Electrical Machines and Drives ET4117

Henk Polinder

At EE TUDelft:

- 86-92 MSc
- 92-98 PhD
- 96-?? U(H)D
- 08 ABB fault tolerant generator systems
- 02/04/06 Visiting professor in Newcastle, Quebec, Edinburgh
- 98-99 Lagerweij design of a 750 kW direct drive generator

Electrical machines and drives ET4117

- Introduction
 - Organisation
 - Objectives
 - Motivation
 - Structure
 - How to deal with drives
 - Characterization of mechanical loads
 - Control
 - Power electronics
- Maxwell's equations / Magnetic circuits (chapter 1)

Organisation 1

- Course: Electrical Machines and Drives ET4117
- Number of ECTS credits: 4
- Book: P.C. Sen, 'Principles of electric machines and power electronics', New York: John Wiley and Sons, 1997 (second edition) ISBN 0-471-02295-0
- Book: Á.E. Fitzgerald, C. Kingsley, S.D. Umans, 'Electric Machinery', New York: McGraw-Hill, 2003 (sixth edition) ISBN 0-07-112193-5
- Prerequisites: Electrical conversions, mainly chapters 3 (magnetic circuits) and 7 (synchronous machine)
- Assessment:
 - November: written examination closed book
 - January: resit
- Study goals: see blackboard

Organisation 2

Information: blackboard

- please enroll !!!
- course objectives
- slides
- old exams
- Lecturer: dr.ir. H. Polinder
 - room number LB03.610
 - e-mail: h.polinder@tudelft.nl

Organisation 3

- Laboratory work:
- 3 half days between 17 September and 3 November
- DC machines, IM and SM
- In groups of up to 8 students
- Register via blackboard
 - 17 (morning), 17 (afternoon), 20 (afternoon) Sept for DCM
 - 24 (morning), 24 (afternoon), 27 (afternoon) Sept for DCM
 - 1 (morning), 1 (afternoon), 4 (afternoon) Oct for IM
 - 8 (morning), 8 (afternoon), 11 (afternoon) Oct for IM
 - 15 (morning), 15 (afternoon), 18 (afternoon) Oct for SM
 - 22 (morning), 22 (afternoon), 25 (afternoon) Oct for SM

Facts about studying

- Studying is an activity of students, not of lecturers. So, you have to do it yourself.
- The objective of a lecture is not that the lecturer can tell his story without interruption.
- Most lecturers like questions (I do).
- Stupid questions are rarely asked.
- Asking a stupid question does not mean that you are stupid.
- Following lectures in an inactive way is not a good way of studying
- Preparing lectures is an effective way of studying.

Lectures

Therefore, I will try to help your study process by

- discussing important and difficult points (not everything)
- giving background information
- discussing applications
- showing slides
- showing computer simulations
- doing important exercises in the lectures (colstruction)
- giving demonstrations
- answering your questions
- activating you by asking questions
- giving you the opportunity to prepare the lectures
- laboratory work

Electrical machines and drives ET4117

- Introduction
 - Organisation
 - Objectives
 - Motivation
 - Structure
 - How to deal with drives
 - Characterization of mechanical loads
 - Control
 - Power electronics
- Maxwell's equations / Magnetic circuits (chapter 1)

Objectives: overview over electric drives

- Students must be able to
 - recognize
 - sketch cross sections of
 - explain the principle of operation of
 - derive steady-state equations for voltage and torque of
 - mention suitable PE converter types used to drive
- the following types of electric machines
 - DC machines
 - induction (asynchronous) machines
 - synchronous machines
 - PMAC machines
 - switched reluctance, single-phase machines (qualitative)

Objectives

- The course is intended to give an overview over different types of electrical machines and drives.
- Different mechanical loads for electrical machines.
- Focus on understanding of steady state, no dynamics.
- Understanding electrical machines starts with Maxwell's equations applied to magnetic circuits including permanent magnets.
- Blackboard: more detailed list of course objectives.

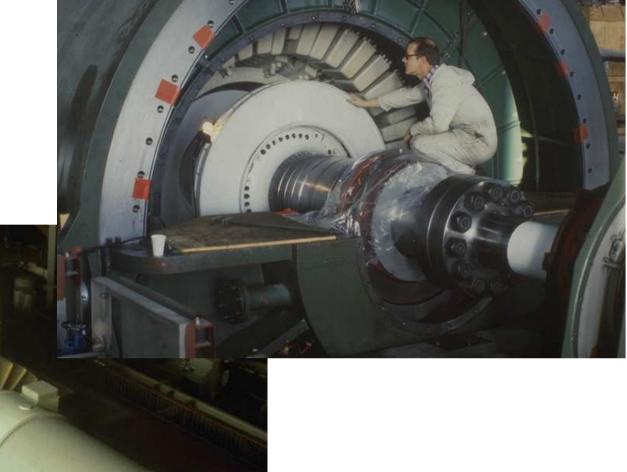
Objectives: scientific course

• What is scientific about this course?

Objectives: scientific methods

• Laws of nature:

- Formulation of hypothesis
- Validation by means of observations
- Development of theory / hypotheses
 - Starting points: laws of nature
 - Explicit assumptions
 - Sound derivations
 - Resulting equations, models
- Experimental validation
- Reduction of reality!!


Motivation - applications

• Why do we talk about machines and not motors or generators?

- Why is this course important?
- Many applications
 - over 30 machines in house where?
 - industry
 - transportation
 - positioning
 - generation
 - Do you know forms of electrical energy generation without using an electrical machine?

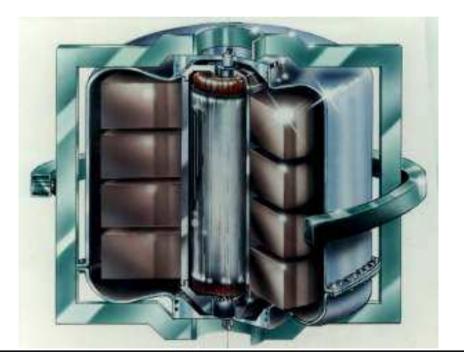
Generation

Transportation

Challenge the future 16

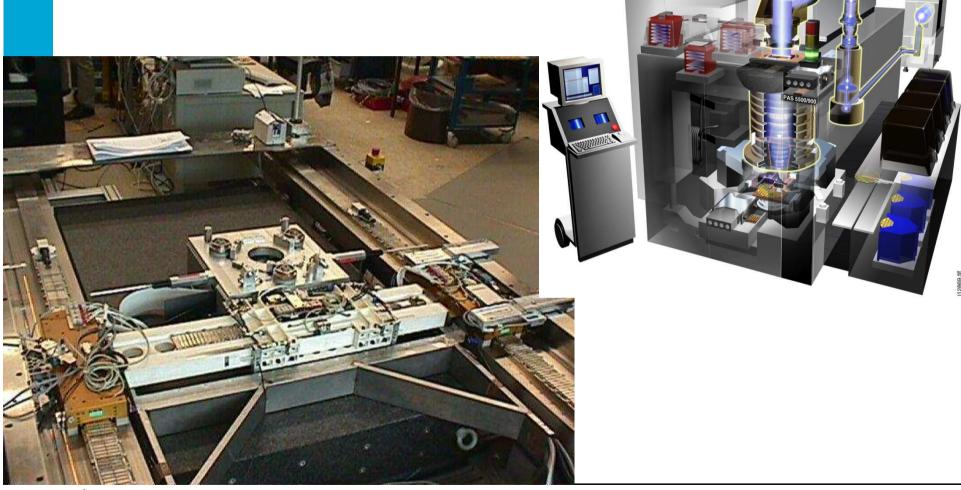
Lobi

esa


Domestic

High speed generator and flywheel for hybrid vehicles

Generators for (direct-drive) wind turbines



Archimedes Wave Swing

Actuators for wafer steppers

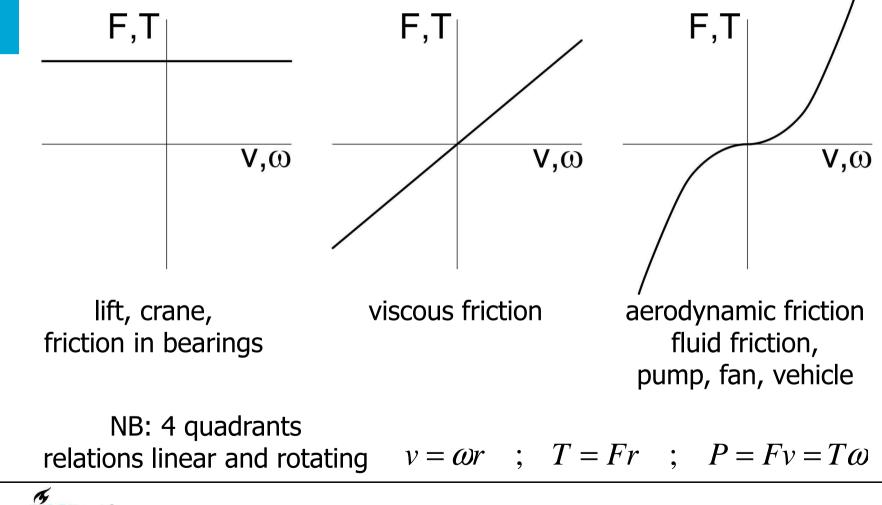
ASML

Extremely wide variety

- Power levels $10^{-6} 10^9$ W (watch power station)
- Torque levels 10⁻⁹ 10⁷ Nm
- Speed range 10 rpm 300.000 rpm (wind turbine spindle)
- Positioning accuracies to below 1 nm = 10^{-9} m
- Different types

Overview Electrical Machines and Drives

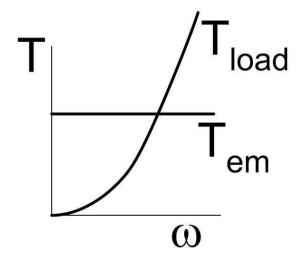
- 7-9 1: Introduction, Maxwell's equations, magnetic circuits
- 11-9 1.2-3: Magnetic circuits, Principles
- 14-9 3-4.2: Principles, DC machines
- 18-9 4.3-4.7: DC machines and drives
- 21-9 5.2-5.6: IM introduction, IM principles
- 25-9 Guest lecture Emile Brink
- 28-9 5.8-5.10: IM equivalent circuits and characteristics
- 2-10 5.13-6.3: IM drives, SM
- 5-10 6.4-6.13: SM, PMACM
- 12-10 6.14-8.3: PMACM, other machines
- 19-10: rest, questions
- 9-11: exam



Electrical machines and drives ET4117

- Introduction
 - Organisation
 - Objectives
 - Motivation
 - Structure
 - How to deal with drives
 - Characterization of mechanical loads
 - Control
 - Power electronics
- Maxwell's equations / Magnetic circuits (chapter 1)

Characterisation of mechanical loads



TUDelft

Equations of motion

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = \sum F = F_{em} - F_{load}$$
$$J\frac{\mathrm{d}\omega}{\mathrm{d}t} = \sum T = T_{em} - T_{load}$$

Example: sketch speed as a function of time for the sketched electromechanic and load torque

Position / speed control

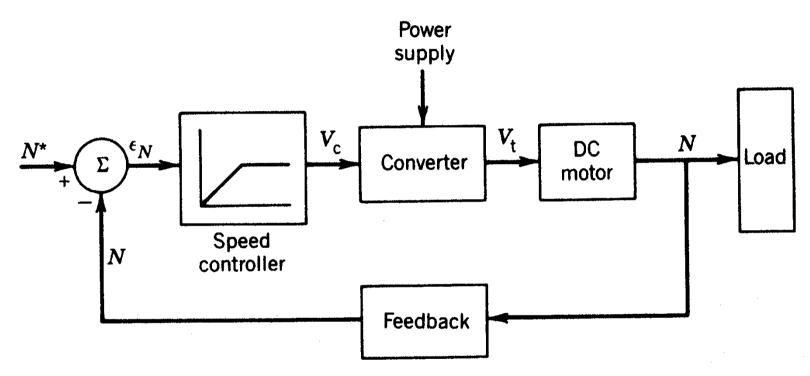
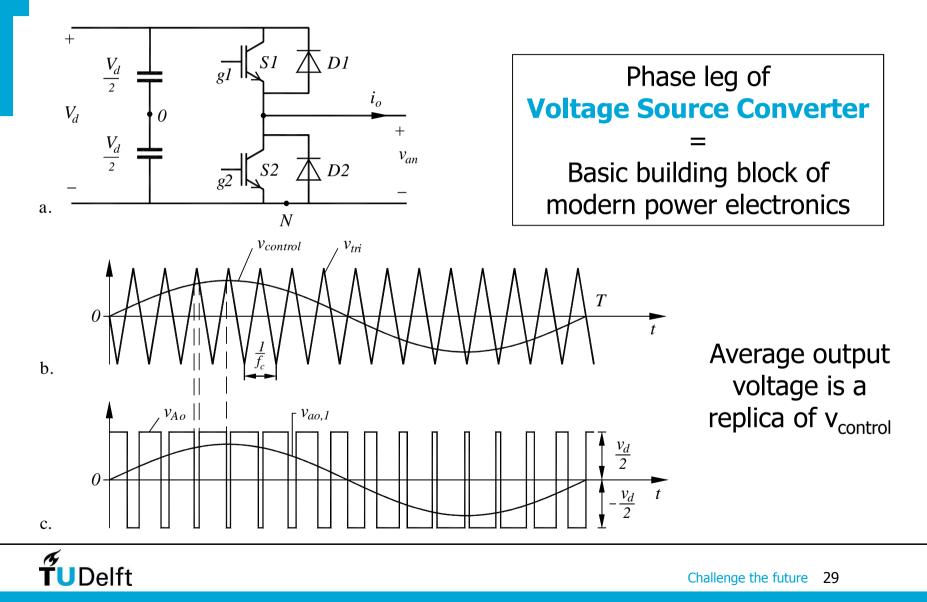
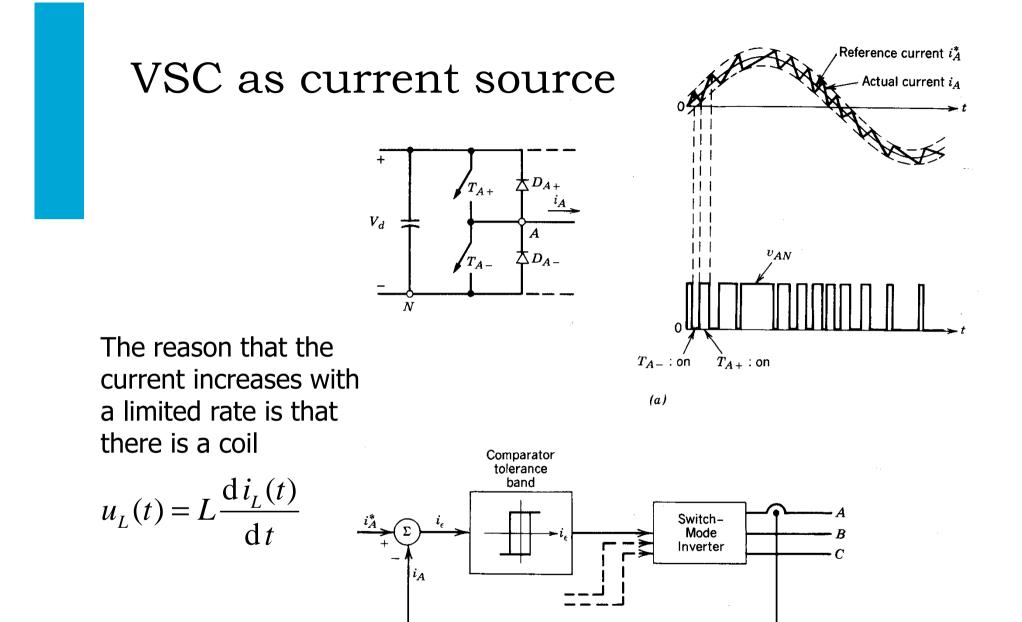


FIGURE 4.63 Closed-loop speed control system.




Power electronics

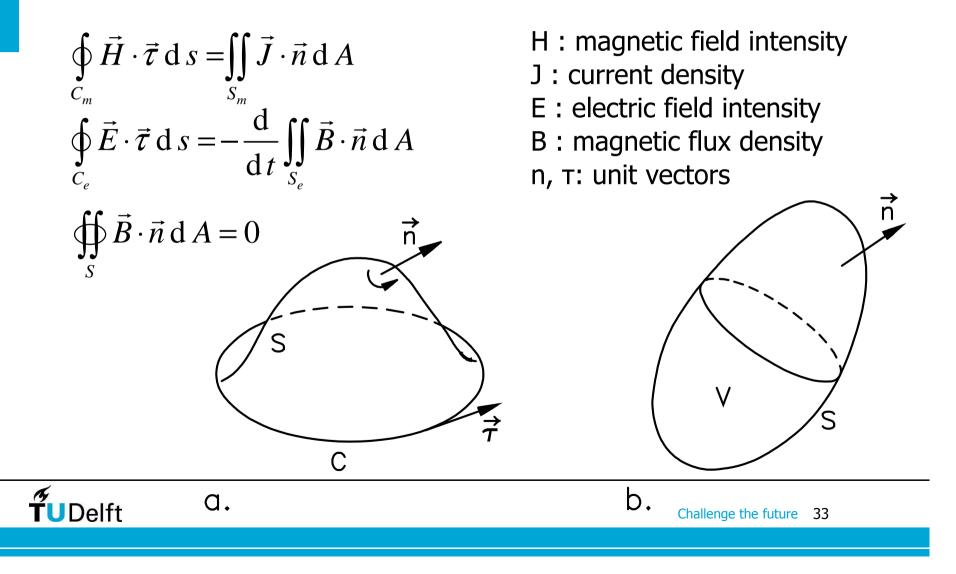
- Why power electronics?
 - to change speed and torque of machines, voltages, currents and frequencies on the machine terminals have to be changed
 - very precise and efficient control
 - possibilities of PE continuously increase
 - PE continuously becoming cheaper
- What do students have to know in this course?
 - most important converter types (rectifier, chopper, inverter)
 - which type is most suitable to drive a specific machine type
 - how any desired voltage or current waveform can be realized

Principle of voltage source converter

TUDelft

Overview Electrical Machines and Drives

- 7-9 1: Introduction, Maxwell's equations, magnetic circuits
- 11-9 1.2-3: Magnetic circuits, Principles
- 14-9 3-4.2: Principles, DC machines
- 18-9 4.3-4.7: DC machines and drives
- 21-9 5.2-5.6: IM introduction, IM principles
- 25-9 Guest lecture Emile Brink
- 28-9 5.8-5.10: IM equivalent circuits and characteristics
- 2-10 5.13-6.3: IM drives, SM
- 5-10 6.4-6.13: SM, PMACM
- 12-10 6.14-8.3: PMACM, other machines
- 19-10: rest, questions
- 9-11: exam



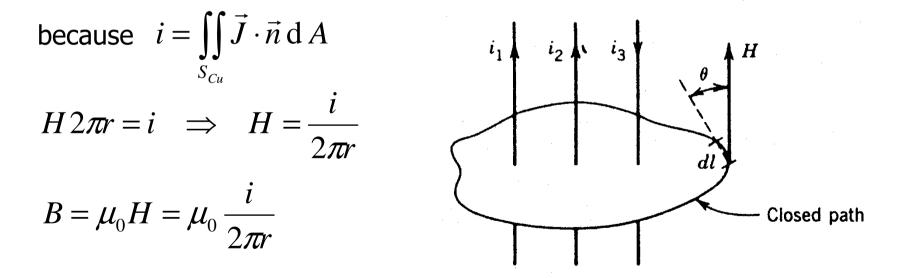
Maxwell's equations / magnetic circuits

- Introduction of Maxwell's equations (for quasi-static fields)
- Ampere's law used to calculate flux densities (1.1)
 - Around a wire in air
 - In magnetic circuit
 - In a magnetic circuit with an gap
- Second of Maxwell's equations used to calculate voltages (1.1)
- Soft magnetic materials: hysteresis and eddy currents (1.2)
- Hard magnetic materials: permanent magnets (1.4)

Maxwell's equations for quasistatic fields: Know by heart!

Maxwell's equations / magnetic circuits

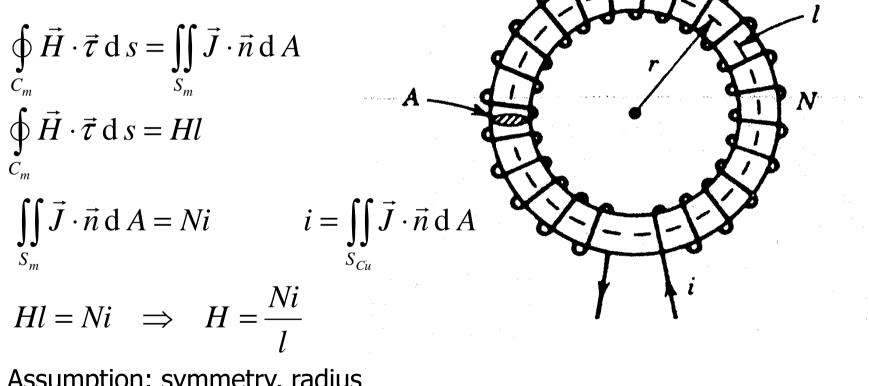
- Introduction of Maxwell's equations (for quasi-static fields)
- Ampere's law used to calculate flux densities (1.1)
 - Around a wire in air
 - In magnetic circuit
 - In a magnetic circuit with an gap
- Second of Maxwell's equations used to calculate voltages (1.1)
- Soft magnetic materials: hysteresis and eddy currents (1.2)
- Hard magnetic materials: permanent magnets (1.4)



Magnetic field around a wire in air

Contour follows magnetic path. Take a circular path around a wire:

$$\oint_{C_m} \vec{H} \cdot \vec{\tau} \, \mathrm{d} \, s = \iint_{S_m} \vec{J} \cdot \vec{n} \, \mathrm{d} \, A = \sum i$$



TUDelft

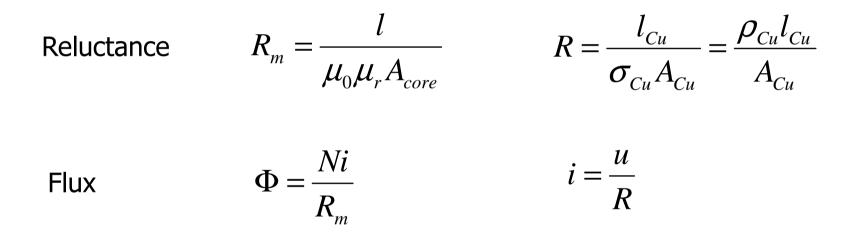
Magnetic field in a magnetic circuit

Contour follows magnetic path:

Assumption: symmetry, radius Vectors!

TUDelft

Calculation of circuit flux


For linear materials:

 $B = \mu_0 \mu_r H = \mu_0 \mu_r \frac{Ni}{l}$ $\mu_0 = 4\pi 10^{-7} \text{ H/m}$ $\mu_r = 1...100000$ $\Phi = \iint_{A_{core}} \vec{B} \cdot \vec{n} \, dA$ $\Phi = BA_{core} = \mu_0 \mu_r \frac{Ni}{l} A_{core}$

Alternative calculation of flux

Magnetomotive force Ni

Maxwell's equations / magnetic circuits

- Introduction of Maxwell's equations (for quasi-static fields)
- Ampere's law used to calculate flux densities (1.1)
 - Around a wire in air
 - In magnetic circuit
 - In a magnetic circuit with an gap
- Second of Maxwell's equations used to calculate voltages (1.1)
- Soft magnetic materials: hysteresis and eddy currents (1.2)
- Hard magnetic materials: permanent magnets (1.4)

Overview Electrical Machines and Drives

- 7-9 1: Introduction, Maxwell's equations, magnetic circuits
- 11-9 1.2-3: Magnetic circuits, Principles
- 14-9 3-4.2: Principles, DC machines
- 18-9 4.3-4.7: DC machines and drives
- 21-9 5.2-5.6: IM introduction, IM principles
- 25-9 Guest lecture Emile Brink
- 28-9 5.8-5.10: IM equivalent circuits and characteristics
- 2-10 5.13-6.3: IM drives, SM
- 5-10 6.4-6.13: SM, PMACM
- 12-10 6.14-8.3: PMACM, other machines
- 19-10: rest, questions
- 9-11: exam

