Overview Electrical Machines and Drives

- 7-9 1: Introduction, Maxwell's equations, magnetic circuits
- 11-9 1.2-3: Magnetic circuits, Principles
- 14-9 3-4.2: Principles, DC machines
- 18-9 4.3-4.7: DC machines and drives
- 21-9 5.2-5.6: IM introduction, IM principles
- 25-9 Guest lecture Emile Brink
- 28-9 5.8-5.10: IM equivalent circuits and characteristics
- 2-10 5.13-6.3: IM drives, SM
- 5-10 6.4-6.13: SM, PMACM
- 12-10 6.14-8.3: PMACM, other machines
- 19-10: rest, questions
- 9-11: exam

DC Machines

- Introduction, construction (4.2)
- Principle of operation and basic calculations (4.2)
 - air gap flux density (1.1)
 - armature turn voltage and commutation (4.2.2)
 - armature windings (4.2.3)
 - total armature voltage (4.2.4)
 - torque (4.2.5)
 - magnetisation curve (4.2.6)
- Armature reaction, interpoles, compensating winding (4.3)
- Characteristics, means to control speed (4.4)
- DC machine drives (4.5)
- PMDC machines / PCB machines (4.6, 4.7)

Assumptions for calculations

- steady state (mechanical and electrical)
- the air gap is so small that the flux density does not change in radial direction
- the air gap is so small that the flux density crosses the air gap perpendicular
- iron losses are negligible
- the magnetic permeability of iron is infinite

Air gap flux density

- The field winding around one pole has Nf turns and carries a current If
- Calculate the air gap flux density between the poles and the rotor

Flux density

(a)

- Sketch flux linkage of a turn on the rotor
- Calculate the maximum voltage induced in turn from Faraday's law

TUDelft

Commutator as rectifier

Commutation

(b)

Commutating coil in interpolar region: no induced voltage

Armature windings

- English: turn, coil, winding
- Dutch: winding, spoel, wikkeling

TUDelft

Mechanical and electrical angles

FIGURE 4.16 Mechanical and electrical degrees. (a) Four-pole dc machine. (b) Flux density distribution.

$$\theta_e = \frac{p}{2} \theta_m \qquad \qquad \omega_e = \frac{p}{2} \omega_m$$

TUDelft

DC Machines

- Introduction, construction (4.2)
- Principle of operation and basic calculations (4.2)
 - air gap flux density (1.1)
 - armature turn voltage and commutation (4.2.2)
 - armature windings (4.2.3)
 - total armature voltage (4.2.4)
 - torque (4.2.5)
 - magnetisation curve (4.2.6)
- Armature reaction, interpoles, compensating winding (4.3)
- Characteristics, means to control speed (4.4)
- DC machine drives (4.5)
- PMDC machines / PCB machines (4.6, 4.7)

Armature voltage

ÍUDelft

An armature winding has *N* turns with *a* parallel paths and therefore N/a series-connected turns For the turn voltage, we found $e_{t} = 2lr\omega_{m}B(\theta)$ $\overline{e}_{t} = 2lr\omega_{m}\overline{B}(\theta)$ The average is lower: $\Phi = \iint \vec{B} \cdot \vec{n} \, \mathrm{d} \, A = l \int_{0}^{2\pi/p} B(\theta) r \, \mathrm{d} \, \theta = \frac{2\pi}{p} r l \overline{B}(\theta)$ Flux per pole $\overline{e}_t = \frac{p}{\pi} \Phi \omega_m$ Using this, the turn voltage is given by $E_a = \frac{N}{e_t} = \frac{Np}{\Phi} \omega_m = K_a \Phi \omega_m$ Therefore

Voltage and torque from power balance

$$U = RI_{a} + L\frac{\mathrm{d}I_{a}}{\mathrm{d}t} + K_{a}\Phi\omega_{m}$$
$$P = UI_{a} = RI_{a}^{2} + I_{a}L\frac{\mathrm{d}I_{a}}{\mathrm{d}t} + I_{a}K_{a}\Phi\omega_{m}$$

Power balance:

$$P = P_{Cu} + P_f + P_{mech}$$

Therefore

TUDelft

$$T = \frac{P_{mech}}{\omega_m} = K_a \Phi I_a$$

Electromagnetic torque from Lorenz

$$P = \omega_m T = \omega_m K_a \Phi I_a = E_a I_a$$

Lorenz force gives the same result as power balance.

TUDelft

Magnetic circuit

Which part saturates first? Why?

TUDelft

Why is this not a straight line? Why does it not start from zero?

TUDelft

DC Machines

- Introduction, construction (4.2)
- Principle of operation and basic calculations (4.2)
- Armature reaction, interpoles, compensating winding (4.3)
- Characteristics, means to control speed (4.4)
- DC machine drives (4.5)
- PMDC machines / PCB machines (4.6, 4.7)

Armature reaction

- Section 4.3 (Sen) has the title "DC generators"
- DC machines are hardly used as generators
- The operating principles are the same in motoring and generating
- Therefore, we only look at constructional aspects of DC machines discussed in 4.3, which are present in DC motors as well as in DC generators:
 - compensating winding (Dutch: compensatiewikkeling)
 - interpoles (Dutch: hulppolen)
- Both are related to armature reaction

Armature reaction

- Saturation problem reduced
- Expensive; only applied in machines that are often heavily loaded. Why in these machines?

Interpoles

Armature reaction produces a flux density in the interpolar region, so that a voltage is induced in the commutating coil. This voltage opposes commutation. Interpoles reverse the direction of this flux density to induce a voltage that accelerates commutation.

 $+I_{coil}$

N

N

(e)

(d)

Current jumps (spark)

-I_{coil}

S

(f) $\Phi_{a'} \Phi_i$ oppose each other, irrespective of direction of I_{2} .

ŤUDelft

DC Machines

- Introduction, construction (4.2)
- Principle of operation and basic calculations (4.2)
- Armature reaction, interpoles, compensating winding (4.3)
- Characteristics, means to control speed (4.4)
 - Connections of DC machines
 - Separately excited DC machine
 - Series connected DC machine
- DC machine drives (4.5)
- PMDC machines / PCB machines (4.6, 4.7)

Connections of DC machines

Separately excited DC machines

Pole flux does not depend on armature voltage and load

$$T = K_a \Phi I_a$$

$$E_a = \omega_m K_a \Phi$$

$$U_t = R_a I_a + E_a$$

$$\omega_m = \frac{U}{K_a \Phi} - \frac{R_a I_a}{K_a \Phi} = \frac{U}{K_a \Phi} - \frac{R_a T}{(K_a \Phi)^2}$$

How to control speed?

Calculate no-load speed and stall torque.

TUDelft

- teristics of a separately excited dc
- Where are motor, generator and plugging operation?
- Speed control by means of
 - Voltage control: what happens if the voltage is increased?
 - Field control: what happens if the current is increased?
 - Resistance control: old-fashioned

TUDelft

Series DC machine (universal motor)

 $\Phi = K_1 I_a$ $T = K_a \Phi I_a = K_a K_1 I_a^2$ Neglecting saturation!

What happens to the speed when the torque is zero?

ŤUDelft

Series DC motor

$$\Phi = K_1 I_a$$

$$T = K_a \Phi I_a = K_a K_1 I_a^2$$

$$U_t = R_a I_a + E_a = R_a I_a + K_a \Phi \omega_m = R_a I_a + K_a K_1 I_a \omega_m$$

$$I_a = \frac{U_t}{R_a + K_a K_1 \omega_m}$$

$$T = K_a \Phi I_a = K_a K_1 I_a^2 = K_a K_1 \frac{U_t^2}{(R_a + K_a K_1 \omega_m)^2}$$

$$\omega_m = \pm \frac{U_t}{\sqrt{K_a K_1 T}} - \frac{R_a}{K_a K_1}$$

fUDelft

DC machines

- Introduction, construction (4.2)
- Principle of operation and basic calculations (4.2)
- Armature reaction, interpoles, compensating winding (4.3)
- Characteristics, means to control speed (4.4)
- DC machine drives (4.5)
 - Ward-Leonard system
 - Power electronics (Rectifier, Chopper)
 - Closed loop control
- PMDC machines / PCB machines (4.6, 4.7)

Overview Electrical Machines and Drives

- 7-9 1: Introduction, Maxwell's equations, magnetic circuits
- 11-9 1.2-3: Magnetic circuits, Principles
- 14-9 3-4.2: Principles, DC machines
- 18-9 4.3-4.7: DC machines and drives
- 21-9 5.2-5.6: IM introduction, IM principles
- 25-9 Guest lecture Emile Brink
- 28-9 5.8-5.10: IM equivalent circuits and characteristics
- 2-10 5.13-6.3: IM drives, SM
- 5-10 6.4-6.13: SM, PMACM
- 12-10 6.14-8.3: PMACM, other machines
- 19-10: rest, questions
- 9-11: exam

