

CT4410 Design assignment 2010-2011
A list with 'what to do and/or answer'
Design a gravity irrigation system

Issue 1: Water demand versus water availability
Demand: is determined by

Crop(s)
Cropping pattern(s)
Soil preparation (basically bringing soil up to field capacity)

Availability: is determined by
Rainfall - which part is effective???
Surface water flow - low flows, average flows,
high flows? Frequencies?
Groundwater - how much recharge? (not in this design exercise)

Timing of the demand Timing of availability
Options for adapting to availability

Options for storage?

This results in:

Amount of hectares to be irrigated

Associated risk in balancing demand and availability

Issue 2: Bringing water to the field(s)

- Continuously?
- 24 hours a day to one field, to a group of fields?
- Rotation?
- 24 hours a day? Only during the day? 7 days a week? Fixed turns, days, hours?
- What flow is available for farmers?

Issue 3: Grouping farmers (?)

Issue 4: Who decides?

- Water delivery
- Demand-based, request-based, supply-based?
- Upstream or downstream control?
- Delivery and response times?

Issue 5: Water control structures

- Discharge control?
- Measurement?
- Fixed or adjustable?
- Sensitivity?

Issue 6: Are you sure things will happen as you designed them to happen??

Data design assignment CT4410

Crops

The system needs to deliver water for the following crops:

Crop	Mean surface area (\% of total)	Growing period
Cotton	30	Oktober/November - March/April
Mais	40	February - Oktober
Vegetables	30	March - June
Rice	0	December - April

Crop water requirements will be given during class.

Typical field size

One farmer can irrigate about 1 hectare.

Soil

Silty loam, with groundwater tables at least 3 meters below the surface.

Climate

	Mean rainfall	Min rainfall	Max temp	Min temp	Humidity	Wind speed	Sunshine
	mm	mm	C^{0}	C^{0}	$\%$	$\mathrm{Km} / \mathrm{hr}$	Hrs
Jan	118	75	35.1	19.5	65	10	8
Feb	107	50	33	18.6	70	9	7.4
Mar	80	34	30.1	16.7	72	8	6.1
Apr	49	23	26.5	12.5	74	8	5.6
May	30	0	23.1	9.7	81	7	5.5
Jun	15	0	20	7.0	83	7	4.1
Jul	10	0	21	4.8	74	8	5.8
Aug	15	0	23.9	6.5	64	10	6.9
Sep	36	0	27	10.2	58	12	6.8
Oct	46	12	29.9	13.9	59	12	7.2
Nov	75	56	32.2	16.6	62	12	7.6
Dec	125	101	34.6	19	61	10	8.1
Average	59	30	28	12.9	68.6	9	6.6

Maximum rainfall event: 100 mm in 2 hours

Available water in the river in $\mathrm{m}^{\mathbf{3}} / \mathrm{s}$

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	4	2	1.5	0.3	0.2	0.2	0.1	0.1	0.1	0.8	1.6	1.5
Max	8	5	5	2	1	1	0.5	0.5	0.5	3	4	4
Min	2	1	1	0.2	0	0	0	0	0	0.5	0.6	1

