., 1999). Therefore,

multiple coherence functions will be taken as the explicit

indicators for the robustness of the estimator.

In addition to noise, the disturbance signal also enters

the system. In many studies this signal has been taken to
be stochastic too (Kirsch et al., 1993; Cathers et al.,

1999; Perreault et al., 1999, 2001), leading to a further

increment of bias and variance (Schoukens et al., 1993).

This is because the spectral properties of stochastic

signals are captured only from infinitely long observa-

tions and defined on a continuous frequency scale, while

for a finite observation time the system can only be

defined at discrete frequencies nDf . To exclude this
negative effect, a specific signal design method has been

adopted which is described in the following section.

2.5. Disturbance signal design

The disturbance signal will be designed in the

frequency domain such that the signal is completely

determined within T seconds in order to avoid bias. Any

spectrum can be realized, resulting in a sum of sine

waves with different frequencies. Using these multisine
signals (Schoukens et al., 1993), the system is identified

at those frequencies (nDf) constituting the disturbance

signal. To make the signal unpredictable for subjects,

the phases between all frequency components are

randomized.

The structure of the Fourier transform C(nDf), of the

time signal c (lDt) to be constructed, is determined as

follows:

C(nDf )�
XN=2

n�1

L(nDf )ejU(nDf )

�l1(cos u1� j sin u1)� . . .

�lN=2(cos uN=2� j sin uN=2) (22)

with U(nDf) a sequence of randomly generated phases

in the range [0. . .2p ]:

U(nDf )� [u1 . . . uN=2] (23)

and L(nDf ) a sequence of vector magnitudes:

L(nDf )� [l1 . . . lN=2]

The amplitude of each sine wave ln is adjusted to obtain
the appropriate spectral power distribution. For the

random generation of the phases, any type of distribu-

tion will suffice. In this case, a uniform distribution is

applied. Applying the inverse fast Fourier transform

(IFFT) to the N -point frequency vector [C(�/

nDf )C(0)C(nDf)] directly gives the corresponding time

signal c (lDt), with l�/1. . .N .

3. Simulations

The accuracy of the estimator of the dynamic arm

compliance (Eq. (13)) is analyzed for different controlled

conditions. For this purpose, computer simulations are

performed for varying properties of:

. the compliance of the arm,

. the compliance of the environment,

. input and output noise,

. the number of averaging frequencies,

. the length of the observation time.

3.1. Arm�/environment model

If both arm and environment were coupled mass-

damper-spring systems, the hand reaction force F(t)

would not be observable, i.e. could not be a system
output. This is because force is also a function of the

second derivative while only the zeroth (positions) and

first derivatives (velocities) are part of the state space.

To obtain the hand reaction force, handgrip visco-

elasticity is incorporated into the model, which repre-

sents the dynamics between the arm and the environ-

ment. In fact, the handgrip visco-elasticity decouples the

mass of both arm and environment such that the hand
reaction force is determined by the difference in velocity

and position between both masses. A representation of

Fig. 4. Model representation of the mechanical compliance of the arm

and the environment as used for simulation. The representation is

merely to illustrate the model equations and is simply reduced here to

one degree of freedom. Me , Be , Ke represent the mass-damper-spring

system of the environment. Bh , Kh represent the visco-elasticity of the

handgrip and Ma , Ba , Ka represent the mass-damper-spring system of

the arm. D is the external force disturbance acting upon the whole

system. Y is the arm position and X the position of the endpoint or

hand. F is the hand reaction force and N is the input noise from

uncorrelated activation of the muscles. Note that both masses are

decoupled by the handgrip visco-elasticity.
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the complete system of arm and environmental com-

pliance is given in Fig. 4. The representation is simplified

to one degree-of-freedom (for the drawing only) and

taken to be linear. A linear approximation of the planar
endpoint dynamics is justified for small amplitude

displacements (Dolan et al., 1993; Acosta et al., 2000).

The model is described in state-space form (Appendix

A). The state vector is:

X� [ẊX ẎY ]T

with X and Y the position and Ẋ and Ẏ the velocity of
the hand and arm, respectively. The inputs are D(t) and

N(t ), and the outputs are X(t ) and F(t). The output

noise M(t ) is added to the model output X(t). Fig. 5

shows an example of an input signal that is used for

simulation. The lowest frequency in this signal was

approximately 0.03 Hz (�/1/T for T�/32.768) and the

highest approximately 20 Hz, which is a sufficient

bandwidth to capture all arm dynamics (Perreault et
al., 2001). The signals are scaled such that the standard

deviation is 1 N.

Model simulations were performed in MATLAB/

SIMULINK
† (The MathWorks, Inc.) using a variable

time step Runge�/Kutta (Dormand�/Prince) solver. The

resulting signals were linearly interpolated to obtain

equidistant time samples at 125 Hz (N�/212 samples for

T�/32.768 s) reconstruction frequency (zero order

hold).

3.2. Model parameters

Two typical sets of arm-model parameters were taken

from the experiments of Tsuji et al. (1995), given in

Table 1. To evaluate the effect in the case where the arm

compliance contains a high resonance peak, a third

parameter set is used containing a reduced arm damping

of 25% of the default value (see Table 1). The default

parameter set is indicated with an asterisk.
The visco-elastic handgrip parameters were taken

from recent experiments from our group (De Vlugt et

al., 2002):

Fig. 5. Realization of an input disturbance signal. Left, power spectral density. Right, corresponding time signal (only the first 4 s). Standard

deviation: 1 N.

Table 1

Parameters of the dynamic compliance of the arm (set 1 and 2),

adopted from Tsuji et al. (1995) (their Table 4, subject A, position 1

and 2, respectively)

Ma [kg] Ba [N s/m] Ka [N/m]

1* 1:22 �0:31

�0:28 0:57

12:2 �9:68

�10:1 16:9
131 �123

�141 283

2 0:96 �0:57

�0:55 0:98

5:03 �4:13

�3:99 30:0
58:3 �45:6
�54:0 506

3 1:22 �0:31

�0:28 0:57

3:05 �2:42

�2:53 4:23

131 �123

�141 283

Ma , mass matrix; Ba , damping matrix and Ka , stiffness matrix. The

third parameter set contains a value for damping which is 25% of that

of the first parameter set while the mass and stiffness were taken as

equal. Asterisk indicates the default parameter set.

Table 2

Parameters of the environment used for simulation, with Me , mass

matrix; Be , damping matrix and Ke , stiffness matrix

Me [kg] Be [N s/m] Ke [N/m]

1* 1 0

0 1

0 0

0 0

0 0

0 0

2 2.53 0

0 2.53

223 0

0 223

10000 0

0 10000

The first combination represents a high environmental compliance

and is used for the application of force disturbances. The second

combination represents a low compliance having a flat bandwidth of

10 Hz, typically used for position disturbances. Asterisk indicates the

default parameter set.
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Bh�
200 0

0 200

� �
[N s=m];

Kh�
15 000 0

0 15 000

� �
[N=m]

with Bh , the grip viscosity and Kh the grip elasticity

matrix. These parameter values were taken the same for

all simulations.

Table 2 gives the parameter sets of two extreme

environments. The first set (default) corresponds to a

high compliance, appropriate for the application of

force disturbances. A symmetric endpoint mass of 1 kg

is taken which, in our experience, is a minimum for a

typical two-linkage manipulator. The second parameter

set represents a very low compliance, typically that of a

position controlled (stiff) manipulator and appropriate

for the application of position disturbances. This para-

meter set was chosen such that the MFRF is flat

(critically damped) having a bandwidth of 10 Hz.

The power of the noise contribution is expressed as

the signal-to-noise ratio (SNR) in decibels [dB]:

SNR�1010 log

�
Gnn

Gdd

�
[dB] (24)

with Gnn the power spectrum of the input noise, and Gdd

the power spectrum of the disturbance signal. In case of

output noise: Gnn is replaced by Gmm and Gdd by Gxx .

3.3. Methodological parameters

The accuracy of the estimator is judged for different

values of noise levels, observation time period and width

of the frequency window used for averaging. The values

are given in Table 3 where the defaults are indicated

with an asterisk. The most meaningful combinations of

these different parameter values are evaluated and the

results are described in the following section.

4. Results

4.1. Arm compliance

Fig. 6 shows the estimated dynamic compliance
Hxf (nDf ) for parameter sets 1 and 2 of Table 1. All

other parameters were set at their default values. For

almost all frequencies, the estimated MFRFs are very

good approximations of the modeled MFRFs (dotted

lines). Any deviation from the modeled compliance is

the result of noise and the application of frequency

averaging that increase the variance and bias. For the

off-diagonal elements, the estimates deviate the most.
Especially for parameter set 2 where the off-diagonal

elements of the compliance were smallest (less contribu-

tion to the output) such that the SNR was highest. The

accuracy of the compliance estimates is reflected by the

coherence functions shown in Fig. 7. For the diagonal

elements, the output is almost linearly related to the

input for all frequencies as indicated by high values of

the corresponding partial coherence functions. The
deviations of the estimated compliance for the off-

diagonal elements are reflected by smaller values of

the partial coherence functions. The multiple coherence

functions are high for all frequencies, indicating a

predominant linear behavior between force disturbance

and hand position.

Hereafter, only the multiple coherence functions will

be shown for convenience of comparison.

4.2. Environmental compliance

For high compliance of the environment, the multiple

coherence is mainly determined by the arm compliance.

In the case where the compliance of the environment is

severely lowered (second parameter set, Table 2) the

overall system MFRF will mainly be determined by the
compliance of the environment. Consequently, any bias

around the resonance frequency of the arm, due to

averaging out its resonance peak, will vanish. For a clear

illustration of this effect, the highly resonant arm

compliance (third parameter set in Table 1) is used for

both types of environments. The increase of the multiple

coherence functions is clearly demonstrated as being due

to the dominance of the environment (Fig. 8, from solid
lines to dotted lines).

4.3. Input and output noise

Both noise signals are generated as a stochastic

sequence of time samples and filtered at 20 Hz (fourth

order Butterworth) to avoid aliasing. With increasing

power level of both input and output noise, the
estimated multiple coherence functions decrease, as

was expected (Fig. 9). The coherence functions are still

very high (�/0.8) for SNRs of �/10 dB. When the power

Table 3

Estimator and simulation parameters

SNRf , SNRx (dB) T (s) m (�/)

�/20* 32.768* 4*

�/10 16.384 8

0 8.192 16

SNRf and SNRx , signal to noise ratios for input and output noise,

respectively; T , observation time length; m , number of averaging

frequencies. Asterisk indicates the default parameter set.
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of the noise is as large as that of the signal itself (SNR�/

0 dB), the estimated multiple coherence functions

remain mostly above 0.4.

4.4. Frequency averaging and observation time length

The smoothing effect of averaging is largest in the

case of severe noise. For large stochastic noise power

(SNR�/0 dB) at both input and output in combination

with only four averaging frequencies (m�/4), variance

and bias of the estimated coherence functions are large

(Fig. 10). For m�/16, the variance is smaller resulting in

smoother estimates of the coherences.

The effect of the observation time length is analyzed

for the default conditions, except that no noise is

applied. Then the only cause for bias is the width of

Fig. 6. Estimated dynamic compliance Hxf of the arm for parameter sets 1 and 2 (set 1 labeled by 1’s). Solid lines, estimations; dotted lines, model.

All other parameters are set at the default values.
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the frequency window used for averaging, which is

directly dependent on the number of averaging frequen-

cies (m ) and reciprocally on the observation time length

(T ). Fig. 11 shows the estimated multiple coherence

functions for 32.768, 16.384 and 8.192 s (m�/4). The

multiple coherence functions decrease to a minimum for

the shortest record length at the eigenfrequency of the

arm where the variation of the MFRFs is largest. For

this short observation, the width of the frequency

window was largest, i.e. m /T�/4/8.192:/0.5 Hz. The

multiple coherence was still very high (�/0.8, Fig. 11,

upper row). For comparison, the same exercise is

performed but now with different window widths to

preserve the same frequency resolution. Therefore, m�/

Fig. 7. Estimated coherence functions corresponding to the complete system from force disturbance D to end point position X corresponding to the

estimates shown in Fig. 6 (parameter set one labeled by 1’s). Upper two rows, partial coherence functions; bottom row, multiple coherence functions.
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16, 8 and 4 for T�/32.768, 16.384 and 8.192 s,

respectively. Fig. 11 (bottom row) now shows that all

estimated multiple coherence functions exhibit a mini-

mum, which is more or less the same.

5. Discussion

This article presents a new multivariable closed-loop

identification method to estimate the compliance of the

Fig. 8. Multiple coherence estimates in the case of different admittances of the environment. Arm damping Ba is set to 25% of its default value. Solid

lines, large (default) compliance of the environment. Dashed dotted lines, low compliance of the environment. Note the lowest value on the ordinate

is 0.75.

Fig. 9. Estimated multiple coherence functions for different signal-to-noise ratios at the input (upper row) and output (bottom row): �/20 dB (solid

lines); �/10 dB (dashed-dotted lines) and 0 dB (dotted lines).
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Fig. 10. Estimated multiple coherence functions for two different numbers of averaging frequencies (m ) in case of large noise power at both input

and output (SNR�/0 dB). m�/4 (dotted lines), m�/16 (solid lines).

Fig. 11. Estimated multiple coherence functions for different observation time lengths (upper row) without noise. T�/32.768 s (solid lines); T�/

16.384 s (dashed�/dotted lines) and T�/8.192 s (dotted line). Bottom row: T�/32.768 s with m�/16 (solid lines); T�/16.384 s with m�/8 (dashed�/

dotted lines) and T�/8.192 s with m�/4 (dotted line). Note the lowest value on the ordinate is 0.75.
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arm during excitation with continuous force distur-

bances. The method is applicable to posture tasks where

interaction with an environment takes place, which

always results from the application of force distur-
bances. The accuracy of the estimator is tested for

different parameters of the dynamic compliance of the

arm and several methodological conditions.

In the following, the performance and limitations of

the estimator, the validity of the arm model, the

properties of the disturbance signals and the relevance

of applying force disturbances are discussed.

5.1. Estimator performance

Estimates are always contaminated with bias (struc-

tural errors) and variance (random errors). Both are

primarily the result of noise. Input noise comes from

additional inputs that are uncorrelated with the force

disturbance signal, like uncorrelated muscle activation,

and can be minimized by preventing anticipatory

behavior of the subject. To rule out anticipation,
unpredictable (random) disturbances are necessary.

Output noise is mainly caused by system nonlinearities

and time variant behavior of the limb and environment.

Nonlinearities can be minimized using small amplitude

disturbances and application of high performance

(linear) manipulators. Time variant behavior is likely

to be minimal with clear and natural task instructions

that are translated by the CNS into unambiguous
motion control actions.

For modeling purposes, noise at the input can easily

be replaced by noise at the output, accounting for the

difference of the MFRF of the combined system. The

input noise power was almost constant over frequency

while the power of the output noise was taken as a

scaled version of the output itself, according to the

expression of the SNR (Eq. (24)). Hence, the difference
between the input and output noise power is determined

(approximately) by the gain of the MFRF of the

combined system such that their net effects are the

same at the output (Fig. 9). Despite this rather simplistic

combination of input and output noise power, it clearly

demonstrates that high frequency input noise deterio-

rates the estimates to a lesser extent than high frequency

output noise. This is due to the filtering effect of the
system compliance.

Averaging of the raw spectra over adjacent frequen-

cies is applied, which effectively reduces the variance

(Fig. 10). Another positive effect of averaging is that

bias in the estimates of the partial and multiple

coherence functions decreases (Jenkins and Watts,

1968). This is also clear from Fig. 10 where the estimates

are apparently too high for m�/4 compared with those
for m�/16. The disadvantage of frequency averaging is

the increase of bias due to the decrease of the frequency

resolution. Bias is particularly large at frequencies where

the MFRF of the system to be identified contains abrupt

changes, e.g. from oscillatory behavior (Fig. 8). The

trade-off between the positive and negative effects of

frequency averaging can primarily be solved with
increasing the observation time length (Fig. 11).

Another source of bias and variance originate from

the application of stochastic disturbance signals (Schou-

kens et al., 1993). The bias can be reduced by

substantially increasing the observation time length, as

mentioned before. However, to avoid time variant

behavior due to fatigue in the case of in vivo experi-

ments, long observations are undesirable. Application of
deterministic disturbances, like the multisine signals in

this study, instead of stochastic noise has been proved to

reduce bias in the estimates (Peeters et al., 2001).

An important property of the estimator is the

accurateness for short observations. For instance, a

8.192 s observation time length and only four averaging

frequencies still results in high multiple coherence

functions (�/0.8, Fig. 11), at a frequency resolution of
Df�/4/8.192:/0.5 Hz.

An alternative averaging method, as used in the study

by Perreault et al. (1999), is the periodogram approach

or Welch method (Welch, 1967). This method relies on

segmentation in the time domain of the measured signals

and performing spectral estimates on each segment. The

raw estimates of each periodogram are averaged and

used to calculate the final estimate of the arm compli-
ance, using the same estimator as used in this study. The

Welch method is, therefore, less suitable to deterministic

signals as used in this study because the requirement was

that the observation time length should be the same as

the period of the disturbance signal in order to achieve

the exclusion of bias. Because segmentation introduces

bias, a deterministic disturbance is not preferred any-

more to a stochastic one for application of the Welch
method. Hence, the advantage of deterministic signals

does not apply to the Welch method.

For the same model parameters and noise power,

Perreault et al. (1999) showed values of the estimated

multiple coherences of about 0.7 with a 2.56 s (Welch)

window (Df�/1/2.56:/0.4 Hz). Our results showed

somewhat higher values (�/0.8, Fig. 11) for a compar-

able frequency resolution (T�/8.192, m�/4, Df :/0.5).
Similarly, for higher frequency resolutions, i.e. T�/

16.384 and 32.768 s in our case (with a constant number

of averaging frequencies of m�/4) against Welch-

window sizes of 5.12 and 10.24 s, respectively, the

estimates of the multiple coherences are comparable.

However, their results required a total observation time

length of 60 s, which is more than seven times longer

than in our case for T�/8.192, and four times and two
times longer in the case of T�/16.384 and 32.768 s,

respectively. Generally, the identification method pre-

sented here requires relatively short observations and

moderate averaging to preserve sufficient frequency
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resolution with reasonably high values of the multiple

coherence functions. It is proved by this study that the

current identification method together with the applica-

tion of the deterministic disturbances offers accurate
estimations, within observation times that are substan-

tially shorter than required by the Welch method.

Evidently, experiments should be conducted to verify

high multiple coherences during such a short observa-

tion times in practice.

Perreault et al. (1999) used a sampling frequency of 50

Hz against 125 Hz in this study. However, sampling

frequency has no influence on the frequency resolution
and, therefore, does not change the results. The advan-

tage of a higher sampling rate is that low-pass anti-

aliasing filters can be applied with cut-off frequencies

sufficiently above the frequency range of interest, which

is approximately 20 Hz for mechanical properties of the

arm.

Coherence functions apply to independent inputs and

the outputs of the combined closed-loop system. In the
case where the compliance of the environment is

substantially lower than that of the arm, the estimated

multiple coherence function is largely determined by the

(linear) environment instead of the arm (Fig. 8). An

open-loop estimator should be used in these cases to

circumvent this problem. However, in the case of force

disturbances, a high environmental compliance is pri-

marily desired resulting in an input�/output behavior
that is mainly determined by the arm compliance. In

these cases, coherence functions, therefore, are largely

determined by the arm compliance.

5.2. Frequency versus time domain identification

An alternative to the frequency domain is identifica-

tion in the time domain. The corresponding nonpara-

metric time domain identification then provides
estimates of the system’s matrix impulse response

function (MIRF). For linear open-loop systems, both

time and frequency domain identification obtain com-

parable estimates (Perreault et al., 1999). Besides

numerical differences, there is a preference for MFRFs

to MIRFs with respect to visual presentation. Where

MIRFs are poor indicators of the system dynamics and

give only insight in the time extent or memory of the
system, MFRFs show important global properties of

dynamic systems such as the order of the system, relative

damping and regions of oscillatory behavior.

Apart from these general differences, a detailed

comparison cannot be made because nonparametric

identification in the time domain has not been studied

previously for closed-loop systems. Usually, parametric

estimators in the time domain are applied using a fixed
model structure of the system to be estimated. Para-

metric identification is less attractive in the first stage

when detailed knowledge of the system structure is not

at hand. A proofed method to quantify the parameters

of a single-joint arm model is the application of a

nonparametric estimator in the first stage, followed by

(least squares) fitting of a parametric model onto the
estimates as the second stage (Van der Helm et al.,

2002).

5.3. Validity of the arm model

The arm model used is very simple, only consisting of

a linear mass-damper-spring system. This model is

frequently used to describe the input�/output behavior

of limbs at endpoint (mostly the hand) for small
continuous displacements around a reference point

under different experimental conditions (Dolan et al.,

1993; Tsuji et al., 1995; Gomi and Kawato, 1996; Gomi

and Osu, 1998; Perreault et al., 2000, 2001). Despite its

limited descriptive ability, since it is only a lumped

representation of intrinsic and reflexive dynamics to-

gether, these studies showed that this model is quite

accurate for the conditions studied. In previous studies
from our group, we extended the mass-damper-spring

system with linear position and velocity feedback to

separately identify the gains of muscle spindles (De

Vlugt et al., 2002; Van der Helm et al., 2002). For the

experimental conditions applied, we found that both

gains depend on the frequency content of the force

disturbance and damping of the environment. Despite

the highly nonlinear behavior of the muscle spindles,
mainly due to their unidirectional sensitivity to stretch

(Kirsch et al., 1994; Stein and Kearney, 1995; Kearney

et al., 1997; Zhang and Rymer, 1997; Mirbagheri et al.,

2000), high values for the variance accounted for (VAF)

were found with the linear endpoint model.

Other nonlinearities on the muscle level are the

different calcium activation�/deactivation rates, and

mechanical properties of the contractile elements like
the force�/length and force�/velocity characteristics

(Winters and Stark, 1985). Apparently, in multiple

muscle systems these nonlinearities cancel out at end-

point level under specific conditions. Application of the

linear identification method as developed in this study

seems, therefore, justified. Summarized: (1) the applica-

tion of small amplitude disturbances simply do not

excite appreciable nonlinearities; (2) unidirectional pre-
sumably turns into bidirectional behavior in the case of

muscles acting as antagonistic pairs and (3) from a

functional anatomical point of view, different muscles

likely act at different lengths hence distributing their

characteristics over a wider range of motion which

smoothes out the nonlinearities.

5.4. Relevance of force disturbances

Application of force disturbances while performing a

position task offers insight into the disturbance rejecting

E. de Vlugt et al. / Journal of Neuroscience Methods 122 (2003) 123�/140 137



behavior of the human controller, i.e. the properties of

the arm compliance. This experimental condition

equates to natural posture tasks that aim to minimize

deviations around a fixed desired position. Examples are

holding a steering wheel or positioning a drilling

machine (in the lateral direction). The magnitude of

positional deviations is dependent on the total compli-

ance at the endpoint (hand) and evidently from the

power of the disturbance. The total compliance is the

sum of the compliance of the arm and the environment,

i.e. the dynamic compliance of the steering wheel in this

example. Because there is mutual interaction, the end-

point compliance can be adapted through changing the

compliance of the human arm.

The advantage of continuous disturbances is

that subjects have the opportunity to adapt to the

disturbance, in contrast to transient disturbances.

In particular for unpredictable continuous disturbances,

the arm compliance can only be changed by different

(constant) levels of intrinsic and reflexive contri-

butions. In general, high (co)contraction and large

feedback from muscle spindles can potentially de-

crease the arm compliance and hence improve the

disturbance rejection.

Simulation studies have shown that intrinsic and

reflexive mechanisms were effective for continuous

unpredictable force disturbances where the task was to

minimize hand displacements. In particular, high affer-

ent position feedback was predicted for small bandwidth

force disturbances (De Vlugt et al., 2001; Schouten et

al., 2001). These results were very similar to a compar-

able experimental study by Van der Helm et al. (2002),

and were explained from an optimal controller perspec-

tive, i.e. adjustment of the dynamic arm compliance to

minimize displacements of the hand. Such explanations

are only possible if the system is being perturbed by

force disturbances such that all compliance mediating

mechanisms have direct effect on the task performance

(or hand displacement).

In the case of continuous position disturbances a

force task seems logical (compared with force distur-

bances and a position task) and one is likely interested in

mechanisms that are suited to control force, probably by

Golgi tendon organs. Studies based on such an ap-

proach are not known to us. The challenge remains to

clarify the role of different mechanisms, in particular

reflexes that contribute to whole limb compliance for

different tasks and during continuous disturbances. The

degree of interaction and the type of disturbance signals

are important aspects in (1) understanding the adapt-

ability of the arm compliance by the CNS and (2) the

choice (open or closed-loop) of the identification

method. Unfortunately, these aspects were not fully

recognized in the literature.

6. Conclusions

Closed-loop identification is necessary to estimate the

mechanical properties of the arm using force distur-
bances where interaction with the environment always

exists. This study proposes a new frequency-domain

estimator that estimates the arm compliance from the

closed-loop. The major advantages of the estimator are

summarized below.

. The estimator is nonparametric such that no a priori

system knowledge is required.

. The estimator is very accurate and requires only short

observations periods.

. The application of deterministic multisine distur-
bance signals do not introduce bias and variance,

and facilitates full control of the input spectra.

To understand the functionality of mechanisms con-

trolling the dynamic compliance of the arm during

posture tasks, the application of force disturbances

and manipulable environments is important because it

establishes a natural experimental condition. In order to

estimate the arm compliance under such conditions, a

closed-loop identification method as described in this
study is indispensable.

Appendix A: State space model of arm, hand and

environment

The complete model is described by three equations

(see Fig. 4).

The arm model:

F(s)�N(s)�MaŸ(s)�BhẎ(s)�KhY(s) (25)

The hand model:

F(s)�Bh(Ẋ(s)�Ẏ(s))�Kh(X(s)�Y(s)) (26)

The environmental model:

D(s)�F(s)�Me(s)Ẍ(s)�BeẊ(s)�KeX(s) (27)

where s is the Laplace operator. Eliminating F(s) by

substituting Eq. (26) into Eqs. (25) and (27), results in
the following two system equations:

Ẍ�M�1
e [�(Be�Bh)Ẋ�(Ke�Kh)X�BhẎ�KhY�D]

Ÿ�M�1
a [BhẊ�KhX�(Bh�Ba)Ẏ�(Kh�Ka)Y�N]

where the Laplace operator is omitted for readability.

The state space model equals:

Ċ�AC�BU

F�CC�DU (28)

with A the 8�/8 system matrix, B the 8�/4 input matrix,

C the 4�/8 output matrix and D the 4�/4 throughput
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matrix:

B�

M�1
e O

O O

O M�1
a

O O

2
664

3
775

C�
O I O O

Bh Kh �Bh �Kh

� �

D�
O O

O O

� �

I is the 2�/2 identity matrix and O the 2�/2

nulmatrix.

The state vector X equals:

C�

Ẋ

X

Ẏ

Y

2
664

3
775

with X�/[XxXy ] and Y�/[YxYy ]T . The input and out-

put vectors equal:

U�
D

N

� �

with D�/[DxDy ]T , N�/[NxNy ]T and

F�
X

F

� �

with F�/[FxFy ]T .
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