Elektrische Aandrijvingen

WTB

Lokatie/ evenement

P.BAUER

February 22, 2013

Delft University of Technology

TUDelft

Active, Reactive and Apparent Power

FIGURE 7-1 I nstantaneous voltage, current, and power in an ac circuit. (See Example 7-1.)

Voltage 162 V, 60Hz Current 7,5A lags 50

Voltage and current Φ Inst.voltage, current, p 120°

- $e=E_{m} \sin \Phi=162 \sin \Phi$
- $\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin (\Phi-\theta)$
$=7,5 \sin \left(\Phi-50^{\circ}\right)$
- $\Phi=120^{\circ}$
- $i=7,05 \mathrm{~A}$
- $p=e . i=140.3 \times 7,05$

TUDelft

Active Power

FIGURE 7-2 a. An ac voltage E produces an ac current / in this resistive circuit. b. Phasors E and / are in phase. c. A wattmeter indicates $E /$ watts. \mathbf{d}. The active power is composed of a series of positive power pulses.
(a)

(b)

(c)

Reactive Power

FIGURE 7-4 a. An ac voltage E produces an ac current / in this inductive circuit. b. Phasor / lags 90° behind $E_{\text {. }}$ c. Reactive power consists of a series of positive and negative power pulses.
(a)

What is load and what is source of reactive power?
(b)

I mpossible to say, reactor is considered to be a reactive load

Reactive Load and Reactive Source

Capacitor and Reactive Power

Add capacitor
FIGURE 7-6 See Example 7-2.
FIGURE 7-7 See Example 7-3.

(b)

Generator does not supply any power

120 V

- Reactive power delivered by capacitor
- $\mathrm{Q}=\mathrm{E}_{\mathrm{c}}=120.30=3,6 \mathrm{kVAr}$

Capacitor and Reactive Power

FIGURE 7-8 a. Capacitor connected to an ac source. b. Phase I_{C} leads E by 90°. c. Reactive power flows from the capacitor to the generator.

(b)

(c)

Where does the power go ? Capacitor delivers reactive power to the generator

Example 7.3

- Calculate the Active and reactive power of G

- $\mathrm{P}=\mathrm{RI}^{2}=14^{2} \cdot 4+16,12^{2} .2=1304 \mathrm{~W}$
- $\mathrm{Q}_{\mathrm{I}}=\mathrm{X}_{\mathrm{I}} \mathrm{I}^{2}=14^{2} \cdot 3=588 \mathrm{VAr}$
- $\mathrm{Q}_{\mathrm{c}}=\mathrm{X}_{\mathrm{c}} \mathrm{I}^{2}=20^{2} \cdot 3,5=1400 \mathrm{VAr}$
- 1400-588=812 VAr

Active and Reactive load: Apparent power

Active and reactive power - cannot be converted
(a)

Function independently

Can be treated separately

Place a burden on line and generator
(b)

All inductive devices absorb reactive power

Ammeter, power supplied P, EI

Apparent power
(c)

- $\mathrm{I}^{2}=\mathrm{I}_{\mathrm{p}}{ }^{2}+\mathrm{I}_{\mathrm{q}}{ }^{2}$

P, Q, and S

- $I_{P}=P / E$
- $\mathrm{I}_{\mathrm{q}}=\mathrm{Q} / \mathrm{E}$

FIGURE 7-11 a. I nstruments used to measure E, I, P, and Q in a circuit. b. The phasor diagram can be deduced from the instrument readings.

(a)

Generator does not supply any power
(b)

- $\mathrm{S}=\mathrm{E}$ I
- $\mathrm{I}=\mathrm{S} / \mathrm{E}$
- $\mathrm{I}^{2}=\mathrm{I}_{\mathrm{p}}{ }^{2}+\mathrm{I}_{\mathrm{q}}{ }^{2}$
- $\mathrm{S}^{2}=\mathrm{P}^{2}+\mathrm{Q}^{2}$
- S apparent power [VA]
- P active power [W]
- Q reactive power [VAr]
- Power factor pf=P/S

Example 7.8

- Motor draws 5 A from $120 \mathrm{~V}, 60 \mathrm{~Hz}, \mathrm{pf}=0,65$
- $S=E I=120.5=600 \mathrm{VA}$
- $P=S \cos \theta=600 \cdot 0,65=390 \mathrm{~W}$
- $\mathrm{Q}=\mathrm{SQRT}\left(\mathrm{S}^{2}-\mathrm{P}^{2}\right)$
- $\mathrm{Q}=456 \operatorname{VAr}$

TUDelft

Power Factor and Power Triangle

FIGURE 7-12 Power triangle of a motor. See Example 7-8.

- Power Factor = P/S

Active power - horizontally absorbed or delivered Reactive power - vertically absorbed or delivered

(a)

Two powers in opposite direction

(b)

(c)

- Motor draws 5 A from 120 V, 60 Hz, pf=0,65 Example 7-9

FIGURE 7-14 Power triangle of a motor and capacitor connected to an ac line. See Example 7-9.

+ Capacitor 50uF

- Motor draws 5 A from 120 V, 60 Hz, pf=0,65 Example 7-9

FIGURE 7-14 Power triangle of a motor and capacitor connected to an ac line. See Example 7-9.

+ Capacitor 50uF
- $X_{C}=1 / \omega C=53^{\prime} \Omega$
- $I=E / X_{C}=2,26 \mathrm{~A}$
- $\mathrm{Q}_{\mathrm{C}}=E \mathrm{I}_{\mathrm{q}}=271 \mathrm{VAr}$
- $\mathrm{P}_{\mathrm{m}}=390 \mathrm{~W}$
- $\mathrm{Q}_{\mathrm{m}}=456 \mathrm{VAr}$
- $\mathrm{Q}_{\mathrm{L}}=\mathrm{Q}_{\mathrm{m}}-\mathrm{Q}_{\mathrm{c}}$
- $S_{L}=S Q R\left(P_{L 2}+Q_{L 2}\right)$
- $\mathrm{I}=\mathrm{S}_{\mathrm{L}} / E=3,6 \mathrm{~A}$

Several Loads

FIGURE 7-15 a. Example of active and reactive loads connected to a 380 V source.
b. All Inads are ascumed to be directlv connected to the 380 V recentacle.
bll loads are ascumed to he directlv conn
source
(a)

(b)

TUDelft

Several Loads

FIGURE 7-15 a. Example of active and reactive loads connected to a 380 V source b. All loads are assumed to he directlv connected to the $\mathbf{3 8 0} \mathrm{V}$ recentacle.

(b)

FIGURE 7-15c Power triangle of the system.

AC Voltage 1

1 An inductance and a resistor are in series connected to a power source of 220 V and 50 Hz . $\mathrm{R}=30 \Omega ; \mathrm{L}=127.3 \mathrm{mH}$.

Calculate the rms current in the source [in A]
2 For the same inductance and resistor:
What is the powerfactor?
3 For the same inductance and resistor:
Calculate the rms voltage of the resistor [in V]
4 For the same inductance and resistor:
Calculate the rms voltage of the inductance [in V]
$5 \quad$ For the same inductance and resistor connected to a power source of 220 V and 60 Hz .
($\mathrm{R}=30 \Omega ; \mathrm{L}=127.3 \mathrm{mH}$)
Calculate the rms current in the source [in A]
$6 \quad$ A capacitor is connected to a voltage source of $220 \mathrm{~V} / 50 \mathrm{~Hz}$.
$\mathrm{C}=33 \mu \mathrm{~F}$.
Calculate the rms current in the source [in A]

7
A resistor and a inductor in series, are in parallel connected with a capacitor as shown in the schematic. $X_{L}=4 \Omega ; R_{L}=3 \Omega ; X_{C}=8 \Omega$

Calculate the total equivalent impedance .

