Pen and Paper Exercises - eigenvalues and eigenvectors

1. In each of the following pictures, unit vectors \mathbf{x} in \mathbb{R}^2 and their images $A\mathbf{x}$ under the action of a 2×2 matrix A are drawn head-to- tail. Estimate the eigenvectors and eigenvalues of A from each "eigenpicture".

- 2. Let A be a 2×2 matrix with eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 3\\1 \end{bmatrix}$ corresponding to eigenvalues $\lambda_1 = 2$ and $\lambda_2 = \frac{1}{2}$. Furthermore the vector $\mathbf{x} = \begin{bmatrix} -3\\4 \end{bmatrix}$ is given.
 - (a) Find $A^5 \mathbf{x}$ without determining A explicitly.
 - (b) Find $A^k \mathbf{x}$ without determining A explicitly. What happens for large values of k?
- 3. Diagonalize the matrix A and use this diagonalization to compute A^k .

(a)
$$A = \begin{bmatrix} 0 & 2 \\ -1 & 3 \end{bmatrix}$$
, k arbitrary
(b) $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -2 & 0 \\ 2 & 4 & 0 \end{bmatrix}$, $k = 20$

4. Find all (real) values of k for which A is (real) diagonalizable.

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & k \end{bmatrix}$$

(b) $A = \begin{bmatrix} k & 1 \\ -1 & 0 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}$
(d) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & k \\ 0 & 0 & 1 \end{bmatrix}$
(e) $A = \begin{bmatrix} 1 & 1 & k \\ 2 & 2 & 2k \\ 3 & 3 & 3k \end{bmatrix}$

- 5. Prove the following statements using the the relevant definitions, or disprove the statement using an appropriate counterexample.
 - (a) If A is row equivalent to B, then A and B have the same eigenvalues.
 - (b) If A is diagonalizable and invertible, them A^{-1} is diagonalizable.
 - (c) If A is diagonalizable and similar to B, then B is diagonalizable.
 - (d) If A and B are similar, then the eigenvalues of A and B are the same.
 - (e) If A and B are similar, then the geometric multiplicities of the eigenvalues of A and B are the same.