Final Examination Electronic Instrumentation (ET8017)

Monday, November 5, 2012, 14:00-17:00

There are 5 questions in the exam **all** of which should be attempted.

Please support your answers with the appropriate explanations, drawings and circuit diagrams

Only the book and the slides can be taken into the exam

— Good luck! —

<u>1.</u> Figure below shows an instrumentation amplifier (INA), built from two identical opamps, which is connected to a sensor with a source impedance $Rs = 10 \text{ k}\Omega$.

- A) If the INA has a gain of 100 and $R_2 = R_3 = 10 \text{ k}\Omega$, what must the values of the other resistors R_2 and R_4 be?
- **B**) Calculate the detection limit due to offset and input bias current if each opamp has the following specifications:

Input offset voltage:	$V_{os} = 1 \text{mV}$
Input offset current:	$I_{os} = 100 \text{nA}$
Input bias current:	$I_b = 50 \text{nA}$

- C) If the amplifier's output Uo can swing from 0 to 5V and $U_{cm} = 2.5V$, calculate the maximum value of the differential input signal U_d for a distortion-free output.
- **D**) If the various resistor ratios suffer from up to 1% mismatch, calculate the worst-case value of the INA's *CMRR*.

2. The following circuit employs two BJTs and four current sources to generate a voltage V_{temp} that is proportional to absolute temperature.

- A) Derive an expression for V_{temp} in terms of the Boltzmann constant k and the electron charge q.
- **B**) Assuming that one of the current sources suffers from 1% mismatch at room temperature (21°C), calculate the worst-case equivalent temperature error in V_{temp} .
- C) Using a circuit diagram, describe how dynamic-element matching (DEM) can be used to mitigate the effects of the current source mismatch on the accuracy of V_{temp} . How many switches are required for your scheme?
- **D**) After the application of this DEM scheme, compute the equivalent temperature error in the average value of V_{temp} .

3. Figure below shows a fully differential amplifier based on a differential opamp with an input referred noise of $30 \text{ nV}/\sqrt{\text{Hz}}$ and 10 mV offset.

- A) If the amplifier is to have a closed-loop gain of 100 and an input resistance of $100k\Omega$, calculate the corresponding values of $R_{2A} = R_{2B}$ and $R_{IA} = R_{IB}$.
- **B)** If the amplifier is to have a closed-loop gain of 100 and an input-referred noise is less than $50 \text{nV}/\sqrt{\text{Hz}}$, find the maximum (or minimum) value for the input resistors (R_{IA} and R_{IB}). Note: $4\text{kT} = 1.62 \times 10^{-20}$ (W/Hz).
- **C)** To reduce the effect of the opamp's offset, the entire amplifier is chopped as shown below. Make a sketch of the output waveform assuming that the input signal has a common-mode voltage of 0V and a differential voltage of 10mV. What is the input-referred amplitude of the ripple?

D) To reduce the amplitude of the output ripple, the chopped amplifier is followed by a 1st order low-pass filter. Given that the amplifier's input-referred noise is 50 nV/\sqrt{Hz} and the chopping frequency is 10kHz, calculate the maximum cut-off frequency of the low-pass filter such that the input-referred amplitude of the ripple is less than the input-referred rms noise.

4. Consider the circuit below in which a thermistor R_{therm} is incorporated in a bridge circuit, which further consists of two fixed resistors and a variable reference resistance R_{ref} . This is implemented as a switched-capacitor network that periodically dumps charge to ground and whose effective resistance depends on the frequency f_{VCO} output by a voltage-controlled oscillator (VCO). Capacitor C_1 is much larger (100x) than C_2 and serves as a charge reservoir that reduces the ripple across R_{therm} to negligible levels. The bridge is embedded in a feedback loop, which adjusts f_{VCO} in such a way that the bridge is always balanced.

- A) Derive an expression for R_{ref} in terms of f_{VCO} . Given that $C_2 = 4\text{pF}$ and that $R_{therm} = 6.6 \text{ k}\Omega$ at room temperature, what is the corresponding value of f_{VCO} ?
- **B**) Assuming that R_{therm} has a tempco of 0.3%/K, what change in f_{VCO} corresponds to a 1mK temperature change and how many bits of resolution are required to digitize this frequency change such that the resulting error is less than $\frac{1}{2}$ an LSB.
- C) If $V_{DD} = 1.8$ V, what amount of opamp offset corresponds to an error of 0.1°C
- **D**) DISCUSS the effect of the following non-idealities on the circuit: a non-linear VCO transfer function, VCO jitter, the charge injection associated with the two switches in the R_{ref} circuit.

5. Consider the auto-zeroed amplifier shown below:

- A) If the amplifier's offset $V_{os} = 10$ mV, determine the gain A of the basic amplifier such that the input-referred offset after auto-zeroing is less than 1µV.
- **B**) If both the auto-zeroing and the amplification phases last $10\mu s$, and given that all the switches have an on-resistance of $2k\Omega$, determine the worst-case value of C_1 (= C_2) such that settling errors are below $1\mu V$ (input-referred). Note: the opamp may be assumed to be ideal.
- C) If both the auto-zeroing and the amplification phases last $10\mu s$, determine the unity-gain bandwidth of the opamp such that all settling errors are below $1\mu V$ (input-referred). Note: the switches may be assumed to be ideal.
- **D**) If the amplifier is assumed to be noise-free, what value of C_1 (= C_2) ensures that the residual input-referred noise after auto-zeroing is less than 1µV (rms). Note: 4kT = 1.62×10^{-20} (W/Hz)