Elektrische Aandrijvingen

WTB

Lokatie/evenement
P.BAUER

TUDelft

Fundamental Elements of Power Electronics

Figure 21.2 Potential levels of terminals $\mathbf{1 , 2}$, and $\mathbf{3}$.

TUDelft

TUDelft

Voltage across some circuit elements

Figure 21.5 Potential across a switch.

Figure 21.7 Potential across an inductor.

Figure 21.6 Potential across a resistor.

TUDelft

Diode

Figure 21.9 Basic rules governing diode behavior.

(a)

(b)

$A \longrightarrow K \quad$ rule 2

(c)

(d)

rule 4

TUDelft

Figure 21.10 (continued) a. Average current: 4 A; PIV: 400 V; body length: $\mathbf{1 0} \mathbf{m m}$; diameter: $\mathbf{5 . 6} \mathbf{~ m m}$. b. Average current: 15 A; PIV: 500 V; stud type; length less thread: 25 mm ; diameter: 17 mm. c. Average current: 500 A; PIV: 2000 V; length less thread: $244 \mathrm{~mm} ;$ diameter: 40 mm . d. Average current: 2600 A; PIV: 2500 V; Hockey Puk; distance between pole-faces: 35 mm ; diameter: 98 mm. (Photos courtesy of International Rectifier)

Figure 21.10 a. Average current: 4 A; PIV: 400 V; body length: $\mathbf{1 0 m m}$; diameter: $\mathbf{5 . 6} \mathbf{m m}$. b. Average current: 15 A; PIV: $\mathbf{5 0 0}$ V; stud type; length ess thread: 25 mm; diameter: 17 mm. c. Average current: 500 A; PIV: 2000 V; length less thread: 244 mm; diameter: 40 mm. d. Average current: 2600 A; PIV: 2500 V; Hockey Puk; distance between pole-faces: 35 mm ; diameter: 98 mm . (Photos courtesy of International Rectifier)

Figure 21.10 (continued) a. Average current: $\mathbf{4}$ A; PIV: $\mathbf{4 0 0}$ V; body length: $\mathbf{1 0} \mathbf{m m}$; diameter: $\mathbf{5 . 6} \mathbf{~ m m}$. b. Average current: $\mathbf{1 5}$ A; PIV: $\mathbf{5 0 0}$ V; st type; length less thread: 25 mm ; diameter: 17 mm . c. Average current: 500 A; PIV: 2000 V ; length less thread: 244 mm ; diameter: $\mathbf{4 0} \mathrm{mm}$. d. type; length less thread: 25 mm ; diameter: 17 mm . c. Average current: 500 A; PIV: 2000 V; length less thread: 244 mm ; diameter: 40 mm . d.
Average current: 2600 A; PIV: 2500 V; Hockey Puk; distance between pole-faces: 35 mm ; diameter: 98 mm . (Photos courtesy of Internationa Rectifier)

Figure 21.10 (continued) a. Average current: $\mathbf{4}$ A; PIV: $\mathbf{4 0 0}$ V; body length: $\mathbf{1 0} \mathbf{m m}$; diameter: $\mathbf{5 . 6} \mathbf{~ m m}$. b. Average current: $\mathbf{1 5}$ A; PIV: $\mathbf{5 0 0}$ V; stud type; length less thread: 25 mm ; diameter: 17 mm . c. Average current: $\mathbf{5 0 0}$ A; PIV: $\mathbf{2 0 0 0}$ V; lengt h less thread: 244 mm ; diameter: $\mathbf{4 0}$ mm. d. Average current: 2600 A; PIV: 2500 V; Hockey Puk; distance between pole-faces: 35 mm ; diameter: 98 mm. (Photos courtesy of International Rectifier)

Battery charger with resistor

Figure 21.11 a. Simple battery charger circuit. b. Corresponding voltage and current waveforms.

Figure 21.11 (continued) a. Simple battery charger circuit. b Corresponding voltage and current waveforms.

Battery charger with inductor

Figure 21.12 a. Battery charger using a series inductor. b. Corresponding voltage and current waveforms.

Figure 21.12 (continued) a. Battery charger using a series inductor. B Corresponding voltage and current waveforms.

(b)

Example 21.1

Figure 21.12c See Example 21-1.

TUDelft

Single bridge diode rectifier

Figure 21.13a a. Single-phase bridge rectifier. b. Voltage levels.

Figure 21.13b a. Single-phase bridge rectifier. b. Voltage levels.

(a)

TUDelft

TUDelft

(a)

Figure 21.15 Current and voltage waveforms with inductive filter.

Figure 21.18 Dual 3-phase, 3-pulse rectifier.

TUDelft

Three-phase 6 pulse rectifier

Figure 21.20 Voltage and current waveforms in Fig. 21.19.

Figure 21.19 Three-phase, 6-pulse rectifier with inductive filter.

Figure 21.21 Another way of showing EKA using line voltage potentials. Note also the position of E2N with respect to the line voltages.

TUDelft

(a)

(b)

(c)

(d)

(e)

(f)

Effective, fundamental line current

Figure 21.23 Line-to-neutral voltage and line current in phase 2 of Fig. 21.20.

TUDelft

The thyristor

Figure 21.24 Symbol of a thyristor, or SCR.

TUDelft
is connected to the cathode. \mathbf{b}. A thyristor conducts when the anode is positive and a current pulse is injected into the gate.

(a)

(b)

TUDelft

TUDelft

TUDelft

TUDelft

(a)

TUDelft

Line commutated inverter

Figure 21.32 a. Line-commutated inverter. b. Voltage and current waveforms

TUDelft

Figure 21.33 a. Electronic contactor. b. Waveforms with a resistive load.

TUDelft

Cycloconverter

TUDelft

3 phase 6 pulse contr. converter

Fiaure 21.36 Three-bhase. 6-dulse thvristor converter.

(a)

(b)

TUDelft

TUDelft

TUDelft

Figure 21.40 c Delay angle: $\mathbf{4 5}^{\circ}$.

TUDelft

THDelft

Example 21.17

- The 3 phase converter is connected to 3 phase 480 V 60 Hz source, Load 500 V dc resistance 2 ohm. Calculate the power supplied to the load for delays of 15 and 75.

- $\mathrm{E}_{\mathrm{d}}=1,35 \mathrm{E} \cos \alpha$
voltage drop on R
- $\mathrm{E}=\mathrm{E}_{\mathrm{d}}-\mathrm{E}_{\mathrm{o}}$
- $\mathrm{I}_{\mathrm{d}}=\mathrm{E} / \mathrm{R}$
- $\mathrm{P}=\mathrm{E}_{\mathrm{d}} \mathrm{I}_{\mathrm{d}}$

Inverter mode

TUDelft

TUDelft

TUDelft

TUDelft

TUDelft

TUDelft

TUDelft

TUDelft

TUDelft

TUDelft

TUDelft

Figure 21.51 Typical properties and approximate limits of GTOs and thyristors in the on and off states.

(a)
(b)

TUDelft

TUDelft

TUDelft

TUDelft

TUDelft

- $\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}=\mathrm{E}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}$
- $\mathrm{E}_{\mathrm{o}}=\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{o}}$

- $\mathrm{E}_{\mathrm{o}}=\mathrm{DE}_{\mathrm{s}}$

TUDelft

TUDelft

Example 21-11

Charge 120 V battery from 600 V dc source using a dc chopper, average current 20 App ripple 2 A, f $=200 \mathrm{~Hz}$

- dc current from the source
- dc current in the diode
- the duty cycle
- inductance of the inductor
- $\mathrm{P}=\mathrm{E}_{0} \mathrm{I}_{\mathrm{o}}$
- $I_{s}=P / E_{s}$

TUDelft

Example 21-11

Charge 120 V battery from 600 V dc source using a dc chopper, average current 20 App ripple 2 A, f $=200 \mathrm{~Hz}$

- dc current from the source
- dc current in the diode
- the duty cycle
- inductance of the inductor
- $\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{o}}-\mathrm{I}_{\mathrm{s}}$
- $\mathrm{D}=\mathrm{E}_{\mathrm{o}} / \mathrm{E}_{\mathrm{s}}$

Example 21-11

Charge 120 V battery from 600 V dc source using a dc chopper, average current 20 App ripple 2 A, f $=200 \mathrm{~Hz}$

- dc current from the source
- dc current in the diode
- the duty cycle
- inductance of the inductor
- $\mathrm{D}=\mathrm{E}_{\mathrm{o}} / \mathrm{E}_{\mathrm{s}}$

2 quadrant DC-DC converter

- $\mathrm{E}_{\mathrm{L}}=\mathrm{DE}_{\mathrm{H}}$

TUDelft
$E_{L}>E_{o}$

THDelft

$$
\mathrm{E}_{\mathrm{L}}<\mathrm{E}_{\mathrm{o}}
$$

THDelft

Example 21-13.

$100 \mathrm{~V}, 30 \mathrm{~V}, \mathrm{~S}$ ohm, $10 \mathrm{mH}, 20 \mathrm{kHz}, \mathrm{D}=0,2$

Value and direction of IL Pp ripple

- $\mathrm{E}_{\mathrm{L}}=\mathrm{DE}_{\mathrm{H}}=20 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{L}}=\left(\mathrm{E}_{\mathrm{o}}-\mathrm{E}_{\mathrm{L}}\right) / \mathrm{R}$
- $\mathrm{T}=1 / \mathrm{f}$

TUDelft

TUDelft

${ }^{\boldsymbol{T}}$ TUDelft

- $\mathrm{E}_{\mathrm{L}}=\mathrm{DE}_{\mathrm{H}}=20 \mathrm{~V}$

TUDelft

- $\mathrm{E}_{\mathrm{LL}}=\mathrm{E}_{\mathrm{H}}(2 \mathrm{D}-1)$

TUDelft

TUDelft

$T_{1}=$ turn-on time
$T_{2}=$ on-state time
$T_{3}=$ turn-off time
$T_{4}=$ off-state time
instant.

TUDelft

TUDelft

(a)

(b) $D=0.8 \quad E_{\mathrm{LL}}=+0.6 E_{\mathrm{H}}$

(c) $D=0.5 \quad E_{\mathrm{LL}}=0$

(d) $D=0.2 \quad E_{\mathrm{LL}}=-0.6 E_{\mathrm{H}}$

- $\mathrm{E}_{\mathrm{LL}}=\mathrm{E}_{\mathrm{H}}(2 \mathrm{D}-1)$

TUDelft

TUDelft

