Dutch Contributions to the Synchronisation of Pendulums

Hans de Zeeuw

Kees Grimbergen^{1,2}

¹ Medical Physics, Academic Medical Centre, University of Amsterdam

² Museum van het Nederlandse Uurwerk (MNU), Museum of the Dutch Clock, Zaandam, The Netherlands

Perfecting the Pendulum, BHI, Upton, June 9, 2008

MNU

Christiaan Huygens

14 april 1629 - 8 juli 1695

P. Bourguignon ca 1688; coll KNAW

Dutch Contribution I: Huygens 22 February 1665

[Fig. 77.]

Mart. 1. Hora 10 mat. præcedebat A tribus fecundis.

[Fig. 76.]

Utrique horologio pro fulcro erant sedes duæ [Fig. 76] quarum exiguus ac plane invisibilis motus pendulorum agitatione excitatus sympathiæ prædictæ causa suit,

- During illness: Two pendulum clocks : Anti-phase swing
- March 1: Experiment: After 1/2 hour: "Sympathie des horloges"

Two pendulums; Janvier ca 1800

Antide Janvier (1751-1835)

1810, two independent trains, 1 s-remontoir

Two pendulums; Breguet ca 1825

Louis Abraham Breguet 1747-1823

Two independent trains with balances

Two balances; Journe 1984 - 2006

Dutch Contribution II:

Gravity measurements: Vening Meinesz 1915 - 1939

• T = $2\pi\sqrt{I/g}$: Perfect Pendulum: T = C/ \sqrt{g}

Gravity Measurement

• Successor of Christiaan Huygens

Two pendulums; Vening Meinesz 1915 - 1939

 $T = 2\pi\sqrt{I/g}$: Gravity Measurement : $T = C/\sqrt{g}$

Two pendulums; Vening Meinesz 1915 - 1939

BIJDRAGEN TOT DE THEORIE DER SLINGERWAARNEMINGEN.

PROEFSCHRIFT

TER VERKRIJGING VAN DEN GRAAD VAN DOCTOR IN DE TECHNISCHE WETENSCHAP AAN DE TECHNISCHE HOOGESCHOOL TE DELFT, OP GEZAG VAN DEN RECTOR MAGNI-FICUS W. K. BEHRENS C. I., HOOGLEERAAR IN DE AFDEELING DER WEG- EN WATERBOUWKUNDE, VOOR EENE COMMISSIE UIT DEN SENAAT TE VERDEDIGEN OP VRIJDAG 26 MAART 1915, DES NAMIDDAGS TE 3 UUR, DOOR

FELIX ANDRIES VENING MEINESZ, CIVIEL-INGENIEUR, GEB. TE SCHEVENINGEN.

Dutch Contribution III: Henk Nijmeijer et al

Experimental Results on Huygens Synchronization

Fig. 1. Drawing by Christiaan Huygens of two pendulum clocks attached to a beam which is supported by chairs. Synchronization of the pendulums was observed by Huygens in this setup.

Professor Theoretical Mechanics

Technical University Eindhoven, 2000 -

Dutch Contribution IV : Amateurs

Double (free) pendulum Design according to Riefler Hans de Zeeuw

Dutch Section

Double (free) pendulur Electromagnetic drive Jan Pool

Regulator according to Riefler with two pendulums (gravity escapement)

Regulator according to Riefler with two pendulums

Fig. 8 Recording with the MICROSET. Over a period of 14 hours, 48 minutes each minute the average of 5 oscillations is measured (881 measurements). In this period this average is varying +/- 10 micro-seconds. The trend line shows the rate accuracy to change less than -2 microseconden corresponding to - 0,4 microseconds per oscillation, so 0,4 ppm in 15 hours; this latter number is a measure for the stability of the clock [5].

Regulator according to Riefler with two pendulums

Two Pendulums with electromagnetic drive

- Opto-electronic control
- Knife suspension
- Quartz pendulum
- Barometric compensation

Jan Pool, Bunnik

Two Pendulums with electromagnetic drive

Jan Pool, Bunnik

Results MICROSET (5 µs/div)

Discussion

- Synchronization still not well understood
- High Q Pendulums: Reaction time very high

H. de Zeeuw: 5 - 10 hrs

J. Pool: up till 40 hrs

- High Q Pendulums: Stabilizing effect only when $\Delta F < 1 \text{ s/day} = 10 \text{ ppm}$
- More mechanical stability (shocks)

Question

Is synchronisation a solution for mechanical disturbances?

- Soft soil
- Heavy traffic
- Stand still

Is synchronisation a solution for mechanical disturbances?

Is synchronisation a solution for mechanical disturbances? Stephan Gagneux 2008

