
1Challenge the future

Overview Electrical Machines and 

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits

• 11-9 1.2-3: Magnetic circuits, Principles

• 14-9 3-4.2: Principles, DC machines

• 18-9 4.3-4.7: DC machines and drives

• 21-9 5.2-5.6: IM introduction, IM principles

• 25-9 Guest lecture Emile Brink

• 28-9 5.8-5.10: IM equivalent circuits and characteristics

• 2-10 5.13-6.3: IM drives, SM

• 5-10 6.4-6.13: SM, PMACM

• 12-10 6.14-8.3: PMACM, other machines

• 19-10: rest, questions

• 9-11: exam
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Organisation 3

• Laboratory work:

• 3 half days between 17 September and 3 November

• DC machines, IM and SM

• In groups of up to 8 students

• Register via blackboard 

• 17 (morning), 17 (afternoon), 20 (afternoon) Sept for DCM 

• 24 (morning), 24 (afternoon), 27 (afternoon) Sept for DCM

• 1 (morning), 1 (afternoon), 4 (afternoon) Oct for IM

• 8 (morning), 8 (afternoon), 11 (afternoon) Oct for IM

• 15 (morning), 15 (afternoon), 18 (afternoon) Oct for SM

• 22 (morning), 22 (afternoon), 25 (afternoon) Oct for SM
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Principles of electromechanics (3)

• Lorentz force, induced voltage (4.1)

• Energy or power balance (3.1)

• Energy and coenergy (3.2)

• Calculation of force from (co)energy (3.3)

• Application to actuators and rotating machines (3.4, 3.5)
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Electromagnetic energy conversion 

(4.1)
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Induced voltage

BlvE =
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Lorentz force

BliF =

FvBlviEiP ===Power balance holds:
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Lorentz force
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Lorenz force, induced voltage

• Generally not valid when iron is present

• Sometimes dangerous, only valid if flux linkage changes

• Safe way of calculating voltage: from flux linkage

• Safe way of calculating forces: power or energy balance
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Principles of electromechanics (3)

• Lorentz force, induced voltage (4.1)

• Energy or power balance (3.1)

• Energy and coenergy (3.2)

• Calculation of force from (co)energy (3.3)

• Application to actuators and rotating machines (3.4, 3.5)
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Energy or power balance

Electrical 
energy input

Mechanical 
energy output

Increase 
stored energy

Energy
losses

= + +
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Energy balance

eWd

fWd

Electrical 
energy input

- resistance losses

Mechanical 
energy output

+ friction, windage losses

Increase 
stored energy
+ core losses

= +

mechWd
is the electrical energy input during dt
is the mechanical energy output during dt
is the change in stored field energy (core loss neglected)
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Principles of electromechanics (3)

• Lorentz force, induced voltage (4.1)

• Energy or power balance (3.1)

• Energy and coenergy (3.2)

• Calculation of force from (co)energy (3.3)

• Application to actuators and rotating machines (3.4, 3.5)
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Magnetic field energy
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Calculation of magnetic field energy

Movable part is kept stationary

d d df eW W i λ= = dfW i
λ

λ= ∫
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Example calculation of magnetic 

energy
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Using

and

In case of linear core material 0c r cB Hµ µ=
2 2

0 0

0.199 0.002J
2 2f g c

r

B B
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µ µ µ
= + = +

Energy mainly in air gap !

B = 1 T

μr = 5000

μ0 = 4π10-7 H/m

lc = 0.2 m

lg = 5 mm

Ac = 1 cm2

lg is total air gap length
lc is total core length
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Coenergy

dfW i
λ

λ= ∫ d
i

fW iλ′ = ∫ f fW W iλ′+ =



17Challenge the future

Principles of electromechanics (3)

• Lorentz force, induced voltage (4.1)

• Energy or power balance (3.1)

• Energy and coenergy (3.2)

• Calculation of force from (co)energy (3.3)

• Application to actuators and rotating machines (3.4, 3.5)
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Calculation of force from (co)energy
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Principles of electromechanics (3)

• Lorentz force, induced voltage (4.1)

• Energy or power balance (3.1)

• Energy and coenergy (3.2)

• Calculation of force from (co)energy (3.3)

• Application to actuators and rotating machines (3.4, 3.5)
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Calculation of reluctance force
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Reluctance force from (co)energy
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�tries to increase inductance
�tries to close the gap
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Reluctance force, magnetic pressure
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What is a realistic value of the force density?
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Error in form of force

• Do you see the error in the form 

of the force?
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Rotating machines with saliency 

(3.4)
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Torque 
�tries to increase self-inductance
�tries to close the gap
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Cylindrical rotating machines (3.5)
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Torque 
�tries to increase mutual inductance
�tries to align the fields of stator and rotor
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Principles of electromechanics (3)

• Lorentz force, induced voltage (4.1)

• Energy or power balance (3.1)

• Energy and coenergy (3.2)

• Calculation of force from (co)energy (3.3)

• Application to actuators and rotating machines (3.4, 3.5)
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Overview Electrical Machines and 

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits

• 11-9 1.2-3: Magnetic circuits, Principles

• 14-9 3-4.2: Principles, DC machines

• 18-9 4.3-4.7: DC machines and drives

• 21-9 5.2-5.6: IM introduction, IM principles

• 25-9 Guest lecture Emile Brink

• 28-9 5.8-5.10: IM equivalent circuits and characteristics

• 2-10 5.13-6.3: IM drives, SM

• 5-10 6.4-6.13: SM, PMACM

• 12-10 6.14-8.3: PMACM, other machines

• 19-10: rest, questions

• 9-11: exam
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DC machines

• Introduction, construction (4.2)

• Principle of operation and basic calculations (4.2)

• Armature reaction, interpoles, compensating winding (4.3) 

• Characteristics, means to control speed (4.4)

• DC machine drives (4.5)

• PMDC machines / PCB machines (4.6, 4.7)
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Basic construction elements

• slots
• cylindrical rotor

• salient pole rotor

• stator
• rotor
• teeth
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Stator and rotor laminations
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DC machine introduction

• history: loader for accumulators, moving coil in magnetic field

• generates DC voltage in generating operation

• operates on a DC voltage in motoring operation

• has many applications in controlled drives and traction

• reason: easy to control

• importance decreasing because induction machines with VSI are 

cheaper and more robust



32Challenge the future

DC machine construction

• stator: yoke, pole, field winding
• rotor / armature: teeth, slots, armature winding
• commutator
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Cutaway views of 

DC machines
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DC machine characteristics

• rotor is cylindrical with slots (except at very small power)

• stator has salient poles with field windings or permanent 

magnets

• the number of poles may be larger than two (but even)

• the rotor is laminated

• the excitation current is a dc current, resulting in a constant 

excitation field

• the excitation current is provided by

• a separate source (separately excited dc machine)

• the armature voltage (shunt dc machine)

• the armature current (series dc machine)
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DC machines

• Introduction, construction (4.2)

• Principle of operation and basic calculations (4.2)

• air gap flux density (1.1)

• armature turn voltage and commutation (4.2.2)

• armature windings (4.2.3)

• total armature voltage (4.2.4)

• torque (4.2.5)

• magnetisation curve (4.2.6)

• Armature reaction, interpoles, compensating winding (4.3) 

• Characteristics, means to control speed (4.4)

• DC machine drives (4.5)

• PMDC machines / PCB machines (4.6, 4.7)
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Assumptions for calculations

• steady state (mechanical and electrical)

• the air gap is so small that the flux density does not change in 

radial direction

• the air gap is so small that the flux density crosses the air gap 

perpendicular

• iron losses are negligible

• the magnetic permeability of iron is infinite
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Air gap flux density

• The field winding around one pole has Nf turns and carries a 

current If

• Calculate the air gap flux density between the poles and the rotor
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Flux density
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Armature turn voltage

• Sketch flux linkage of a 
turn on the rotor

• Calculate the maximum 
voltage induced in turn 
from Faraday
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DC Machines

• Introduction, construction (4.2)

• Principle of operation and basic calculations (4.2)

• air gap flux density (1.1)

• armature turn voltage and commutation (4.2.2)

• armature windings (4.2.3)

• total armature voltage (4.2.4)

• torque (4.2.5)

• magnetisation curve (4.2.6)

• Armature reaction, interpoles, compensating winding (4.3) 

• Characteristics, means to control speed (4.4)

• DC machine drives (4.5)

• PMDC machines / PCB machines (4.6, 4.7)
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Overview Electrical Machines and 

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits

• 11-9 1.2-3: Magnetic circuits, Principles

• 14-9 3-4.2: Principles, DC machines

• 18-9 4.3-4.7: DC machines and drives

• 21-9 5.2-5.6: IM introduction, IM principles

• 25-9 Guest lecture Emile Brink

• 28-9 5.8-5.10: IM equivalent circuits and characteristics

• 2-10 5.13-6.3: IM drives, SM

• 5-10 6.4-6.13: SM, PMACM

• 12-10 6.14-8.3: PMACM, other machines

• 19-10: rest, questions

• 9-11: exam


