Elektrische Aandrijvingen

WTB

Lokatie/evenement

P.BAUER

March 5, 2009

Delft University of Technology

Figure 16.1 Schematic iagram and cross-section view of a typical 500 MW synchronous generator and its 2400 kW dc exciter. The dc exciting current I_x (6000 A) flows through the commutator and two slip-rings. The dc control current I_c from the pilot exciter permits variable field control of the main exciter, which, in turn, controls I_x .

Synchronous generator

Determining the value of xs

March 5, 2009

- 3 phase, SG produces an open circuit line voltage of 6928 V when the dc exc. current is 50 A. The AC terminals are short circuited and line currents are 800A.
- Calculate synchronous reactance
- Terminal voltage if three R 12 ohm are connected

$$E_0 = E_L / Sqrt(3) = 4000 V$$

•
$$X_s = E_o / I = 4000/800$$

•
$$Z = Sqrt(R^2 + X_s^2)$$

 36 MVA, 20,8 kV 3phase, synchr. Reactance 9 ohm, the no load saturation curve is given. Terminal voltage remain 21kV., calculate the exciting current and draw the phasor diagram at:

E , *E* o

|2 k∖

No load

 $E_{o} = E$

- Resistive load of 36 MW
- Capacitive load of 12 MVAr

•
$$I_s = 100$$

- 36 MVA, 20,8 kV 3phase, synchr. Reactance 9 ohm, the no load saturation curve is given. Terminal voltage remain 21kV., calculate the exciting current and draw the phasor diagram at:
- No load
- Resistive load of 36 MW
- Capacitive load of 12 MVAr

•
$$P = 36 / 3 = 12MW$$
 • $E_x = j I X_s$

•
$$I = P/E = 1000 A$$
 • $E_o =$

•
$$I_s = 100$$

---+/*

9

load

- 36 MVA, 20,8 kV 3phase, synchr. Reactance 9 ohm, the no load saturation curve is given. Terminal voltage remain 21kV., calculate the exciting current and draw the phasor diagram at:
- No load
- Resistive load of 36 MW
- Capacitive load of 12 MVAr

- Q = 12 / 3 = 12 MVAr
- I = Q/E = 333A

--+1.

• $E_x = j I X_s$ • $I_s = 70A$

March 5, 2009

Synchronization

- The generator frequency is equal to system frequency
- Voltage equal
- Voltage in phase
- Phase sequence the same

Synchronous generator on aninfinite busImposes voltage and frequency

- The exciting current
- Mechanical torque

Figure 16.26a Generator floating on an infinite bus.

Synchronous generator on an infinite bus

Increase the exciting current

Figure 16.26b Over-excited generator on an infinite bus.

• $E_x = E_0 - E$

• $I = (E_0 - E) / X_s$

March 5, 2009

Synchronous generator on an infinite bus

Decrease the exciting current

•
$$E_x = E_0 - E$$

•
$$I = (E_0 - E) / X_s$$

Effect of varying the mechanical torque $E_x = E_0 - E$

- Rotor accelerates, angle σ increases, electrical power too
- Electrical power=Mechanical power

Effect of varying the mechanical torque $E_x = E_0 - E$

- Difference of potential is created when 2 equal voltages are out of the phase
- Increased phase angle=increased I=incr. active power

Physical interpretation $\delta = p \operatorname{alpha}/2$

March 5, 2009

- The rotor poles of an 8 pole SG shift by 10 mechanical degrees from no load full load
- Calculated the torque angle between E_o and E

 $\delta=p$ alpha /2=8 . 10 /2=40

• Which voltage E or E_o is leading ?

March 5, 2009

Active power

March 5, 2009

- 36 MVA, 21 kV 1800 r/min 3 phase generator, Xs= 9 ohm per phase, Eo=12kV, E= 17,3kV
- Calculated the active power when δ =30
 - $P = E_0 E \sin \delta / X_S$
- The peak power ?

March 5, 2009

Transient reactance

March 5, 2009

Power transfer

- $E_1 = E_2 + jIX$
- $P = E_2 I \cos \theta$

•
$$P = E_1 E_2 \sin \delta / X_S$$

