
1Challenge the future

Overview Electrical Machines and 

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits

• 11-9 1.2-3: Magnetic circuits, Principles

• 14-9 3-4.2: Principles, DC machines

• 18-9 4.3-4.7: DC machines and drives

• 21-9 5.2-5.6: IM introduction, IM principles

• 25-9 Guest lecture Emile Brink

• 28-9 5.8-5.10: IM equivalent circuits and characteristics

• 2-10 5.13-6.3: IM drives, SM

• 5-10 6.4-6.13: SM, PMACM

• 12-10 6.14-8.3: PMACM, other machines

• 19-10: rest, questions

• 9-11: exam



2Challenge the future

DC Machines

• Introduction, construction (4.2)

• Principle of operation and basic calculations (4.2)

• air gap flux density (1.1)

• armature turn voltage and commutation (4.2.2)

• armature windings (4.2.3)

• total armature voltage (4.2.4)

• torque (4.2.5)

• magnetisation curve (4.2.6)

• Armature reaction, interpoles, compensating winding (4.3) 

• Characteristics, means to control speed (4.4)

• DC machine drives (4.5)

• PMDC machines / PCB machines (4.6, 4.7)
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Assumptions for calculations

• steady state (mechanical and electrical)

• the air gap is so small that the flux density does not change in 

radial direction

• the air gap is so small that the flux density crosses the air gap 

perpendicular

• iron losses are negligible

• the magnetic permeability of iron is infinite
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Air gap flux density

• The field winding around one pole has Nf turns and carries a 

current If

• Calculate the air gap flux density between the poles and the rotor
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Flux density
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Flux density

• Sketch flux linkage of a 
turn on the rotor

• Calculate the maximum 
voltage induced in turn 
from Faraday’s law
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Armature turn 

voltage
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At θ=0, the flux linkage is 
minimum
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Commutator as

rectifier
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Commutation

Commutating coil in 
interpolar region: no 
induced voltage
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Armature windings

• English: turn, coil, winding

• Dutch: winding, spoel, wikkeling
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Mechanical and electrical angles
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DC Machines

• Introduction, construction (4.2)

• Principle of operation and basic calculations (4.2)

• air gap flux density (1.1)

• armature turn voltage and commutation (4.2.2)

• armature windings (4.2.3)

• total armature voltage (4.2.4)

• torque (4.2.5)

• magnetisation curve (4.2.6)

• Armature reaction, interpoles, compensating winding (4.3) 

• Characteristics, means to control speed (4.4)

• DC machine drives (4.5)

• PMDC machines / PCB machines (4.6, 4.7)
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Armature voltage
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An armature winding has N turns
with a parallel paths
and therefore N/a series-connected turns
For the turn voltage, we found 

The average is lower: 

Flux per pole

Using this, the turn voltage is given by

Therefore
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Voltage and torque from power 

balance
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Electromagnetic torque from Lorenz
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Lorenz force gives the same result as power balance.
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Magnetic circuit

Which part saturates first?
Why?
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Magnetization curve

Why is this not a straight line?
Why does it not start from zero?



18Challenge the future

DC Machines

• Introduction, construction (4.2)

• Principle of operation and basic calculations (4.2)

• Armature reaction, interpoles, compensating winding (4.3) 

• Characteristics, means to control speed (4.4)

• DC machine drives (4.5)

• PMDC machines / PCB machines (4.6, 4.7)



19Challenge the future

Armature reaction

• Section 4.3 (Sen) has the title “DC generators”

• DC machines are hardly used as generators

• The operating principles are the same in motoring and 

generating

• Therefore, we only look at constructional aspects of DC 

machines discussed in 4.3, which are present in DC motors as 

well as in DC generators:

• compensating winding (Dutch: compensatiewikkeling)

• interpoles (Dutch: hulppolen)

• Both are related to armature reaction
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Armature reaction
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Consequences 

armature

reaction

• Saturation

• Commutation problems
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Compensation winding

• Saturation problem reduced

• Expensive; only applied in machines that are often heavily loaded. 

Why in these machines?
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Interpoles

Armature reaction 

produces a flux 

density in the 

interpolar region, so 

that a voltage is 

induced in the 

commutating coil. 

This voltage opposes 

commutation. 

Interpoles reverse the 

direction of this flux 

density to induce a 

voltage that 

accelerates 

commutation.
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DC Machines

• Introduction, construction (4.2)

• Principle of operation and basic calculations (4.2)

• Armature reaction, interpoles, compensating winding (4.3) 

• Characteristics, means to control speed (4.4)

• Connections of DC machines

• Separately excited DC machine

• Series connected DC machine

• DC machine drives (4.5)

• PMDC machines / PCB machines (4.6, 4.7)
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Connections of DC machines
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Separately excited DC machines

How to control speed?

Calculate no-load speed and stall torque.
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Torque speed characteristic

• Where are motor, generator and plugging operation?
• Speed control by means of

• Voltage control: what happens if the voltage is increased?
• Field control: what happens if the current is increased?
• Resistance control: old-fashioned
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Voltage control
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Field control

Are the 
characteristics 
of (c) parallel?
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Series DC machine (universal motor)

What happens to the speed when the torque is zero?

2
1 aaaa IKKIKT =Φ=aIK1=Φ Neglecting saturation!
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Series DC motor
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DC machines

• Introduction, construction (4.2)

• Principle of operation and basic calculations (4.2)

• Armature reaction, interpoles, compensating winding (4.3) 

• Characteristics, means to control speed (4.4)

• DC machine drives (4.5)

• Ward-Leonard system

• Power electronics (Rectifier, Chopper)

• Closed loop control

• PMDC machines / PCB machines (4.6, 4.7)
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Overview Electrical Machines and 

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits

• 11-9 1.2-3: Magnetic circuits, Principles

• 14-9 3-4.2: Principles, DC machines

• 18-9 4.3-4.7: DC machines and drives

• 21-9 5.2-5.6: IM introduction, IM principles

• 25-9 Guest lecture Emile Brink

• 28-9 5.8-5.10: IM equivalent circuits and characteristics

• 2-10 5.13-6.3: IM drives, SM

• 5-10 6.4-6.13: SM, PMACM

• 12-10 6.14-8.3: PMACM, other machines

• 19-10: rest, questions

• 9-11: exam


