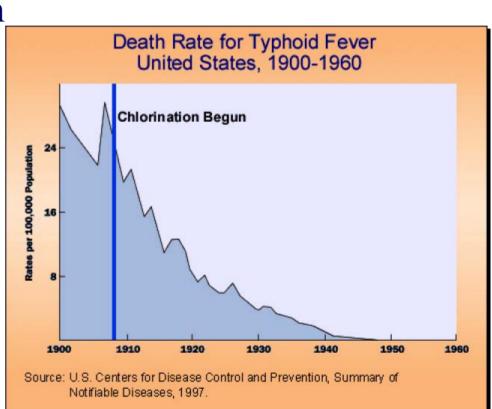
Disinfection


Kebreab Ghebremichael, PhD Prof. Gary Amy, PhD

2007

Objectives and means of disinfection

- Destruction or inactivation of pathogenic organisms
- Disinfection can be done by:
 - chemical means- chlorine, ozone,
 - non-chemical means- heat, UV irradiation

Mechanisms of pathogen inactivation

- Destruction of cellular structure
- Interference with metabolic activities and protein synthesis
 - In water treatment combinations of these mechanisms play role

Microorganisms

• Microorganisms of concern include:

Туре	Size	<u>, µm</u>
Viruses	0.01	to 0.1
Bacteria	0.1	to 5
Cryptosporidium oocysts	3	to 5
Giardia cysts	6	to 10
Protozoan	10	to 25
Algae	5	to 100

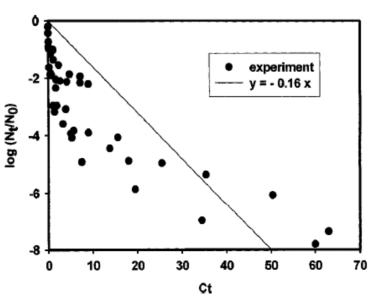
- Indicator organisms are often used to assess the presence or absence of pathogens
- Common indicator organisms are coliforms- E-coli

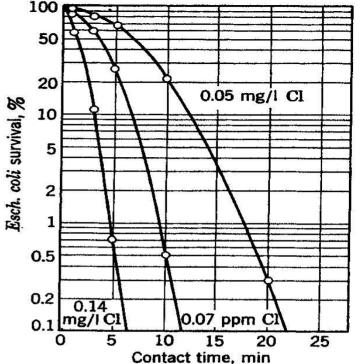
Disinfection kinetics

- Chick's law
- Best described by first order reaction

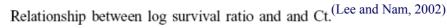
$$\frac{dN}{dt} = -k * N \to \ln\left(\frac{N}{N_0}\right) = -k * t$$

•
$$N/N_0 = e^{-k.t} \rightarrow reduction factor (R)$$


number of micro-organisms destroyed per unit of time is proportional to the number of organisms


- Where
 - $N = \text{concentration of organisms } (N/m^3)$
 - No = initial concentration of organisms (N/m^3)
 - t = time
 - k = rate constant- this depends on disinfectant concentration, organism and temperature

Disinfection kinetics


- Chick-Watson model
 - Relates the rate constant of inactivation, k, to the disinfectant concentration, C.
 - k = k'C^b b is coefficient of dilution

$$\ln (N/N_0) = k'C^b t$$

Source: Faust and Aly, 1998

Removal of microorganisms during water treatment

Significant removal of microorganisms is achievable by processes other than disinfection.

USEPA- Surface Water Treatment Rule (SWTR) –gives log removal credits to other processes

Treatment	Log removal		
Treatment	Giardia	Viruses	
SWTR	3.0 (99.9%)	4.0 (99.99%)	
Conventional treatment	2.5	2.0	
Direct filtration	2.0	1.5	
Slow sand filtration	2.0	2.0	
Membrane processes	3-4	3-4*	

* using Ultrafiltration

Factors affecting disinfection

- Turbidity (particulates can shield micro organisms); turbidity should not exceed 0.5 NTU;
- Organic matter and ammonia (they react with disinfectants);
- pH (may change chemical form of disinfectant e.g. HOC / OCl⁻);
- Temperature (diffusion and reaction rate);
- Disinfectant dose and contact time

Primary and secondary disinfection

Primary disinfection: Commonly achieved by combination of filtration and chemical oxidation

Secondary or post disinfection: Maintaining residual disinfectant in the distribution system in order to control re-growth

Residual chlorine requirements at consumers points

	WHO	USEPA	NL
Residual concentration, mg/L	0.2	0.25	0.0

Re-growth

Main cause

• Availability of AOC and nutrient in the distribution system

Main effects

- Formation of taste and odour under anaerobic conditions
- Growth of macro-organisms e.g. worms;
- Corrosion

Control mechanisms

- Effective treatment to produce biostable water;
- Ensuring sufficient residual disinfectant in the network

Common disinfection chemicals

Chlorine compounds- Cl_2 ,	Can be found in liquefied gas, solution or solid forms
Ozone (O_3)	produced on site
Chlorine dioxide (ClO ₂)	produced on site
Chloramine (eg. NH ₂ Cl)	formed by addition of ammonium and chlorine to the water
Potassium permanganate (KMnO ₄) ⁻	a violet solid
Silver (Ag ⁺)	in ceramic filters

Strength and stability of disinfectants

Disinfectant	Power	Stability
OCl ⁻ (hypochlorite)	Weak	Decomposes slowly
HOCl (Hypochlorous acid)	Strong Decomposes slow	
NH ₂ Cl (Monochloramine)	Very weak	Very stable
ClO ₂	Strong (Very) stable	
O ₃	Very strong	Very unstable
KMnO ₃	Weak	Unstable

Which disinfectants are suitable for post disinfection?

Effectiveness of disinfectants

- Disinfectants can be compared in terms of CT value
 - C is disinfectant dosage, mg/L
 - T contact time. min

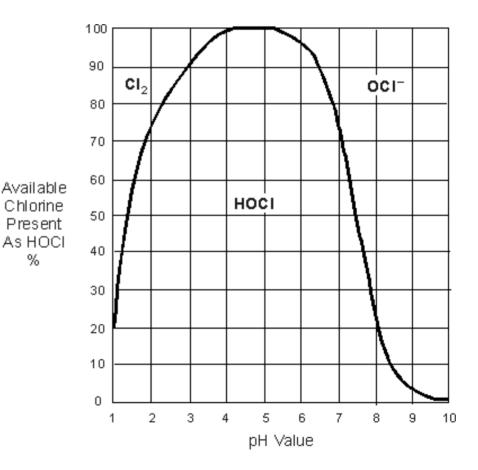
		Inactivation			
Disinfectant	Unit	1-log	2-log	3-log	4-log
		Ba	cteria		
Chlorine (free)	mg-min/L	0.1-0.2	0.4-0.8	1.5-3	10-12
Chloramine	mg-min/L	4-6	12-20	30-75	200-250
Chlorine dioxide	mg·min/L	2-4	8-10	20-30	50-70
Ozone	mg·min/L	6	3-4		
		V	irus		2 (1509)0575
Chlorine (free)	mg·min/L		2.5-3.5	4-5	6-7
Chloramine	mg-min/L		300-400	500-800	200-1200
Chlorine dioxide	mg·min/L		2-4	6-12	12-20
Ozone	mg·min/L		0.3-0.5	0.50.9	0.6-1.0
		Protozo	an cysts		
Chlorine (free)	mg·min/L	20-30	35-45	70-80	
Chloramine	mg·min/L	400-650	700-1000	1100-2000	
Chlorine dioxide	mg-min/L	7-9	14-16	20-25	
Ozone	mg·min/L	0.2-0.4	0.5-0.9	0.7-1.4	

Chlorine

Chlorine is the most commonly used and low cost disinfectant. It is available in four different forms:

Compound	Form	% Chlorine
Chlorine(Cl ₂)	Liquefied gas	100
Sodium hypochlorite solution (NaOCl)	Solution	10 to 15
Bleaching powder (CaOCl ₂)	Solid	25 to 35
High test hypochlorite Ca(OCl) ₂	Solid	70

Dissociation of chlorine


Chlorine dissolves in water & at normal pH it yields HOCl and OCl⁻

 $Cl_2 + H_2O \rightarrow HOCl + H^+ + Cl^-$

 $HOC1 \quad \leftrightarrow \quad OC1^- + H^+$

Sodium hypochlorite, Bleaching powder, High Test Hypochlorite also

form HOCl and OCl-

Note that above pH 4, Cl_2 does not exist

Break point chlorination

Break point chlorination is the addition of sufficient chlorine to produce free available chlorine

HOCl and OCl- react with ammonium to form: monochloramine; dichloramine; trichloramine or oxidize it to N₂

sum of HOCl and OCl-=Free available chlorineSum of mono-, di- and tri- chloramines=Combined available chlorineSum of free and combined chlorine=Total available chlorine

All forms are expressed as mg Cl_2/l .

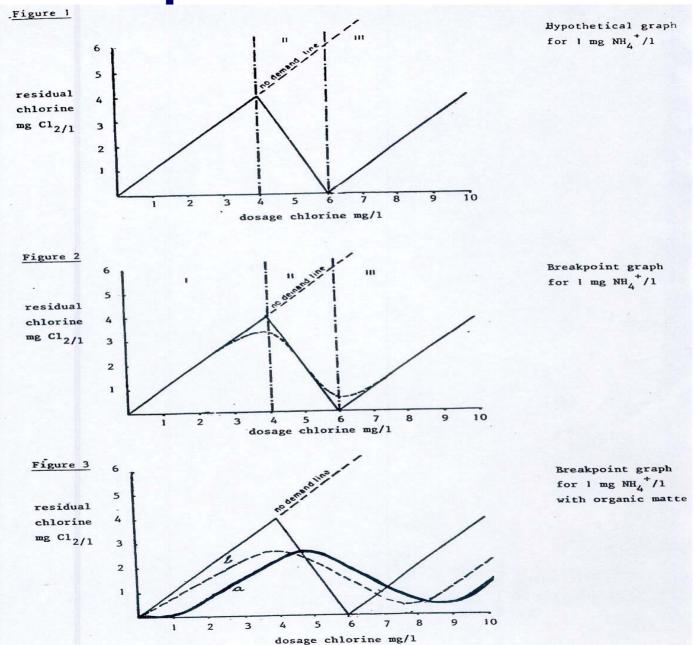
Break point chlorination

Summary of the reactions:

I. $2NH_4^+ + 2Cl_2 \rightarrow 2NH_2Cl + 4H^+ + 2Cl^-$

 1 mg NH_4^+ requires 4 mg Cl_2

- II. $2NH_2Cl + 2Cl_2 \rightarrow 2NHCl_2 + 2H^+ + 2Cl^-$
- III. $2NHCl_2 \rightarrow N_2 + Cl_2 + 2H^+ + 2Cl^-$ formed Cl_2 reacts with remaining NH_4
- IV. $2NH_4^+ + 3 Cl_2 \rightarrow N_2 + 8H^+ + 6Cl^-$


The overall reaction is known as:

" Breakpoint Chlorination "

In general 6 mg Cl_2 is required per mg NH_4^+

In practice more chlorine is required due to presence of organic matter

Break point chlorination

Disinfection by products (DBPs)

- DBPs are produced by the reaction of disinfectants and
 - mainly organic compounds (NOM)
 - bromide ion
- Most common DBPs include:
 - Trihalomethanes (THMs)
 - Haloaceticacids (HAAs)
 - Bromate
 - Chlorite

Guidelines for DBPs

DBPs	Maximum contaminant level (µg/L)		
	WHO (1993)	USEPA (2006)	EU
Bromoform	100	0*	
Dibromochloromethane	100	60*	
Bromodichloromethane	60	0*	
Chloroform	200	70*	
TTHM	50	80	100
HAA5 <u>**</u>		60	
Bromate		10 (Average value)	10
Chlorite		1mg/L	

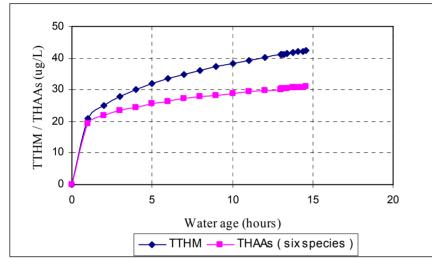

* Maximum contaminant levels goals

****** HAA5: Sum of five HAAs,

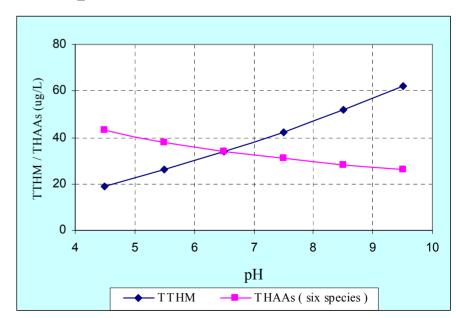
Factors affecting DBPs formation

Water quality:	Operational parameters
Type and concentration of precursors NOM, bromide	Disinfectant type and dose
pH	Contact time (water age)
Temperature	
Ammonia concentration	

Chlorine vs. Chloramines Ontario (Canada) Survey


Utility #

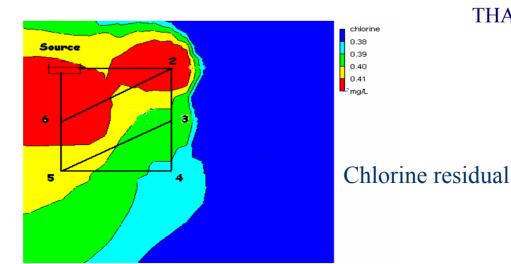
Utility 1-9 (chlorine)


Utility 10-13 (chloramines)

Factors affecting DBPs formation

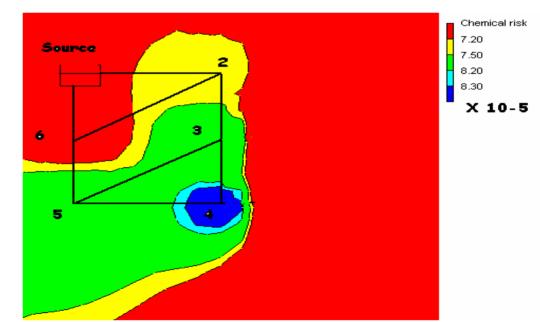
Time

pН



Isopleths of DBPs and chlorine residual in distribution networks

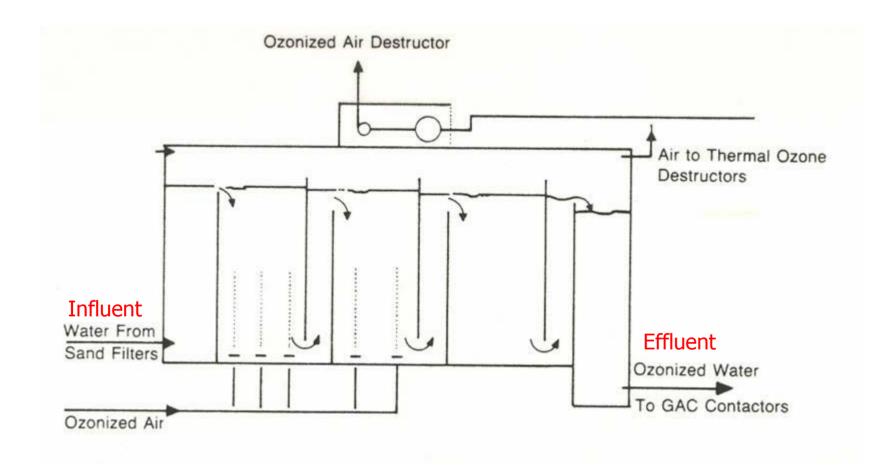
THAA


TTHM

Chemical risks

DBPs	Chemical risk factors (per µg/L)
CHCl ₃	1.7x10 ⁻⁷
CHBrCl ₂	1.7x10 ⁻⁶
CHBr ₂ Cl	2.4 x10 ⁻⁶
CHBr ₃	2.5 x10 ⁻⁷
DCAA	3.0 x10 ⁻⁶
ТСАА	2.4 x10 ⁻⁶

Risk from BrO_3^- is much higher - a shift to H_2O_2 -UV is envisaged


Total chemical risks for DBPs formations

Advanced disinfection

• Ozonation

- More effective than chlorine, but expensive
- Not much DBPs compared to chlorine
- Ozone reacts with organic matter to form biodegradable DOC
 - DOC + $O_3 \rightarrow BDOC + O_2$
 - BDOC include: Aldehydes, Carboxylic Acids, etc.

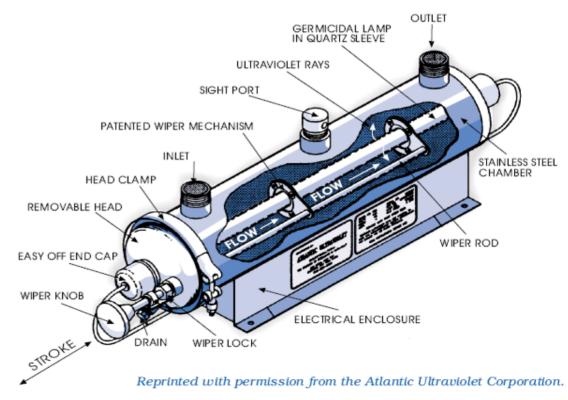
Ozonation process

Ozone disinfection by products

- Ozone can directly or indirectly react with bromide to form ozone DBPs including bromate ion (BrO₃⁻)
- In the presence of NOM, non-halogenated DBPs are formed These compounds are more easily assimilable (AOC) by bacteria than NOM,
- If both NOM and bromide are present, ozonation forms hypobromous acid, resulting in the formation of brominated organohalogen compounds (e.g. bromoform).

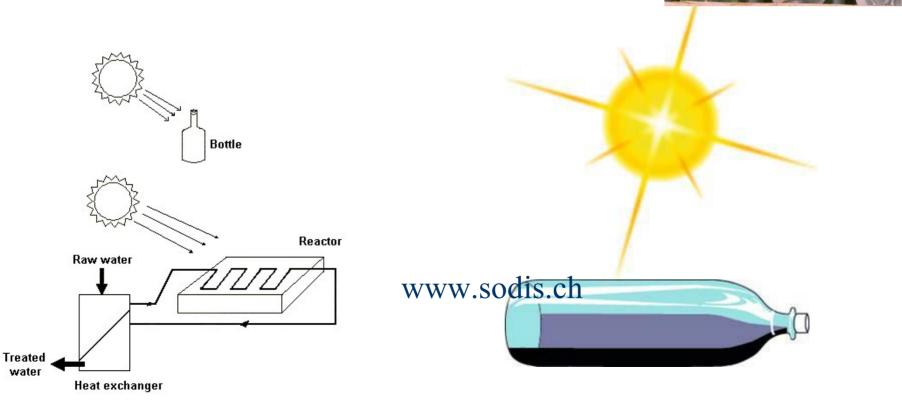
A Potential Consequence of using ozone

- Creation of Biodegradable Organic Matter (BOM) from Natural Organic Matter (NOM)
- This results in
 - Transformation of Rapid Sand Filter (RSF) into Biological Sand Filter (BSF) with Biofilm
 - Transformation of Granular Activated Carbon (GAC) into Biological Activated carbon (BAC) with Biofilm


UV disinfection

- Very effective with up to 99 % removal- Viruses requires higher UV dosage
- Penetrates the cell wall and destroys DNA
- No residual disinfectant
- Requires good water quality

UV disinfection


• High tech using UV lamps

Closed Vessel Ultraviolet Reactor

UV disinfection

• Low tech using solar energy (SODIS)

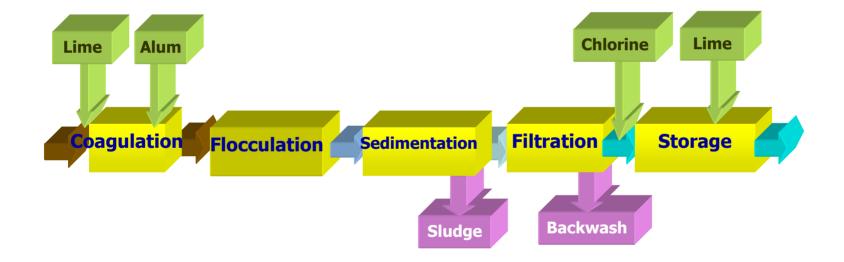
Disinfection experience in the Netherlands and elsewhere

- Philosophical approach
 - North America:
 - Remove NOM before Cl₂
 - DOC as a contaminant
 - Central Europe:
 - Biostability
 - Limit biodegradable NOM (BOM) and eliminate Cl₂
 - BDOC (or AOC) as a contaminant

Practice in USA

- Chemical Disinfectants Employed
 - Chlorine
 - Chloramines
 - Ozone
 - Chlorine Dioxide

Practice in Europe


• Southern Europe and UK

- Chlorine with Distribution System Residual

- Central Europe (e.g., Berlin, Amsterdam, Zurich, Vienna)
 - No Distribution System Residual!
- Some parts of Europe (e.g., Paris)
 - Low Cl₂ levels in distribution system- use booster chlorination

Thank you

Conventional water treatment

