Overview Electrical Machines and Drives

- 7-9 1: Introduction, Maxwell's equations, magnetic circuits
- 11-9 1.2-3: Magnetic circuits, Principles
- 14-9 3-4.2: Principles, DC machines
- 18-9 4.3-4.7: DC machines and drives
- 21-9 5.2-5.6: IM introduction, IM principles
- 25-9 Guest lecture Emile Brink
- 28-9 5.8-5.10: IM equivalent circuits and characteristics
- 2-10 5.13-6.3: IM drives, SM
- 5-10 6.4-6.13: SM, PMACM
- 12-10 6.14-8.3: PMACM, other machines
- 19-10: rest, questions
- 9-11: exam

Other machines

- Switched reluctance machine (6.14)
- Stepper motors (8.3)
- Single phase motors (7)
 - Single phase induction motors
 - Single phase synchronous motors
- Universal motors

Switched reluctance machine (6.14)

FIGURE 6.42 Cross section of a switched reluctance motor (SRM).

Calculations

Assumptions:

- no mutual flux linkage between phase windings
- iron used in linear part of BH characteristic

$$T = \frac{1}{2}i^2 \frac{\mathrm{d}L}{\mathrm{d}\theta}$$

TUDelft

• torque independent of current direction

Idealized current waveforms

TUDelft

TUDelft

Converter for SRM

FIGURE 6.46 A typical converter circuit to excite a stator phase winding.

applications:

- torque ripple causes noise
- simple and robust construction and converter

- θ_s = 15° = π/12
- $\theta_r = 30^\circ = \pi/6$
- The gap radius is r_s
- The axial length is I_{s}
- The air gap is I_a
- The stator current around the excited stator teeth is I
- The number of turns around a stator tooth is N_s
- Calculate the inductance as a function of the overlap angle θ_{α} $(0 < \theta_o < \pi/12)$ where the overlap angle is the overlap angle between the excited stator teeth and the rotor teeth
- Calculate the torque

Answer

$$L(\theta_o) = \frac{(2N_s)^2}{\frac{2l_g}{\mu_0 l_s r_s \theta_o}} = \frac{2N_s^2 \mu_0 l_s r_s \theta_o}{l_g}$$

$$T = \frac{1}{2}I^2 \frac{\mathrm{d}L(\theta_o)}{\mathrm{d}\theta_o} = \frac{N_s^2 \mu_0 l_s r_s}{l_g}I^2$$

Other machines

- Switched reluctance machine (6.14)
- Stepper motors (8.3)
- Single phase motors (7)
 - Single phase induction motors
 - Single phase synchronous motors
- Universal motors

FIGURE 8.15 Paper drive using stepper motor.

TUDelft

Variable reluctance stepper motor

TUDelft

Other machines

- Switched reluctance machine (6.14)
- Stepper motors (8.3)
- Single phase motors (7)
 - Single phase induction motors
 - Pulsating field
 - Starting methods
 - Single phase synchronous motors
- Universal motors

Single-phase induction motors

applications: pumps, fans, kitchen machinery

FIGURE 7.6 Actual torque-speed characteristic of a single-phase induction motor taking into account changes in the forward and backward flux waves.

Power input

FIGURE 7.7 Waveforms of voltage, current, and power in single-phase induction machine.

Other machines

- Switched reluctance machine (6.14)
- Stepper motors (8.3)
- Single phase motors (7)
 - Single phase induction motors
 - Pulsating field
 - Starting methods
 - Split phase
 - Capacitor start
 - Capacitor run
 - Shaded pole
 - Single phase synchronous motors
- Universal motors

Capacitor-run induction motor

FIGURE 7.11 Capacitor-run induction motor.

TUDelft

capacitor compromise between starting and continuous torque

Shaded-pole induction motor

TUDelft

Other machines

- Switched reluctance machine (6.14)
- Stepper motors (8.3)
- Single phase machines (7)
 - Single phase induction motors
 - Single phase synchronous machines
- Universal motors

Single-phase synchronous machines

Types:

- synchronous PM (bicycle dynamo)
- synchronous reluctance (7.5.1)
- hysteresis (7.5.2)

Applications

- small generators
- clocks, timers
- turntables

TUDelft

Single-phase hysteresis motor

FIGURE 7.28 Hysteresis motor. (a) Stator and rotor field. (b) T-n characteristic.

TUDelft

Other machines

- Switched reluctance machine (6.14)
- Stepper motors (8.3)
- Single phase machines (7)
 - Single phase induction motors
 - Single phase synchronous machines
- Universal motors

Universal motor

- operate from AC or DC source
- applications:
 - vacuum cleaner
 - drilling-machine
- properties:

TUDelft

- high speeds possible (20000 rpm)
- high starting torque

FIGURE 7.21 Voltage, current, flux, and torque waveforms.

Terminal voltage is shifted with respect to the emf because of the voltage drop over the inductance.

Overview Electrical Machines and Drives

- 7-9 1: Introduction, Maxwell's equations, magnetic circuits
- 11-9 1.2-3: Magnetic circuits, Principles
- 14-9 3-4.2: Principles, DC machines
- 18-9 4.3-4.7: DC machines and drives
- 21-9 5.2-5.6: IM introduction, IM principles
- 25-9 Guest lecture Emile Brink
- 28-9 5.8-5.10: IM equivalent circuits and characteristics
- 2-10 5.13-6.3: IM drives, SM
- 5-10 6.4-6.13: SM, PMACM
- 12-10 6.14-8.3: PMACM, other machines
- 19-10: rest, questions
- 9-11: exam

Objectives: Overview over electric drives

- Students must be able to
 - recognize
 - sketch cross sections of
 - explain the principle of operation of
 - derive steady-state equations for voltage and torque of
 - mention suitable PE converter types used to drive
- the following types of electric machines
 - DC machines
 - induction (asynchronous) machines
 - synchronous machines
 - PMAC machines
 - switched reluctance, single-phase machines (qualitative)

Preparing your exam

• Study book, but do not forget

≻slides

➢old exams

- Important aspects covered in the slides but not in Sen
 - Maxwell
 - Permanent magnet machines
- Key elements of this course:
 - Ampere for calculating flux density
 - Faraday for calculating voltages

$$\oint_{C_m} \vec{H} \cdot \vec{\tau} \, \mathrm{d} \, s = \iint_{S_m} \vec{J} \cdot \vec{n} \, \mathrm{d} \, A$$
$$u = Ri + \frac{\mathrm{d} \, \lambda}{\mathrm{d} \, t}$$

• Power balance for calculating forces and torques

Objectives: scientific methods

• Laws of nature:

- Formulation of hypothesis
- Validation by means of observations
- Development of theory / hypotheses
 - Starting points: laws of nature
 - Explicit assumptions
 - Sound derivations
 - Resulting equations, models
- Experimental validation
- Reduction of reality!!

Evaluation

- I would like to receive any feedback on this course:
 - course
 - use of blackboard
 - old examinations
 - laboratory work

Questions

