Questions from the same exercise can be combined together to increase difficulty.

Example 15-1 (r₁)

A no-load test conducted on a 30hp, 835rpm, 440V, 3-phase, 60Hz squirrel-cage induction motor shown below yielded the following results:

No-load voltage (line-to-line): 440V

No-load current: 14A

No-load power: 1470W

Resistance measured between two terminals: 0.5Ω

The locked-rotor test conducted at reduced voltage gave the following results:

Locked-rotor voltage (line-to-line): 153V

Locked-rotor power: 7200W

Locked-rotor current: 60A

What is the value of r_1 ?

- a) 0.5Ω .
- b) 0.25Ω.
- c) 31.4Ω.
- d) 2.55Ω .

Example 15-1 (X_m)

A no-load test conducted on a 30hp, 835rpm, 440V, 3-phase, 60Hz squirrel-cage induction motor shown below yielded the following results:

No-load voltage (line-to-line): 440V

No-load current: 14A

No-load power: 1470W

Resistance measured between two terminals: 0.5Ω

The locked-rotor test conducted at reduced voltage gave the following results:

Locked-rotor voltage (line-to-line): 153V

Locked-rotor power: 7200W

Locked-rotor current: 60A

What is the value of X_m?

- a) 31.5Ω.
- b) 33Ω.
- c) 18.3Ω.
- d) 19.9Ω .

Example 15-1 (R_m)

A no-load test conducted on a 30hp, 835rpm, 440V, 3-phase, 60Hz squirrel-cage induction motor shown below yielded the following results:

No-load voltage (line-to-line): 440V

No-load current: 14A

No-load power: 1470W

Resistance measured between two terminals: 0.5Ω

The locked-rotor test conducted at reduced voltage gave the following results:

Locked-rotor voltage (line-to-line): 153V

Locked-rotor power: 7200W

Locked-rotor current: 60A

What is the value of R_m?

- a) 146.3Ω.
- b) 439Ω.
- c) 131.7Ω.
- d) 395.1Ω.

Example 15-1 (x₁)

A no-load test conducted on a 30hp, 835rpm, 440V, 3-phase, 60Hz squirrel-cage induction motor shown below yielded the following results:

No-load voltage (line-to-line): 440V

No-load current: 14A

No-load power: 1470W

Resistance measured between two terminals: 0.5Ω

The locked-rotor test conducted at reduced voltage gave the following results:

Locked-rotor voltage (line-to-line): 153V

Locked-rotor power: 7200W

Locked-rotor current: 60A

What is the value of x_1 ?

- a) 2.6Ω.
- b) 1.8Ω.
- c) 3Ω.
- d) 1.42Ω.

15-2 (Z₁)

A wye-connected squirrel-cage motor having a synchronous speed of 900rpm has a stator resistance of 0.7Ω and an equivalent rotor resistance of 0.5Ω . The total leakage reactance is 5Ω and the line-to-neutral voltage is 346V. What is the value of $Z_1 < \alpha$ (r_1+jx_1)?

- a) $5.05\Omega < 82^{\circ}$. x
- b) $5.02\Omega < 84.2^{\circ}$.
- c) $5\Omega < 90^{\circ}$.
- d) $5\Omega < 0^{\circ}$.

15-2 (n_b)

A wye-connected squirrel-cage motor having a synchronous speed of 900rpm has a stator resistance of 0.7Ω and an equivalent rotor resistance of 0.5Ω . The total leakage reactance is 5Ω and the line-to-neutral voltage is 346V. What is the speed when the breakdown torque is reached?

- a) 775rpm.
- b) 811rpm.
- c) 900rpm.
- d) 89rpm.

15-2 (I₁)

A wye-connected squirrel-cage motor having a synchronous speed of 900rpm has a stator resistance of 0.7Ω and an equivalent rotor resistance of 0.5Ω . The total leakage reactance is 5Ω and the line-to-neutral voltage is 346V. What is the current I_1 at the breakdown torque?

- a) 78.6A.
- b) 90.8A
- c) 45.4A.
- d) 45.7A.

15-2 (T_b)

A wye-connected squirrel-cage motor having a synchronous speed of 900rpm has a stator resistance of 0.7Ω and an equivalent rotor resistance of 0.5Ω . The total leakage reactance is 5Ω and the line-to-neutral voltage is 346V. What is the breakdown torque?

- a) 331.1Nm.
- b) 441.8Nm.
- c) 111.3Nm.
- d) 110.5Nm.

15-6 (breakdown torque)

If the line voltage for the motor of the following figure is dropped to 6200V, what is the new breakdown torque?

- a) 42232Nm.
- b) 37948Nm.
- c) 52307Nm.
- d) 58212Nm.

15-6 (starting torque)

If the line voltage for the motor of the following figure is dropped to 6200V, what is the new starting torque?

- a) 2696Nm.
- b) 3339Nm.
- c) 2422Nm.
- d) 3716Nm.