Pen and Paper Exercises - eigenvalues and eigenvectors

1. In each of the following pictures, unit vectors \mathbf{x} in \mathbb{R}^{2} and their images $A \mathbf{x}$ under the action of a 2×2 matrix A are drawn head-to- tail. Estimate the eigenvectors and eigenvalues of A from each "eigenpicture".
(a)

(b)

(c)

(d)

2. Let A be a 2×2 matrix with eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ corresponding to eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=\frac{1}{2}$. Furtermore the vector $\mathbf{x}=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$ is given.
(a) Find $A^{5} \mathbf{x}$ without determining A explicitly.
(b) Find $A^{k} \mathbf{x}$ without determining A explicitly. What happens for large values of k ?
3. Diagonalize the matrix A and use this diagonalization to compute A^{k}.
(a) $A=\left[\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right], k$ arbitrary
(b) $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & -2 & 0 \\ 2 & 4 & 0\end{array}\right], k=20$
4. Find all (real) values of k for which A is (real) diagonalizable.
(a) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & k\end{array}\right]$
(b) $A=\left[\begin{array}{cc}k & 1 \\ -1 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & k \\ 0 & 0 & 1\end{array}\right]$
(e) $A=\left[\begin{array}{ccc}1 & 1 & k \\ 2 & 2 & 2 k \\ 3 & 3 & 3 k\end{array}\right]$
5. Prove the following statements using the the relevant definitions, or disprove the statement using an appropriate counterexample.
(a) If A is row equivalent to B, then A and B have the same eigenvalues.
(b) If A is diagonalizable and invertible, them A^{-1} is diagonalizable.
(c) If A is diagonalizable and similar to B, then B is diagonalizable.
(d) If A and B are similar, then the eigenvalues of A and B are the same.
(e) If A and B are similar, then the geometric multiplicities of the eigenvalues of A and B are the same.
